Pragmatic Type Interoperability*

Sébastien Baehni® Patrick Th. Eugster® Rachid Guerraoui® Philippe Altherr®

¢ Distributed Programming Laboratory
b Programming Methods Laboratory
Swiss Federal Institute of Technology in Lausanne

Technical Report 1C/2003/08

Abstract

Providing type interoperability consists in ensuring that, even if written by different programmers, possibly
in different languages and running on different platforms, types that are supposed to represent the same
software module are indeed treated as one single type. This form of interoperability is crucial in modern
distributed programming.

We present a pragmatic approach to deal with type interoperability in o distributed system. Our approach is
based on an optimistic serialization mechanism and a set of implicit type conformance rules. We experiment
the approach over the .NET platform which we indirectly evaluate.

Keywords: Distributed Programming, Types, Objects, Events, Interoperability, Conformance, Serializa-
tion, Middleware, Dynamic Proxies, .NET.

1. Introduction

Context. There are different forms of interoperability and these differ according to their abstraction level.
Interoperability at the hardware level is typically about devising an operating system, e.g., Linux, that runs
on different machines, e.g., Pcs, Laptops, Pdas, Macs. Interoperability at the operating system level ensures
that the programming language, e.g., Java through its bytecode and virtual machine, is independent from
the underlying operating system, e.g., Linux, Unix, Windows, MacOS. Interoperability at the programming
language level guarantees that a class written in a specific language, e.g., C++, can be used in another
language, e.g., Java, transparently. This is for instance what .NET aims at offering.

This paper focuses on an even higher level of interoperability: type interoperability. The goal is to make
transparent for the programmer the use of one type for another, even if these types do not exactly have the
same methods or names, as long as they aim at representing the same software module. These types might
be written in the same language but by different programmers, they might be written in different languages,
or even running on different platforms.

We address the issue of type interoperability in a distributed system where new types of messages are
sent/received dynamically (more particularly, we are thinking of pass-by-value objects). Typically different
software modules need to be assembled in a distributed application. Some of these modules might aim at
representing a single logical entity.

*The work presented in this paper was supported by the National Competence Center in Research on Mobile Information
and Communication Systems (NCCR-MICS), a center supported by the Swiss National Science Foundation under grant number
5005-67322.

Motivation. Type interoperability was first introduced in centralized applications [LBR96]. However, as
presented in Section 2, those solutions are too rigid to apply them as is in a dynamic distributed environment.
Our aim is to provide a transparent solution to this problem in a distributed environment. Basically, we
are interested in devising a pragmatic scheme to allow objects of different types, that aim at representing
the same module, to be remotely exchanged (not only pass-by-reference, but especially also pass-by-value
semantics) as if they were of the same type, even if these types (a) have different methods or names, (b) are
written in different languages, or (c¢) running on different platforms. The challenge here is to provide this
transparency with acceptable performance.

Contributions. This paper presents a general approach to deal with type interoperability in a distributed
setting. We focus on the representations of the types and we use an optimistic transport protocol (that
saves network ressources) as well as different serialization mechanisms to guarantee the efficiency of type
comparison between transferred objects. To experiment our approach in a concrete setting, we have im-
plemented it over a popular object-oriented platform: .NET!. This platform has been chosen because it
provides language interoperability. That is, it provides the highest level of interoperability “underneath”
type interoperability. We extend .NET to allow for type conformance and we provide associated structural
conformance rules, themselves implemented via .NET dynamic proxies. Qur approach requires a small over-
head for invoking an object, though locally invoked, received from a remote host and we precisely measure
this overhead through our prototype implementation. Indirectly, we evaluate the .NET serialization (binary,
XML (eXtended Markup Language) and SOAP (Simple Object Access Protocol)) together with its reflection
capabilities.

Roadmap. Section 2 relates our work to other work on type interoperability in a centralized context.
Section 3 overviews the problem of type interoperability in a distributed environment and our approach
to solve it. Section 4 presents our type conformance rules. Section 5 describes how types are represented
and Section 6 presents our mechanisms for serializing objects. Section 7 gives a brief background on .NET
and describes how we have implemented our type comparison mechanism in the .NET platform. Section 8
gives some performance measurements. Finally, Section 9 draws some conclusions on our use of .NET and
describes some applications that can make use of type interoperability.

2. Related Work
2.1. Safe structural conformance for Java

Type interoperability was addressed for a centralized context in [LBR96] through structural conformance.
The structural conformance was defined as follows: “Any class or interface that declares (or implements) each
method in a target interface conforms structurally to the interface, and any expression of the source class or
interface type can be used wherever a value of the target interface type is expected”. To that end, several
rules for structural conformance were defined. However these rules are based on the Java type hierarchy (a
type is conformant if it implements each method in a target interface) which narrows the scope of structural
conformance. Moreover only types that are tagged as being structural conformant can pretend to do so,
meaning that legacy interfaces can never be used with structural conformance. Our approach has the aim
to extend the structural approach in a decentralized environment such that structural conformant types do
not need to share the same type hierarchy and neither need to be tagged as being structural conformant
enabled.

2.2. Compound types for Java

Compound types for Java [BW98] aim at simplifying the composition and reusability of Java types without
having to change them or agree on a common design. A new way to express a type was introduced:

LOf course the choice of the .NET platform implicitly fixes the operating system (Windows”™) and runtime environment
(common language runtime—CLR) respectively, while the set of programming languages is fixed through our choice of supporting
only those supported by .NET. However, our approach could be implemented in another platform like CORBA or Java RMI.

[TypeA, TypeB, ..., TypeN]. This new notation defines all the types declared to implement TypeA, TypeB,...,
TypeN. With compound types the programmer can express a “kind” of structural conformance as we take
into account the implemented methods of a type instead of only its name. However these compound types
are more about composition than about structural conformance and making type interoperable.

2.3. Corba

CORBA [OMGO1] addresses the language interoperability problem through an interface definition lan-
guage (IDL) that unifies different programming languages. This IDL provides support for pass-by-reference
semantics which make it possible to call a specific method from one language to another. Pass-by-value
semantics for object types have been added to CORBA quite recently through wvalue types to enable the
passing of invocation arguments [OMGO1]. The adopted solution is rather tedious to use, as developers are
required to implement such types in all potentially involved languages. In particular, this makes it hard to
add value (sub)types with new behavior at runtime. Even if this mechanism could be used for solving the
type interoperability problem, to our knowledge, the problem has never been addressed in CORBA. Note
that CORBA implementations provide various mechanisms, such as the dynamic skeleton interface and
dynamic invocation interface, but also the concept of smart prozies found in many ORB implementations,
which enable to some extent the realization of implicit structural conformance. Pass-by-value semantics with
object types would however be strongly limited, as pointed out in Section 5.

2.4. Java RMI

Java RMI enables the transfer of objects by value as arguments of remote invocations, thanks to its built-
in serialization mechanism. By virtue of subtyping, an instance of a new class can be used as invocation
argument, provided that it conforms to the type of the corresponding formal argument. By transmitting the
corresponding class (byte code) to an invoked object previously unaware of that class, one can implement a
scheme where new event classes are automatically propagated. The underlying dynamic code loading and
linking ensured by the Java virtual machine would also make it possible to extend/alter the behavior of
existing resource types at runtime. Though the Java virtual machine has been used to run code written
in various languages, the exploiting of its type safe dynamic code loading and linking [LB98, Sun99] is
problematic outside of Java. Like CORBA, this dynamic linking mechanism could be used for implemeting
type interoperability, but again, to our knowledge, type interoperability has never been implemented in Java
RMI.

2.5. Microsoft NET

Just like CORBA, .NET aims at unifying several object-oriented languages through a common type system
(CTS). The advandage here is that the programmer does not need to reimplement the type of interest in
all the programming languages in order to use the pass-by-value semantics. Nevertheless, .NET does not
address the issue of transparently unifying types that are not identical but that are aimed at representing the
same module, i.e., types which conform to each other implicitly (see section 4 for our definition of implicit
conformance).

2.6. Renaissance

The Renaissance system [MR95] implements an interesting RPC scheme where types with different meth-
ods or names can be invoked as if they were the same type, as long as they conform implicitly to each other.
The idea is based on structural conformance rules as means to compare such types. The approach is however
limited in that it relies on an explicit type definition language called lingua franca (even though mainly for
the purpose of generating typed proxies), and does not support pass-by-value semantics with object types.
Our approach for type interoperability has the aim of not being bound to any intermediate language but
rather to the type system of the platform itself. Moreover, our approach focuses on pass-by-value semantics
as well as pass-by-reference semantics.

3. Overview

This section overviews the problem of type interoperability in a distributed environment and our approach
to address it.

3.1. The problem

Usually, types are implemented either through interfaces or classes. Let us imagine a type Person that
has a field name. A first programmer can implement this type with a setter method named setName () and
a getter method named getName (). Another programmer can implement the same type with the following
setter and getter respectively: setPersonName () and getPersonName ().

Clearly even if the two implementations provide the same functionalities, they are not compatible with
each other, i.e. the programmers cannot use the two implementations transparently. In “static” environments
(where all the types of objects are known at the start of the system) this problem is easy to solve because
one can a priori hardcode the translation rules in the system.

However, when the system is “dynamic”, i.e. where new events of new types can be put into the system
at runtime, this problem is not trivial anymore. To solve it one must create a set of general rules that can
be compatible with every type and implement these rules into the middleware. This implementation must
be compatible with the pass-by-reference but also with the pass-by-value semantics in order to achieve full
distributed interoperability.

3.2. Our approach

We implement the general rules needed for ensuring type interoperability as well as a set of corresponding
serialization mechanisms. A distributed and “dynamic” environment is assumed. We do not tackle the
problem in a local setting, because it raises static type safety issues that are difficult to resolve without
proving the type soundness of the solution which is not the aim of this paper. The general protocol to
achieve type interoperability in a distributed environment is depicted in Figure 1.

When the middleware receives an object, it tries to check for the type information of this object. Once the
middleware obtains the type information it can check for type conformance with respect to types of interest.
If the check is successful, the code of the object is downloaded in order to deserialize the object. The object
can then be used as if it were of the type of interest.

The general protocol of Figure 1 can be decomposed in three distinct subprotocols, namely (1) object
serialization, (2) type description creation and (3) type conformance checking. This paper describes the
general case and then focuses on an implementation using the .NET platform. This implementation gives a
practical viewpoint as well as an experiment of making our rules more concrete.

Peer

1. Receiving an object

/ 2. Asking for the new object type information

[EREEE 3. Receiving type information, rules check
«€——— | 4. Typesconform, asking for the code

5. Receiving the code, object usable

Figure 1. General protocol used to ensure conformance between two types

4. Type Conformance

This section presents our type conformance rules. We first make a classification of the different categories
of conformance and then we give our conformance rules.

4.1. Conformance categories

We give here a complete classification of the different categories of conformance. It explains the different
categories and recall the existing terminology.

The first category is hardware conformance that aims at devising an operating system to work on different
computers. Operating system conformance ensures that the programming language is independant from the
underlying operating system. Another category, now provided by the .NET platform allows to use a type
described in one programming language (C# for example) in another language (VB.NET). We call this
category language conformance.

The next category is called type conformance and focuses on the interoperability between types. This
category contains two subsets called implicit structural type conformance and implicit behavioral type confor-
mance. Implicit structural type conformance encompasses what we call ezplicit type conformance. Namely,
explicit type conformance take into account the type hierarchy to which a type belongs, i.e. subtyping issues.
The combination of the implicit structural type conformance and the implicit behavioral type conformance
results in a “strong” implicit type conformance.

The implicit behavioral type conformance is based on the behavior of the type, i.e., based on the result
of its methods. This type of conformance is very difficult to analyse in the sense that the body of the
methods cannot just be compared but these methods must also be executed in order to compare their results
for corresponding inputs. That should be feasible for types dealing only with primitive types but for more
complex types it is not so trivial. Finally, the implicit structural conformance (the one this paper is about),
strictly relies on the structure of the type. By structure, we mean the type name, the name of its supertypes,
the name and the type of its fields and the signature of its methods?.

In this paper we focus on implicit structural type conformance only (and for simplicity purpose we will
denote, in the following of this paper, implicit structural conformance instead of implicit structural type
conformance). Figure 2 summarizes our classification of the type conformance.

Type Conformance

Implicit
Behaviora

Figure 2. The type conformance classification

4.2. The type conformance rules

In the following, we present the type conformance rules. We first introduce several basic notations and
definitions that will help us to explain the different aspects of conformance. Finally we present the implicit
structural conformance rule.

4.2.1. General definitions and notations

To make things clearer, and in order to be able to describe the different aspects making all together the
implicit structural conformance rule, several terms are defined. Figure 3 presents those terms, notations and
the implicit structural conformance rules. First some notations that are used in the rules are defined. Then

?Please note that in the literature, structural conformance has been studied in [LBR96] and is a mixin between what we call
explicit type conformance and implicit structural type conformance.

a definition of the general conformance rules is given3. The second definition describes the equality of two
types. The third definition explains the equivalence between two types. The fourth and the fifth definitions
denote the notation for the superclass and the interfaces of a certain type. The sixth definition defines the
name() method used in the conformance rules. Finally Figure 3 presents the implicit structural conformance
rules.

Notations :

T denotes a type T Name conformance (i) :

Teurp denotes the globally unique identifier of type T T <32™¢ T' = LD(name(T), name(T’)) =0

m denotes a method m

cons denotes a constructor Field conformance (ii) :

T < T S vf Ty €T 3f: Tf €T | Ty <1. Tp
Conformance :
! !
T<gT =TT Supertypes conformance (iii) :

T<;T'=>T<T

T <hier i Tsuper < isuper p inter o printer
T<;. T'=>T<; T <Is = (<r A <r)

Method conformance (iv) :
T S}"Sdh T' = Vm'(Perm(aqy : Tyryoyapr : Tpr)) : T € T
Im(Perm(a1 : Th,...,an : Tn)) : T € T |

name(m) == name(m’)A
Vi € [L,n)(Tyr <1s T5) ATy <15 T

Equality :
T ==T' iif Teuip == Téyrp

Equivalence :
T<T AT <T=T=T1" (case for <p iff T’==T)
Constructor conformance (v) :
T <§2™° T' = Veons(Perm(a1 : T1,...ran : Tn)) €T
Jecons(Perm(ay : Tyryoya,r 2 Tpr)) € T |
name(cons) == name(cons) AVi € [1,n](T; <15 T;)

Superclass :
TP = (T' | T' superclassof T)

Interfaces :
T'Lnter = T/ Tl - T
SE interfaceof T}) Implicit structural conformance (vi) :
Name : T<rs T & (T L™ T' AT S?;” AT S;:ezd T'A
(name(z) | ¢ € {T, m,cons}) = name of = TPt T AT L™ T YV T ==T' VT <p T’
(as a case insensitive string representation)

Figure 3. Our rules of conformance together with the general definition

4.2.2. Decomposing implicit structural conformance

We define different aspects of conformance as follows:

Name (i): This aspect takes into account only the name of the different types to compare to. A name of a
type T is said to conform to the name of a type T" if the names are the same (i.e. the Levenshtein distance
(LD) [Lev65] is equal to 0). The names are considered to be case insensitive. In order to be more general,
wildcards could be allowed but this is not the aim of this paper.

Fields (ii): A field f of type Ty (f : T) defined in a type T is said to conform to a field f' of type Ty defined
in a type T" if Ty and T+ are implicitly structurally conformant.

Supertypes (iii): This aspect takes into account the supertypes of the type and its interfaces (if any)*. A type
T is said to conform to a type T', with respect to T"’s type hierarchy, if the superclass and the interfaces
of T' conform respectively, in the implicit structural sense, to the superclass and the interfaces of a type
T'. T*%e" and T™e" denotes the superclass and the set of interfaces of type T respectively.

Methods (iv): Conformance between methods is a bit more tricky than the other aspects of conformance.
First, the modifier of the methods are supposed to be the same (this assumption is implicitly assumed in
the rule). Then, in order to describe the corresponding rule, three parameters for each method are taken
into account: first the name of the method, second the arguments of the method and finally the return
type of the method. To understand this rule, one must think of which uses the (1) return parameter and
the (2) the arguments of the method: the instance of the type expected to be received (depicted as the
“real” object) or the object received that must implicitly structurally conforms (depicted as the implicitly
structurally conformant object). In (1) the “real” object uses the return parameter, meaning that the

3Implicit conformance is noted <, while explicit conformance is noted <gand the implicit structural conformance is noted:
<1s- Finally, T < T’ denotes the fact that instances of T' can be used safely whenever an instance of T” is expected.
4The distinction between the type and its supertypes is done in order to make things clearer.

return parameter T, of the method m must implicitly structurally conform to the return parameter T,
of the method m/'. In (2), the implicitly structurally conformant object uses the parameter given by the
“real” object. In this case, the argument T} of the method m' must implicitly structurally conform to the
argument, T; of the method m. Note that the permutations of the arguments of the methods (denoted by
Perm(ay,as,...,a,)) are taken into account.

In other terms, contravariance is acceptable for the arguments of the methods and covariance is acceptable
for the return values. Indeed, assuming contravariance for the arguments means that if the user uses the
methods of the conforming object with its own parameters, these parameters must be acceptable for these
methods. As the type of the parameters are static (in the sense that they are fixed by the user), the
methods of the object to conform to must either accept these types or supertypes of them. The return
types can deal with covariance. Indeed, if the user is expecting an object of type T, and receives an
instance of a subtype of it, there is no problem, but if it receives a supertype, he might try using a specific
method of T that the supertype does not define.

Constructor (v): The final step before defining the implicit structural conformance rule is to describe the
conformance rule for the constructors. This rule is quite the same as the one for the methods except
that there are no return values (hence no return type). Again, contravariance for the arguments of the
constructors is assumed.

4.2.3. The implicit structural conformance rule (vi)

Implicit structural conformance (<rs) can now be described. A type T implicitly structurally conforms to
a type T' (in a complete way) iif T' conforms to type 7" in all the aspects defined before or if T' and T” are
equivalent or if T' conforms explicitly to T".

The word “complete” is introduced here for implicit structural conformance for the first time because one
could think of having a more weaker (incomplete) rule taking into account only the name of the types for
example. However, not taking into account the whole set of aspects breaks the type safety and result in
receiving an error while trying to call a specific method onto the object.

What if a field, a method or a constructor of a type T" match several fields, methods or constructors of a
type T" of which it implicitly conforms (e.g., a method with a single argument x; of type T} in T can match
an arbitrary number of methods with a single argument x;. for as long as 71 < T1/)7 In this case, the rules
does not impose any criterion, it is up to the programmer to decide what is more suitable.

5. Type Representation

This section discusses the representation of types. Our objective is to make the comparison between two
types possible, according to the rules described in Section 4, without having to transfer the implementation
of them. To achieve this goal, we rely on introspection mechanisms (that are provided in platforms like Java
or .NET).

5.1. Overview

Once the object, as well as a handle to its type description (see Section 6), are received on a given host, a
test must be performed to check if this object can be used as is within a given variable. This means that the
type description of the received object must conform to the type of the variable. Downloading directly the
package/assembly containing the type of the object is not an option, because this would consume too many
network and memory resources, especially if it appears that the types do not conform. For that reason, only
a type description is downloaded.

To create such a type description, the reflection mechanisms of the object-oriented platform are used as a
basics, as they provide some useful mechanisms that help in order to achieve our goal. Those reflection classes
help us to get information about the variables, the methods and the attributes of the type to represent.

5.2. Our approach

This section shows how types are represented in order to be effeciently serialized and sent through the
network.

5.2.1. Types as XML messages

Types in our system are represented as XML structures. One obtains the information necessary to ”con-
struct” a type description by means of introspection. Such a type description includes explicit supertype
information as well as signatures of methods, attributes, and type identity®.

Recall that the serialization mechanisms of the main object-oriented platforms we think of (NET or
Java) are not able to serialize/deserialize an object (even its reflection fields) without knowing in advance
its type. For that reason our own introspection for representing fields, methods, constructors, interfaces and
superclass of objects need to be created and serialized. Figure 4 represents our general description of a type.
In order to create such instances of our introspection classes, one must rely on the introspection classes of
the chosen object-oriented platform (see Figure 6).

Since it is not feasible (for resource reasons) to send these introspection objects trough the network, one
by one, a special type (called TypeDescription) which implements the ITypeDescription interface (see
Figure 5) is introduced. The ITypeDescription interface presents the methods necessary to acquire the
information about the type of the object to serialize. Two specific methods (equals() and conforms()) are
defined and are used to test the conformance between types. In order to serialize a new TypeDescription
object a basic XML serialization mechanism is sufficient.

As mentioned before, the TypeDescription class gives a description of the type it reflects (i.e. its fields,
methods including the arguments of the methods, constructors, etc). But there is no description of the fields,
methods, ... of the types of the formal arguments of the methods or of the fields themselves. There is no
recursion in the type description for two main reasons, namely (1) for saving time during the creation of
the XML message and (2) for keeping this message small because a subtype description might already be
available at the receiver side, so there is no need to transport redundant information. Figure 7 gives a XML
description of the Person class presented in Figure 9. This XML description has been shortened for space
reason.

public class TypeInfo public interface ITypeDescription
{ {
public string attributes; ClassInfo[] getClassInfo();
public string typeName; ConstructorInfo[] getConstructorsInfo();
public string assemblyName; MethodInfo[] getMethodsInfo();
public string downloadPath; SuperClassInfo[] getSuperClassesInfo();
public string GUID; InterfaceInfo[] getInterfacesInfo();
public TypeInfo(string attributes,string typeName, FieldInfo[] getFieldsInfo();
string assemblyName,string downloadPath, bool conforms(ITypeDescription itd);
string GUID) {...} bool equals(ITypeDescription itd);
} }
Figure 4. TypelInfo introspection class Figure 5. ITypeDescription interface

6. Object Serialization

In this section, we elucidate how objects are represented, conveyed (pass-by-value semantics), and invoked
(pass-by-reference semantics) between components in our approach. We first introduce the different issues
addressed in this section and explain our pass-by-value and pass-by-reference approaches.

5We rely on the concept of type identity provided by the underlying platform. As a matter of example, .NET provides
globally unique identifiers (GUID) of 128 bits long for types.

Our Introspection

Core Introspection

TypeT

methods methods

superclass

S superclass
interfaces

interfaces

Figure 6. Introspection mechanism

<?7xml version="1.0"7>
<TypeDescription ..>
<class>...</class>
<superClasses>...</superClasses>
<fields>...</fields>
<methods>. ..</methods>
<constructors>...</constructors>
</TypeDescription>

Figure 7. XML description of Person

6.1. Overview

For the same reasons presented in Section 5 it is also not feasible to send the type representation of the
object with the object itself. This is because it might happen that objects of the same type have already
been received before and there is no need to download again the type representation of the object. For that
reason, when an object is sent through the network it is sent only with a description of the download path
where to get the complete type representation of it.

6.2. A XML-SOAP approach

This section presents the approach we have chosen to send/use an object through the network. Our
approach is hybrid in the sense that to send objects, we rely on a combination of the XML and some other
serialization mechanisms (SOAP or binary). For connecting objects remotely, our approach assumes and
uses the remoting mechanisms of the chosen object-oriented platform.

6.2.1. Pass-by-value semantics

As presented above, it is not possible to serialize an object and send it through the network just as is.
This is because the receiver of the object may not have the necessary information used to deserialize the
object (if this is the first time he receives the object). To prevent knowing the type of the object sent,
specific serialization and deserialization mechanism are used. That is, a XML message encompassing the
object is sent instead of only the object itself. This XML message consists of information about the types
of the object (type names and download paths of their implementations) and includes the SOAP or binary
serialized object.

When such a XML message is received, it is deserialized in order to get the corresponding type information.
A check is done in order to know if the corresponding classes or interfaces implementing the types are locally
available. If this is the case, the deserialization of the object can be easily achieved. Otherwise, the type
description of the object must be downloaded with the help of the information of the download paths. If the
type of the object and the type of interest conform, the different classes and interfaces that implement the
types can be downloaded and loaded into the memory in order to deserialize cleanly the object. In order

to deal with such conformant objects, dynamic proxies concept will be used (see next section for further
information).

Figure 8 illustrates the serialization of an object of type A containing an object of a type B, while Figure 9
depicts the type Person (that is a subtype of interface IPerson for some reasons explained in Section 7) and
Name (a field of Person). Finally, the corresponding XML message is described in Figure 10°.

Serialization
Mechanism

Object A

Object B)

<XML message>
<A Type information>

<Assembly A information>

<Assembly B information>

<SOAP serialized object A>

Figure 8. A hybrid serialization scheme

<?xml version="1.0" encoding="utf-8"7>

<ObjectDescription>
<TypeInformation> ... </TypeInformation>
<SO0APInformation>
public class Person : IPerson { <SOAP-ENV:Envelope ...>
private Name name; <SOAP-ENV:Body>
private int securelD; <al:Person ...>
public Person(Name name, int secureID) {...} <name .../>
public Name getName() {...} <securelD ...>22</secureID>
. </al:Person>
} <al:Name ...>
public class Name { <firstName ...>Seb</firstName>
private string firstName; <lastName ...>Baehni</lastName>
private string lastName; </al:Name>
public Name(string firstName, string lastName) { Cee
ce </SOAP-ENV:Body>
} </SOAP-ENV:Envelope>
C. </SOAPInformation>
} </0ObjectDescription>
Figure 9. Person and Name class Figure 10. XML representation of Person

6.2.2. Pass-by-reference semantics

Though the main object-oriented platforms (e.g. .NET), already provide several mechanisms for pass-by-
reference semantics (.NET remoting), they are in our case, just like basic serialization mechanisms, not
usable as such. Indeed, the current implementation can not be applied straightforwardly, due to our desire
for interoperability not only at the programming language level, but also at the type level, meaning that we
want to be able to provide some flexible form of type conformance. Imagine a component querying a type
Tg, and Ty happens to match a lent remote server’s type T implicitly (only), i.e., T, is not a subtype of
Tg. The invocation of T can not be performed straightforwardly on a remoting proxy; the interposing of a
dynamic proxy (see Section 7) as a wrapper is necessary since Ts and T, are not explicitly compatible. This
mismatch increases with the depth of the matching of the two types Ts and T, (requiring similar wrappers
on the sharing component as well). This concept of dynamic proxies is available in object-oriented platforms
like .NET by extending the the RealProxy class (even in Java by extending the java.lang.reflect.Proxy
class and in using the java.lang.reflect.InvocationHandler interface). Our pass-by-reference approach
is, in fact, quite the same as the pass-by-value approach, in the sense that for both approaches, the concept
of dynamic proxies is massively used. The only difference between the two approaches is that for the
pass-by-value approach our own serialization mechanism and dynamic proxies are used and for the the pass-
by-reference approach, the basic remoting mechanisms enhanced with dynamic proxies (see Section 7 for a
description of how to use dynamic proxies with .NET) are used.

SFor presentation purpose the object has been serialized using the SOAP format.

10

7. Implementation issues

The concepts and rules presented in Section 4, Section 5 and Section 6 have been implemented on the
.NET platform.

We have chosen this platform mainly because it provides language interoperability. However, relying on
such a platform brings some limitations in terms of genericity (i.e. current lack for templates) and operating
system interoperability (.NET has been designed to run on Windows). For the first issue, a very new Gyro
“patch” has been released in order for .NET to be able to support genericity for the C# language [KS01].
However, even this patch does not allow to use genericity for the other languages supported by .NET,
meaning that the language interoperability is broken for the types using such a patch. Concerning the
second issue, some efforts have been done to port .NET to Linux. An open-source project, called mono
(www.go-mono.com) has been launched.

The mechanisms that help us to implement the different concepts as well as the new type representation
and the new implicit structural conformant rules (narrowed to the .NET needs) are presented. This section
finishes with the explanations how such mechanisms are used to implement our concepts and rules.

7.1. Background: Overview of .NET

This section gives a brief overview of the .NET architecture as well as an explananation of the different
components .NET is made of. We also present the serialization, networking and dynamic proxies mechanisms
as our prototype was built on top of these.

7.1.1. .NET architecture

.NET [TLO01] is Microsoft’s framework for unified services and application development, mainly on the
Windows platform. Figure 11 gives an overview of the .NET architecture.

Application Domain A Application Domain B

Assembly\ [Assembly Assembly | [Assembly
C.dil D.dll C.dil D.dll

we (o] []

Common Language Runtime (CLR)

‘ Base Class Library (BCL) ‘

‘ Microsoft Intermediate Language (MSIL) ‘

‘ Common Language Specification (CLS) ‘

Figure 11. Overview of the .NET platform

7.1.2. Common language runtime (CLR)

The CLR is the soul of .NET. It is its runtime, comparable to the Java virtual machine, which is layered
between an operating system and .NET applications. The CLR loads application code, manages it, runs it,
and provides a number of support services. Some of these vital support services include resource management,
thread management, remoting, as well as enforcing of code safety and security constraints. Code that is
loaded and running under the control of the CLR is referred to as managed code.

11

7.1.3. Intermediate language (IL)

Compiled code in .NET does not contain assembly language instructions. Rather, code is compiled into
assemblies that contain declarations in intermediate language (IL)”. Together with meta-data (used to provide
a generic description of the types), this managed code makes up the abstract intermediate representation of
a .NET application. IL is hence a low level language, similar in idea to Java byte code, i.e., represented as
a series of opcodes. The IL is always JIT-compiled into native machine code.

7.1.4. Common type system (CTS)

If IL represents a general code format, able of expressing a multitude of languages, the CTS represents a
general type system, able of capturing type schemes of these languages. CTS is currently limited to single
class inheritance (though multiple subtyping can be achieved in interfaces), and is not able of representing
genericity.

The CTS is divided in two categories: value types and reference types®. Value types directly contain
their data. These value types are traditionally known as “primitive types” (like int in Java). In .NET, it is
possible to create new value types. To this end, a new type must inherit from the System.ValueType type.

In contrast, reference types maintain a reference on the value’s memory address. This kind of types are
either interface types, pointer types or self-describing types. The latter type can be divided into several
categories: arrays, user-defined classes, boxed value types and delegates.

8

7.1.5. Common language specification (CLS)

IL and CTS have been designed to express a variety of languages. The CLS on the other hand is simply
a specification that defines the rules, basically a set of features that can be supported by all languages,
which ensure that compliant IL code fragments can be executed in any language. These rules (over 40)
are documented in [Mic02]. Roughly, a CLS-compliant definition (type, type member, or entire assembly)
is tagged as such if its constituents (e.g., members of a type, formal arguments of a method, types in
an assembly) visible outside the assembly are CLS-compliant, and it references itself only other compliant
definitions. Namely, the CLSCompliantAttribute is set to true in an assembly definition if this is ensured.
An assembly which is not tagged as so is, by default, not CLS-compliant.

7.1.6. Assemblies

IL declarations are regrouped in assemblies. They can be viewed as collections of types and can work
together to create a logical unit of functionality. An assembly gives to the CLR the necessary information
about the type(s) it owns. From the runtime point of view, a type does not exist outside an Assembly.
An assembly is responsible for the security access, the versioning, and the reference scope of the type(s) it
contains. Assemblies can be (1) static, or (2) dynamic. Static assemblies are compiled and saved to disk into
portable executable (PE) files or dynamic link libraries (DLL). Dynamic assemblies are loaded directly into
the memory and are not saved to disk (the System.Reflection.Emit package provides this functionality
to the programmer). Assemblies are the successors of the well-known dynamic link libraries (DLL, known
through the typical file postfix, e.g., mylib.dll) and of the conventional windows executable files. The type
of the assembly (DLL or executable) depends on whether it contains an entry point (main function). In this
last case, the assembly is a PE, otherwise it is an DLL. Each assembly has its own version number, meaning
that two assemblies can have the same name.

The assemblies are constitued of four parts: an assembly manifest (containing metadata), type metadata,
IL and resources (pictures, files, ...). Metadata are used to make programming language interoperability
easier as it is essentially supplementary information about data types. Each assembly consists generally of
several so-called modules which in turn consist of several type declarations.

"Sometimes also termed Microsoft IL. (MSIL) or Common IL (CIL).
8Which have however nothing to do with our previous mentions to pass-by-value and pass-by-reference semantics in remote
interactions.

12

7.1.7. Object serialization

.NET provides several mechanisms which might be useful in the context of sending objects throughout the
network. Pass-by-value semantics or pass-by-reference semantics can be used.

Pass-by-value semantics .NET provides three ways of serializing objects, namely (1) using a binary
format, (2) using an XML serialization, and (3) using SOAP.

Binary serialization: This form of serialization has the advantages of preserving type fidelity, meaning that
the entire state of an object is serialized/deserialized (i.e., including non-public fields), and being efficient.
Its implementation is comparable to serialization in Java.

XML serialization: The XML serialization, in contrast, neither preserves type fidelity (only public fields are
considered) nor is efficient. However this mechanism is very useful for applications which are not to be
restricted by the data types they use, because it enables the use of objects without being forced to have
the type describing it. Indeed, as the XML serialization serializes the object in a human-readable format,
you do not have to know at runtime the type of the serialized object you receive in order to take benefit
of its public fields. On the other hand, that means that in order to take advantage of those fields, one
must provide an own deserialization mechanism. In any case, to deserialize an object in the proper sense,
i.e., recreating an object from a serialized representation, its assembly is required. However, with access
to public fields without deserialization, objects can be efficiently (pre)filtered while in transit [EFGHO02].

SOAP serialization: This third serialization mechanism combines the benefits of both previously presented
mechanisms, by being essentially an XML serialization, yet providing the possibility of exploiting the
.NET advanced serialization mechanisms, i.e, customizable serialization and deserialization. Moreover,
the SOAP serialization allows to serialize an object and its fields without imposing any design guidelines
(special constructor, etc). But in spite of its advantage, the SOAP serialization does not provide the
deserialization of an object without having the assembly of it.

As discussed in Section 6, our prototype uses the XML and the SOAP serialization in order to transfer
objects. The XML serialization is only used to serialize the type representation.

Pass-by-reference semantics .NET remoting is .NET’s mechanism for invoking methods on objects
across the network as if these were local to the invoker.

.NET remoting uses the well-known concept of proxies in order to mimic the object to call, and uses
the serialization mechanisms introduced above for marshalling arguments. .NET provides several variants
of remote invocations, among which the programmer chooses by constructing classes of remotely invocable
objects accordingly. Furthermore, .NET supports multiple protocols for carrying out the communication un-
derlying remote invocations (currently HTTP or TCP/IP) and provides several utilities in order to configure
the access to a remotely invoked “server” object, which can be of the following;:

Server-activated: As suggested by its name, this mode is characterized by having server objects’ activation
and deactivation guided by the server itself. Two variants exist:

Singleton: This kind of server object is automatically activated at startup of the server CLR. It’s lifetime
is hence equal to that of the server, and a single instance is used to handle all remote invocations.

Single call: New, automatically created, copies of the server object handle individual incoming invocation.

Client-activated: In this mode, activation and deactivation of server objects is triggered by clients. To avoid

the problem of server objects being kept alive despite inactive clients, latter ones must lease server objects,
which after expiration of all leases are garbage collected.

Our prototype uses the .NET remoting mechanism presented above enhanced with dynamic proxies. The
“type” of activation is chosen depending on the needs of performance of the prototype.

13

7.1.8. Transfering data

In order to transfer datas through the network, .NET proposes a Socket class. This class is usable to create
TCP, HTTP, UDP or even IP multicast channels. The choice of the channel type really depends on the
Quality of Services wanted. All these channels send serialized messages. For the implementation of our
prototype none of these mechanisms had to be changed. Simply the appropriate channel type had to be
choosen.

7.1.9. Dynamic proxies in .NET

A dynamic prozy class is a class that implements a list of interfaces specified at runtime such that a method
invocation through one of the interfaces on an instance of the class can be encoded and dispatched to another
object through a uniform interface. Thus, a dynamic proxy class can be instantiated to create a typed proxy
object for a list of interfaces without requiring any code pre-generation, such as with compile-time tools.

This mechanism is available in the .NET platform [Hus01] under the RealProxy abstract class. Over-
loading this class lets the programmer define a new dynamic proxy class. In order to do so, a subclass of
the RealProxy class must define a special constructor and implement a specific Invoke () method. The
constructor to implement takes only one parameter which is the type to mimic. The Invoke () method takes
and returns an IMessage object. This method is performed everytime a method is called on the dynamic
proxy. The return type contains the expected return value (which is casted to the real type the invoker
expects to receive, that implies the returned value must be an instance of the expected return type). With
the help of the Invoke() method arguments, it is possible to retrieve the name and the arguments of the
real method the callee invoked. Figure 12 shows an implementation of such a dynamic proxy class.

public class MyProxy : RealProxy
{ public class TestProxy

public Object o; {

public MyProxy(Type t, Object o): base(t) { this.o = o; } public static void Main(Stringl[] argv)

public override IMessage Invoke(IMessage msg) {

{ MyProxy mp = new MyProxy(typeof (IPerson),
IMethodMessage m = (IMethodMessage)msg; new Person(new Name("Bob",'"Morane"), 12));
MethodInfo method = o.GetType() .GetMethod(m.MethodName) ; IPerson ip = (IPerson)mp.GetTransparentProxy();
Object retValue = method.Invoke(o,m.Args); Console.WriteLine(ip.getName());
return new ReturnMessage(retValue,null,

0,m.LogicalCallContext, (IMethodCallMessage)m); }
} }
}

]) Figure 13. Class using a dynamic proxy
Figure 12. Example of a dynamic proxy

To obtain a dynamic proxy, TransparentProxy is requested via the getTransparentProxy() method.
This method returns an object which can be cast into the type provided to the constructor of the dynamic
proxy class. Figure 13 shows a class that uses such a dynamic proxy. Please note that the Person type

(Figure 9) is a subtype of the IPerson interface (as we can only use interfaces with dynamic proxies in
.NET).

7.2. Adaptation to .NET

This section presents the modifications to the type representation and the implicit structural conformance
rules (presented in Section 4) in order to make them compliant to .NET

7.2.1. .NET type representation

To represent a type of a given object, .NET uses introspection classes: Assembly, Module, ConstructorInfo,
FieldInfo, MethodInfo, ParameterInfo, PropertyInfo, etc. All these classes give information about the
type they reflect, as for example, the name of the types they reflect, the modifier(s) of the methods of the
types they reflect, etc.

14

As it is not possible to use such a description remotely (see Section 5) and as the dynamic proxies of NET
only allows to use interfaces or types that are marked as MarshalByRef, one must take this into account for
our type representation. Our approach only focus on dealing with interfaces as one wants to have a complete
control over the marshalling of the objects (which is not accomplished with the MarshallByRef tag).

In .NET, interfaces only allows specific declarations. For instance there is no possibility to include fields
into an interface. However, it is possible to include abstract “properties” which are special fields with getter
and setter methods. It is also possible to include events (in order to deal with events) and indexers (the
equivalent of properties but for arrays). No modifier is acceptable for methods and properties, events or
indexers.

To circunvent these limitations, some modifications have to be done in the previously presented classes and
interfaces (see Section 5). First, new PropertyInfo, EventInfo and IndexerInfo classes must be created.
Those classes subclass the TypeInfo class (as one need the same kind of information). Some changes must
also be done in the ITypeDescription interface, leading to a new interface described in Figure 14.

This new interface does not give information about the constructors (as there are no constructors in
interfaces) neither about the superclass (because interfaces cannot subtype a superclass but only other
interfaces). However it gives now information about the Property, Event and Indexer fields. Of course the
implementation of the type TypeDescription now mimics these transformations but the general behavior
of the class remains the same.

public interface ITypeDescription

1{
ClassInfo[] getClassInfo();
MethodInfo[] getMethodsInfo();
InterfaceInfo[] getInterfacesInfo();
PropertyInfo[] getPropertiesInfo();
EventInfo[] getEventsInfo();
IndexersInfo[] getIndexersInfo();
bool equals(ITypeDescription itd);
bool conforms(ITypeDescription itd);

Figure 14. .NET compliant ITypeDescription interface

7.2.2. .NET implicit structural conformance rule

As mentioned previously, one must deal with the .NET specific limitations, i.e. dealing with abstract types
rather than types. To that end, the rules described in Section 4 must be rewritten. Most of them remain
the same (with some minor modifications), except the constructors rule that is removed and the supertypes
rule that is changed. The .NET specific rules are presented in Figure 15.

Name: This aspect remains the same. Please see Figure 3 for its description.

Fields: This rule remains the same. The only modification is that now fields refer to either Property, Event,
Indexer types as only those fields are acceptable in a .NET interface.

Method (i): This rule remains quite the same. But particular care must be taken to the arguments of methods
as well as their return types. Indeed, if the arguments/return type of a method conforms “only” implicitly,
those arguments then must be interface type, because in this case, dynamic proxies have to be used (and
only interfaces are usable with dynamic proxies). T; isinter face denotes the fact that T; is an interface.

It may be possible that the arguments (or the return type) are equivalent or explicitly conformant. In this
case they do not need to be interfaces. To take into account this property without changing all the different
rules, the tests of equivalence (T == T") and explicit conformance (T <g T') have been added. Those
tests are already present in the implicit structural conformance rule, but as in the method conformance
rule (i) their are combined with the test of being an interface or not, they cannot cover the equivalent and
explicit conformance cases, why the redundancy.

15

Supertypes (ii): This rule changes slightly as there is no need anymore to care about the superclass of a type.

Method conformance (.NET version) (i) : Supertypes conformance (.NET version) (i) :
T Slm;th T = Ym'(Perm(ayr : Tyryeeeyapr : Tpr)) : Ty €T T S?;er T' = (T*"'7 <y, T""'e7)
Im(Perm(ay : T, ...,an : Tn)) : Tn € T |
name(m) == name(m')A Strong implicit structural conformance (\NET version) :
Vi € [1,n)(Ty == TivTy <g TiV(Ty <1s TinNTy isinterface))A T <15 T' & (T <FE™e T AT <2ie" T'AT Sﬁe’d T'A
(T ==T,y VTr <g T,s V(T <15 T,» AT, isinterface)) T<Peth 7YV T ==T'VT <p T

Figure 15. .NET compliant rules

7.2.3. Dealing with equivalent or with explicitly conformant types

In the case of equivalency, no particular treatment is required. Indeed, the assembly of the type is already
available at the receiver side implying that the object can be used immediately without having to get through
all the protocol (Figure 1).

What if the received type is explicitly conformant to one of the types the peer is interested in (i.e. is a
subtype)? First, how is it possible to check that a type is explicitly conformant with another one? There are
two possibilities: (1) either download the assembly containing the type in order to use the .NET reflection
mechanisms or (2) use recursively our type description of the object in order to try to find an intersection
between the supertypes of both types.

Let us assume that the two types are explicitly conformant. In this case two possibilities are available.
Either a Binder can be specified to our formatter in order to deserialize our message into the supertype
directly, but that implies creating our own deserialization mechanism for the supertype (in order to drop the
fields that are not interesting). The second possibility consists in downloading the assembly and deserializing
the object.

It is currently not clear for us which solution is better for all cases. In one case, a deserialization mechanism
must be provided and in the other case the assembly need to be downloaded only once. The final imple-
mentation will certainly be a tradeoff between bothering the user in writing special serialization mechanisms
and between reducing the network load.

7.2.4. Dealing with types that conform “only” implicitly

If the type of an object received is neither the same nor a subtype of the type of interest, the implicit
rules defined in the previous section are applied. A success means that the received object is implicitly
conformant with the interested type (if the test fails, the object is simply dropped). During the rules check,
the conversion between one method and another (same for the fields) is kept in memory (in a hashtable).

Once this check is done, it is possible to use the object as we discuss below. The next step is to deserialize
the object in order to use it (invoke methods on it). For that purpose, the assembly of the type of the object
must be downloaded. Finally the object must look like if it were of exactly the same type as the one the
user requested. As this is not true (the type of the object only implicitly conforms to the type the user is
interested in), the object must be wrapped and a reference to this wrapper must be given to the user. In
order to create such wrappers, the dynamic proxy paradigm is used.

7.2.5. Using .NET Dynamic Proxies

In all the cases (methods, fields, supertypes), a dynamic proxy for the type of interest is created and the
Invoke() method dispatches the calls on the dynamic proxy to the received object. However, this is not
enough, one must take care of return types, methods arguments types, and fields types.

Implicitly structurally conformant methods: Here, two cases must be taken into account: (1) The return
types are implicitly structural conformant, (2) the arguments are implicitly structural conformant. For
these two cases, one must keep in mind that the programmer is interested in a specific type he designed.
So he must expect to deal only with instances of this type.

16

Return types: The programmer expects to receive an instance of a specific type in return of his method
call, but instead he receives an instance of a type that is “only” implicitly structurally conformant. In
order to give him what he wants, a specific dynamic proxy must be created for the expected type. The
Invoke () method of this new dynamic proxy is designed in order to dispatch the calls of the returned
object to the implicitly structurally conformant one.

Argument types: The types of the arguments, provided upon invocation, of the received object do not
match. In that case, a dynamic proxy is created for each argument of the received object. The Invoke ()
method in this case dispatches the calls to the arguments the programmer provided.

Recursion: In the above two cases, specific dynamic proxies in order to impersonate a specific type are
defined. But what if the impersonating type has also methods that have arguments and/or return
types that only implicitly structural conform to the impersonated type, i.e. if the implicit structural
conformance has several levels? In that case, the rules must be applied recursively up to the point where
the different types are equivalent or explicitly conformant.

Implicitly structurally conformant fields: Let us focus here on either properties, events or indexers (called
here “fields”). All these fields can in turn declare methods. This implies, for example, that a.myProperty
calls the get () method of the property (the same applies for indexers) and if the following a.myProperty
+= aValue call is done, the set () method is in turn called. For that reason, special care must be taken
about the return type of the get() method and of the value given to the set() method, because there
could exist “only” implicit conformance between the fields of the objects of interest and the ones of the
conforming object. To achieve “complete” transparency, the same mechanisms described above for the
methods are used.

Implicitly structurally conformant supertypes: This case does not imply any special care as if two types have
super-abstract types that are implicitly structurally conformant it implies, according to the rules, that
they have methods or fields which are implicitly structurally conformant. We fall back then into the above
two cases, i.e. dealing with several dynamic proxies.

8. Performance

We present here some performance results of our prototype implementation. We measure the time taken
by the different serialization mechanisms, the invocation time taken for calling a method using a dynamic
proxy and compare it to a direct invocation, and finally the time taken to check conformance rules. All our
results are based on simple types (precisions follow) and obtained with a HP Omnibook XT6050, Pentium
3, 256 MB Ram, HDD 30GB, Windows 2000 SP2, Visual Studio .NET Enterprise Architect 2002 version
7.0.9466.

8.1. Invocation time

We first consider the invocation time taken to invoke a method using a dynamic proxy and compare it to
a direct invocation. The method called is getName () of the type Person. This type is described in Figure 9.
The testbeds were the following: 100 repetition of 1000000 invocations to the method either directly or
indirectly (using a dynamic proxy). We have made a repetition in order to see if, over the time, the overall
slope was constant or not. The results are presented in Figure 16.

The average direct invocation time is about 0.000142 milliseconds. The average indirect invocation time
is about 0.03 milliseconds. A huge difference can be seen in comparing these two results. Moreover, the
overall time for making an indirect call depends upon the number of indirect calls performed on the dynamic
proxy as well as its implementation. However, this amount of time still remains negligible with respect to
the time taken for checking type conformance or for transfering objects, types descriptions and assemblies.

17

o
=
B
Time [ms]
®

Invocation time [ms]

1 10 19 28 7 A6 55 B4 73 82 91 100
Test number

0 [vialization time —— Deserialization time |
1 0 18 B/ ¥ 46 5 B4 73 82 9 100

Test number

[t oration — ndrectocaton] Figure 17. Type description
(de)serialization

Figure 16. (In)direct Invocation time

8.2. Creation, serialization and deserialization of type descriptions

We consider here the time taken to create a type description of a simple type (in this case the type Person,
presented in Figure 9). Figure 17 presents our measurements obtained when creating and serializing as well
as deserializing a type description of a type Person. Here, the type description of an instance of Person was
(de)serialized 1000 times. We also average over 100 runs.

The average time for the creation and the serialization into an XML message of a Person description is
about 6.14 milliseconds and the time taken to deserialize such a message is 2.34 milliseconds. Even if this
cost is small, we must note that, again, these times depend much upon the serialized type. For a more
complex type, the creation and the serialization of the message will take of course more time. However, we
must also note that this serialization is done only once for a specific type. The time taken to send many
objects of the same type will not be significantly affected by this (de)serialization time.

8.3. Serialization and deserialization of an object

We have measured the time taken to serialize and deserialize an instance of type Person. Results are
shown in Figure 18. More precisely, we have measured the duration of serializing and deserializing this
instance 1000 times. The average time to serialize the object is of 16.68 milliseconds and to deserialize
of 1.32 milliseconds. This difference between the serialization time and the deserialization time could be
explained by the fact that creating a SOAP structure from an object is more complex than creating an
object from a SOAP structure. Again, we can expect a longer time if our object is a bit more complex.

0
18 \WM/‘MI'J\;-’V\I\M/_M“'\/A_A public class ClassA
16 4 {
144 private string aString;
s private int anlInt;
B private Person aPerson;
H 0 public ClassA(Person aPerson, string aString, int anlInt)
"8 {...}
3 public string getString() {...}
4l public void setString(string aString) {...}
3 public int getInt() {...}
[Nttt St N i e s public void setInt(int anInt) {...}
’ 10 19 2B ¥ 46 5 B4 73 B2 91 10 public Person getPerson() {...}
Test number public void setPerson(Person aPerson) {...}
[——"Srialization tims — Deseraization time | }

Figure 18. SOAP (de)serialization of an object
Figure 19. Class to conform to

18

8.4. Conformance testing

Finally, we also measured the cost of the verification of the conformance rules. These tests were done on
very “simple” types. Those types are “simple” in the sense that they are composed principally of fields of
primitive types and there is no recursion needed in order to test the implicit structural type conformance
(the arguments of the methods, return types of the methods and properties are either equivalent or conform
explicitly, see Figure 19 and Figure 20).

public class classa
{
private string s;
private int ij;
private Person p; 128
private string h;
public classa(string s, int i, Person p)
{...}
public string getstring() {...}
public void setstring(string s) {...}
public int getint() {...}
public void setint(int i) {...}
public Person getperson() {...}
public void setperson(Person p) {...}
public string gethello() {...}
public void sethello(string h) {...}

} ——Time to test the conformance

Time [ms]
=l
~

J\WWMWW

1 10 19 28 37 46 55 B4 73 a2 91 100
Test number

]
o

]
o

[y
=

Figure 21. Time to test the conformance be-

Figure 20. Class that conforms implicitly to tween two simple types

the one presented in Figure 19

Though these measurements do not give information about the time it takes to test the conformance
between two “complex” types, one can easily use them to deduce the time taken for a more “complex”
conformance checking (by induction).

We have performed 100 times 1000 verifications. Figure 21 shows the different results. One can see that
the average time to test the implicit structural type conformance is of 12.66 milliseconds. Even if this time
does not reflect the overall time for all types, it gives, in some sense, a lower bound.

9. Concluding Remarks

This paper addresses the issue of type interoperability in a distributed environment. The goal is to make
transparent for the programmer the use of one type for another, even if these types do not exactly have the
same methods or names, as long as they aim at representing the same software module. We believe this
form of interoperability to be crucial in modern distributed computing where several software modules need
to be assembled. Our approach can also be used in a CORBA or Java RMI environment to extend their
capabilities with type interoperability.

One possible application could be type-based publish/subscribe (TPS) [Eug02]. In the TPS scheme,
event consumers subscribe their interest in objects of specific types and producers publish events of specific
types. TPS ensures type safety and preserves event encapsulation with application-defined event types: in the
original pattern, the subscriber knows in advance the type of events it receives (type-safety) and subscriptions
operations of the type can be used for content-based filtering (encapsulation). The main issue with TPS is
that the subscribers and the publishers must agree on the type they want to transfer/receive. Enhancing
TPS with type interoperability would simply alleviate this problem. Another possible application could be
borrow/lend (BL) [EB02]. Components can make objects, called resources, available to other components by
indicating that they are willing to lend those objects. Conversely, components requiring resources can borrow
such resources. Interaction between components hence takes place indirectly and anonymously, nevertheless
explicitly, through first class resoure objects. A borrower can describe the resources it requires based on
several criteria, which must be met by a lent resource to make interaction possible. A possible criteria
is type conformance, for a type Tp with which the lent resource’s type T must conform. Different levels

19

of conformance ranging from explicit (name) conformance over different “depths” of implicit (structural)
conformance to a form of completely dynamic typing are possible.

In general, combining type interoperability with language interoperability makes the use of object-oriented
middleware systems more attractive. One of the main issues in such systems is indeed that the different
programmers must agree on a common type system or, at least, on a common way of describing types. This
kind of assumption is far from being trivial in distributed dynamic systems where new types can be defined
and exchanged on the fly, which changes the type hierarchy continuously.

Our approach is based on implicit structural type conformance rules and rely on an optimistic transport
protocol as well as serialization mechanisms for marshalling the type description and the object itself. In our
prototype, the XML serialization has been used to describe the type representation of the object and the
SOAP /binary serialization has been used to serialize the object itself. Our approach focuses on the structure
of the types instead of their behaviour. The implicit structural type conformance we have defined relaxes
the strong assumptions of a type system. However, even if our rules have been written in a general way, we
are aware that we cannot ensure complete conformance for all the possible cases.

We have demonstrated that the price for having type interoperability in a distributed system is not so
high in comparison with the possibilities offered by such an enhanced system.

References

[BW98] M. Biichi and W. Weck. Compound Types for Java. In Proceedings of the 13th ACM Conference
on Object-Oriented Programming Systems, Languages and Applications (OOPSLA ’98), pages
362-373, October 1998.

[EBO02] P.Th. Eugster and S. Baehni. Abstracting Remote Object Interaction in a Peer-2-Peer Environ-
ment. In 2002 Joint ACM Java Grande - ISCOPE Conference, November 2002.

[EFGHO02] P.Th. Eugster, P. Felber, R. Guerraoui, and S.B. Handurukande. Event Systems: How to Have
Ones Cake and Eat It Too. In Proceedings of the IEEE International Workshop on Distributed
Event-Based Systems (DEBS’02), pages 625-630, July 2002.

[Eug02] P.Th. Eugster. Type-Based Publish/Subscribe. PhD thesis, EPFL, 2002.
[Hus01] K. M. Hussain. Microsoft .NET Programming Tutorial. Dotnetrox web site, 2001.

[KS01] A. Kennedy and D. Syme. Design and Implementation of Generics for the .NET Common Lan-
guage Runtime. In Proceedings of the ACM SIGPLAN ’01 Conference on Programming Language
Design and Implementation (PLDI-01), pages 1-12, June 2001.

[LB9S] S. Liang and G. Bracha. Dynamic Class Loading in the Java Virtual Machine. In Proceedings of
the 13th ACM Conference on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA ’98), pages 36-44, October 1998.

LBR96] K. L&ufer, G. Baumgartner, and V.F. Russo. Safe Structural Conformance for Java. Technical Re-
g
port CSD-TR-96-077, Department of Computer Sciences, Purdue University and West Lafayette,
December 1996.

[Lev65) V. L. Levenshtein. Binary codes capable of correcting deletions, insertions and reversals, volume
163, chapter 4. Doklady Akademii Nauk SSSR, 1965.

[Mic02] Microsoft. Common Language Infrastructure (CLI). Partition I: Concepts and Architecture
(ECMA TC39/TGS3), 2002.

[MR95] P. A. Muckelbauer and V. F. Russo. Lingua franca: An IDL for structural subtyping distributed
object systems. In Proceedings of the USENIX Conference on Object-Oriented Technologies
(COOTS’95), pages 117-133, June 1995.

20

[OMGO01] OMG. The Common Object Request Broker: Architecture and Specification. OMG, February
2001.

[Sun99] Sun. Java Core Reflection API and Specification, 1999.
[TLO1] Th. Thai and H. Lam. .NET Framework Essentials. O’Reilly and Associates, Inc., June 2001.

21

