OS Support for P2P Programming: a Casefor TPS

Sébastien Baehnil, Patrick Th. Eugster, Rachid Guerraoui
Distributed Programming L aboratory

Swiss Federal Institute of Technology in Lausanne

Abstract

Just like Remote Procedure Call (RPC) turned out to be a very effective OS ab-
straction in building client-server applications over LANs, Type-based Publish-Sub-
scribe (TPS) can be viewed as a high-level candidate OS abstraction for building
Peer-to-Peer (P2P) applications over WANS.

This paper relates our preliminary, though positive, experience of implementing
and using TPS over JXTA: an analogous to the sockets for P2P infrastructures. We
show that, at least for P2P applications with the Java type model, TPS provides a
high-level programming support that ensures type safety and encapsulation, without
hampering the decoupled nature of these applications. Furthermore, the loss of flex-
ibility (inherent to the use of any high level abstraction) and the performance over-

head, are negligible with respect to the simplicity gained by using TPS,

Keywor ds. Peer-to-Peer, Publish/Subscribe, Distributed Operating Systems, Object Oriented Pro-
gramming, Events.

Technical Areas. Operating Systems, Web Computing, Middleware, E-Commerce.

1. Introduction

Remote Procedure Call (RPC) was first proposed by Birrel and Nelson [BN83] as a simple abstrac-
tion that conceals interactions between remote components beneath traditional procedural interfaces.
Partly because of itssimplicity and the very factsthat it preserves object encapsulation and ensurestype
safety, and partly because RPC' s overhead was very acceptable over sockets, RPC became a dominant
paradigm for programming distributed applications over client/server architectures. In these architec-
tures, clients typically communicate with one or several servers following a strongly-coupled request/
reply scheme.

With the emergence of Peer-to-Peer (P2P) infrastructures, new forms of decoupled (i.e., anonymous
and asynchronous) interactions are needed. One can indeed extend RPC with decoupling flavours. Nev-

ertheless, regardless of the fact that adding layers over RPC would certainly hamper performance, it is

1. Contact e-mail: Sebastien.Baehni @epfl.ch

challenging to devise a simple abstraction that could directly fit these architectures and potentially be
supported by future Internet-wide operating systems.

So far, P2P developers have generally gravitated towards afew application types: instant messaging
(ICQ, AOL’sInstant Messenger); collaboration (Aimster, Groove Networks); searching and file sharing
(Morpheus, AudioGalaxy); distributed computation (Seti@Home, Parabon). Going beyond these simple
applications, and developing more advanced ones, goes through devel oping basic abstractions for P2P
programming.

Someinitiatives were recently made towards building libraries or frameworks for deploying P2P ap-
plications. A seminal example isthe JXTA [SUNO1] specification whose implementations provide, for
example, protocolsfor service discovery and many-to-many communication. This specification israther
low level and its protocols can be viewed as the analogous of the basic TCP or UDP protocols [Tan96]
for client/server programming over sockets: one needsto explicitly cast types and control encapsulation.

Just like RPC typically hides the underlying mechanisms of sockets and preservestype safety and en-
capsulation, Type-Based Publish/Subscribe (TPS) [EGDO01], a variant of Publish/Subscribe [OPS*93],
can be viewed as a reasonabl e candidate abstraction to hide the mechanisms of alow-level P2P library,
like IXTA. The distributed event-based interaction scheme promoted by TPS enables the preservation
of the decoupled flavor of P2P applications.

This paper presents an implementation of TPS over JXTA and compares the programming and the
performance of TPSin writing atypical P2P application with the programming and the performance of
using directly JXTA in writing the very same P2P application. Our implementation of TPS over JXTA
together with our performance comparisons provide a preliminary, yet interesting, experience towards
evaluating thefeasibility of equipping future Internet-wide operating systemswith abstractionslike TPS.

Like any high level abstraction, TPS does not apply to al kinds of applications and is obviously less
flexible than a lower leve library like JXTA. In particular, JXTA simply assumes a common XML
knowledge among peers, denoting a very high interoperability, whereas the current implementation of
TPS restricts to applications that share the common Java type model. We show that for these applica
tions, theinherent benefits of the use of our TPSlibrary, namely type-safety, encapsulation of application
defined event types and code reusability, can be provided without hampering the decoupled nature of
P2P computing.

This paper is organized as follows. Section 2 isabrief tutorial on JXTA. Section 3 describes a TPS
APl and an implementation of this APl over JXTA. Section 4 compares the programming of an applica-
tion using TPS and directly using JXTA. Section 5 compares the performance of these two implementa-
tions. Section 6 summarizes and concludes our experience.

For presentation simplicity and space limitations, we only give excerpts of the interfaces and classes
of our implementations. The complete code of our TPS implementation and our testbed applications
(both using TPS and directly using JXTA) are available at: http://Ipdwww.epfl.ch [LPDO1].

2. Background: JXTA

We recall here the basics of JXTA, on top of which we built our TPS abstraction layer. JXTA isa
library specification for P2P computing, defining three layers. acore layer, aservice layer and an appli-
cation layer. The application layer wraps all the applications that are developed by JXTA programmers.
The service layer is made up of services simplifying the development of the programmer. Various serv-
ices are currently being implemented by the JXTA community; the best known are the monitoring serv-
ice, the cms (content management system) service and the wire service (responsible for providing many-
to-many communication). The core JXTA layer consists of several protocols ensuring basic communi-

cation between the peers, message routing or peer group creation.

2.1 Theconcepts

The JXTA protocols rely on six concepts:. ID, Peer, Pipe, PeerGroup, Advertisement and Message.
An D identifiesany JXTA resource, which can be apeer, apipe, apeergroup or acodat (code and data).
The peer concept points out al networked devices using JXTA. Any device with an electronic pulseis
a JXTA peer (refrigerator, PDA, computer, ...). There are different kinds of peers: “norma” ones and
ones that have additional functionalities. Rendez-vous (rdv) are specific peers that keep track of infor-
mation about peersthat are connected. Rendez-vous allow to make the bridge between two different sub-
networks. They are mainly used to dispatch information and discovery queries between peers. The
second kind of specia peersarerouters. These are used to route the information from one peer to another
if they cannot communicate directly. Peers may have multiple network interfaces.!

In order for the peersto communicate, they need amechanism that does not depend on their network.
This mechanismisthe pipe. A pipeisavirtual communication channel used to send messages. The basic
pi pes are asynchronous and uni-directionnal but some other variants are available (e.g., the very new bi-
directional pipes or the many-to-many pipes (called wire)). Pipes are not bound to any physical address
(like IP ones). Hence if a peer changes its address, it can continue to use the same pipe for sending or
receiving messages. PeerGroups are collections of peers. A peer may join multiple peergroups to share
different resources and services. There is no hierarchy inside the groups. A peergroup creates a scoped
and monitored environment.

When a new resource (peer, pipe, peergroup, service) is available, a new advertisement is published
in order for the other peers to know this ressource. An advertisement is a XML message that provides
information about the resource. A typical peer advertisement would give information about the network
interfaces it provides, about which groups it belongs to, about its name and ID. Each advertisement en-

compasses an age to distinguish stale advertisements from new ones.

1. For example, a peer may be able to send messages using TCP, IP-Multicast, HTTP, BlueTooth, BEEP, €tc.... It
alows different kinds of peers to communicate with each other using routers or rdv if they cannot talk directly to
each other (i.e., because they do not have the corresponding network interfaces).

2.2 Theprotocols

Implementing the JXTA specification consists in implementing the following protocols: Peer Dis-
covery Protocol (PDP, Figure 1), Peer Resolver Protocol (PRP, Figure 2), Peer Information Protocol
(PIP, Figure 3), Peer Membership Protocol (PMP, Figure 4), Pipe Binding Protocol (PBP, Figure 5) and
Endpoint Routing Protocol (ERP, Figure 6).

The PDP allows different peers to find each other. In fact, this protocol allows to find any kind of
published advertisements. Without this protocol, a peer remains alone unless it knows in advance the
peers it wants to connect to. This protocol uses the rdv/router peers to improve its performance and the
PRP to achieve different discoveries.

The PRPisaprotocol just abovethe transport layer. This protocol dispatches each JXTA messageto
the right services. The more handlers are registered with PRP, the more peers a given peer is potentially

able to communicate with.

Peer A

id: 694..004

ERP

a—

id: 754..987 id: 128..012

Fig. 1: Basic view of the PDP Fig. 2: Basic view of the PRP

The PIP is used to know the status of a peer. This protocol is responsible for finding and dispatching
information about a peer, like the time the peer was up, the different incoming and outgoing channels,
the traffic on them, and the different target and source IDs.

The PMP is used to obtain information about group membership requirements (credentials, password
requirements, ...). Once a peer hasthose requirements, it can apply for membership aswell asit can leave
and join the group. This protocol is aso used to update and cancel the membership, or create a secure
environment using different credential authentification protocols.

“Group X ~
id: 321..520 AN

& id: 128..012 2?3; ’)/ I \ Peer A /\
LY O\ id: 694.004
PIP query ~ d

N Group X N _- _— —
— |d:321..520/ s

Peer B

~

Fig. 3: Basic view of the PIP Fig. 4: Basic view of the PMP

The PBPisresponsible for keeping the different peers of apipe bound together. Even if the peersare
moving in the network (i.e., if their IP addresses do not remain the same), they can continue to use the
same pipes to send/receive messages.!

The ERP is used to route the different messages between the different peers. This allows different
peers to exchange messages even when they do not know how to connect to each other (because of a

firewall for example).

jxtamsg
viahttp

jxtamsg
viatcp

e

id: 754..987

viahttp

Fig. 5: Basic view of the PBP Fig. 6: Basic view of the ERP

3. TPSover JXTA

This section overviews the design and implementation of our TPS abstraction over JXTA.

3.1 TPS: Overview

The publish/subscribe paradigm is a communication pattern that provides time, space and flow de-
coupling among communicating entities. More precisely, the publishers and the subscribers (a) do not
need to be up at the sametime (time decoupling), (b) do not need to know each other (space decoupling)
and (c) the sending/receiving of messages does not block the participants (flow decoupling). This para-
digm perfectly suits decoupled networks and serverless architectures. In the original pattern (e.g.,
[TIB99]), publishers publish information on a subject and subscribers subscribe to subjects . These dif-
ferent subjects are often arranged in hierarchies (specified by aURL -like notation). M ore advanced com-
munication schemes can be obtained through content-based subscribing, where subscribers express
interests in events with particular native properties (e.g., [Gryp01]). In our Type-based Publish/Sub-
scribe (TPS) scheme (see Figure 7), the subject is the event object type and the content is the state of
instances of that type. Moreover, TPS ensures type safety and preserves event encapsul ation with appli-
cation-defined event types: the subscriber knows in advance the type of eventsit receives (type-safety)
and subscriptions operations of the type can be used for content-based filtering (encapsulation). So one

can easily implement content-based publish/subscribe (hence subject-based) using TPS.

1. To achievethat, the protocol usesthe IDs of the peers. In fact, instead of counting upon afixed |P address, the pro-
tocol relies on a fixed Universal Unique I Dentifier (UUID) for each peer. So if the peer crashes and comes up
again, it can find the peer it was communicating with and can continue to do so even if the IP address is not the
same.

b h ty P1 P2
Subtyping hierarcl })
v @
B C — =—=
5
*fA(fAvafova) * felfe.fo)
fB,fD+ +fD
Publish, Deliver P3
fr Flow of Objectsof Type T Q

=

B

— =

Fig. 7: Type-Based Publish/Subscribe (TPS)

3.2 Generic Java

Our TPS implementation we relatein this paper is based on genericity. Using TPS for a specific type
T can be viewed as using instances of generic classes with a type parameter instantiated with T. Such
generic classes are supported by several languages like C++ (t enpl at €) and Ada(generi ¢), while
Java supports generics by the idiom of replacing variable types by the top of the type hierarchy. For such
languages |acking generic types and methods, adequate extensions have been widely studied. In the case
of Java, several solutions have been proposed like Generic Java (GJ) [BOSW98] which we have used
for our implementation.

Our implementation uses the 1.3 version of the 14th Java Specification Request (JSR), based on GJ,
which is expected to be included in the 1.5 version of Java.!

3.3 TheTPSAPI

The different methods a programmer can use to express a TPS interaction are regrouped within our
TPSI nt er f ace. The corresponding source code is given in Figure 8.

We briefly describe below each of these methods:?

(1) : This method is used to publish an instance of atype (Type) which can be any application-de-
fined type. Thisinstance is sent as an event to the subscribers.

(2) : This method (as the next one, i.e., (3)) is used to subscribe to the events of a specific Ty pe.
Two parameters must be provided: (a) acall-back object which is used to handle received events and (b)
a handler for the exceptions that may be raised while handling the received events.

(3): This aternative subscription method is used to register several call-back objects to handle the
eventsin different ways. It isvery useful, for instance, if we want to display the complete description of
the events in a console and have a sketch of them in a GUI at the same time (for example, see Figure 12
and Figure 13).

1. The 1.3 version of the 14th JSR is afully Java compatible compiler and enables the use of the original Java Virtua
Machine (JVM).

2. Methods 1,2,3 and 4 could throw a publish/subscribe exception (PSException). We do not discuss these exceptions
here, see http://Ipdwww.epfl.ch for details [LPDO1].

(4) : Thismethod is used to unsubscribe a specified call-back object and its associated exception han-

dler. By doing so, only the specified call-back object is removed.

(5) : Thismethod is used to remove all the call-back objectsregistered so far. After thiscall, no event

isreceived anymore.

(6, 7): Thelast two methods are used to obtain the entire set of events received or sent so far.

The other type of the API that the programmer needs to handle is TPSEngi ne. This class gives a

reference to the TPSI nt er f ace. Hereisthe sketched source code of the TPSEngi ne class:

public class TPSEngi ne<Type> {
public TPSEngine() {...}

public TPSI nterface newi nterface(String name, Criteriac, Type t,

}

The programmer uses this class in the initialization phase to get the TPSI nt er f ace.

String[] arg) {...}

public
public

public
public
public

public
public

public interface TPSInterface<Type> {

voi d publish(Type type) throws PSException; /1
voi d subscri be(TPSCal | Backl nt erf ace<Type> t psCBI,

TPSExcepti onHandl er <Type> t psExH) throws PSException; [/
voi d subscri be(TPSCal | Backl nt erface<Type>[] tpsCBI,

TPSExcepti onHandl er <Type>[] tpsExH) throws PSException;//

voi d unsubscri be(TPSCal | Backl nt er f ace<Type> t psCBI,

TPSExcepti onHandl er <Type> t psExH) throws PSException;//
voi d unsubscri be(); 11
Vect or obj ect sRecei ved(); /1
Vect or objectsSent(); /1

(1)
(2)
(3)
(4)
(5)

(6)
(7

Fig. 8: The TPSI nt er f ace

3.4 Architecture
The TPS layer fits between the application layer and the JXTA layer. In our architecture (Figure 9,

Figure 10 and Figure 11), onetype is represented by one advertisement. When a subscriber subscribes

to atype, it must specify an object implementing the TPSCal | Backl nt er f ace for that type to han-

dletheeventsand an TPSExcept i onHandl er (see Section 4.3.3 for an implementation example) re-

sponsible for handling the exceptions that may occur while dispatching the events. Our TPS layer is

made up of four building blocks (see Figure 10):

» TPSEnNgine: Thisblock isthe core of our service. It collects and dispatches the subscriptions

and publications.

» Advertisements (Advs): Thisblock isresponsible for creating a new advertisement for the

type we are interested in as well as for finding and collecting the multiple advertisements

that are in relation with our type.

* Interface Repository (IR): This block stores all the call-back interfaces and exception han-

dlers. It also starts and stops the subscriptions

« Connections: This block creates readers, input pipes and output pipes from an advertise-

ment. It sends and receives new messages with the underlying JXTA-WIRE service.

Our Jxt aTPSENgi ne classimplementsthe TPSI nt er f ace (see Section 3.3). It collects the pub-
lications and subscriptions and dispatches them to the TPSAdver t i senment sManager. The latter
instanciates all the other classes and dispatches the publications and subscriptions to the corresponding
ones. The Adverti senent sCreat or is responsible for creating an advertisement (see Section
4.4.1) and the TPSAdverti senent sFi nder (see Section 4.4.2 for a non-generic version of it)
searches new advertisements and dispatches them to the registered TPSAdverti senment sLi st en-
er s. These listeners then create the TPSW r eSer vi ceFi nder (see Section 4.4.3 for a non-generic
version of it) which isresponsible for looking up the corresponding wire service and creating the input
and output pipes (TPSMyI nput Pi pe and TPSMyQut put Pi pe classes). When a user wants to sub-
scribe to a specific type, he must provide a call-back object and an exception handler. These objects are
saved by the TPSSubscr i ber Manager which must also trigger the readers (TPSPi peReader) in

order to receive the events.

APPLICATION LAYENR APPLACATION LAYIER .
i a
- : : i x ad *
T
TTSE mgme |— " In
TVPE-HASE PUHLISH-SUHSCRIBE LAYER I _
o Comecioss =
B i
.J e |i-| M“‘ | -r- : +|
L) T B h L w
INTA-WIRE LAYIR i IATA-WIRE LAYER
i & & I N
sd Trams wmwa - .-\.l.
b T T T
INTA CORE LAYEH IXTA CORE LAYER
Fig. 9: General architecture Fig. 10: General architecture (details of the TPS layer)
CAIPLICATION AYER
&
¥ - L !

ST AWIIE LAYER
i &

L L L3

INTA COE LAYER

Fig. 11: General Architecture (details of the various blocks)

4. The programming experience
We compare here the programming of a typical P2P application using our TPS abstraction with the
programming of the very same application using JXTA directly.

4.1 Ski-Rental Application

If you want to go skiing, you need skis. If you do not have any, you have two possibilities, either you
buy them or you rent them. In the latter case, you will typically go to different shopsin order to see what
kind of skisyou want and also to compare the different prices. Of course, nowadays, you could also do
that online, by visiting differents web-sites. However, you must spend time doing that: you must stay
behind your computer trying to find the best skis. A more comfortable way to do that is to use the TPS
paradigm over a P2P infrastructure. Y ou would then subscribe to the ski-rental type and wait for the an-
swers. Theinfrastructure will be responsible for sending the subscription to the other peers and a so get-
ting the responses. Y ou can now do something else during the search phase of the program and come
back later to get the answers when they are available. Figure 12 and Figure 13 depict two GUIs that a

publisher and a subscriber have with our ski-rental application.

] Y — Hl—mml-l_lﬂ'{ﬂm |) Wi-Pesial Sebaor Dler
Ehas mae; — |- Funlicybones recesed
Frreal i sl o ' Ship remTes Bdsman | Fentsl fermdion g [ple i
Pt |} Prathiag S aloimoa 140 1000 £ Thii iy 16 T
Pubizahons done Fead 14 Al Thea Bisg 16
BkE man s purbon | Paps [imig of pisbric sl pn ¥ E'L- El-J-q.,' 1k &
SmareEs 1E 10 Thei Risg TG TE & 44 5§ Thea Biig) 16 ©
d - B Mg Te s aa
Fig. 12: GUI of a ski-rental publisher Fig. 13: GUI of a ski-rental subscriber

When the publisher (a shop for example) starts, a search for a Ski Rent al advertisement is first
launched. If the application does not find such advertisement in a specific amount of time, it createsits
own one, but keepstrying to find othersin order to send messages to the maximum number of interested
subscribers. After that, an output pipe is created to send messages, and the window is displayed (see
Figure 12).

In Figure 12, we can see that the shop seller can set the different optionsfor the kinds of skis he wants
to offer for rent (the brand, the duration of therenta, the price, ...). After setting these parameters, hejust
hasto click on the publish button and the proposition is sent to all the interested subscribers viathe output
wire pipe.

For the subscriber, the same kind of initialization is done as for the publisher. Once thisinitialization
has been accomplished, the window is displayed (see Figure 13). In thisinterface, the subscriber can see
the different propositions from publishers of ski-rental advertisements. After some time, the subscriber
can choose the best propositions and, maybe, send an e-mail to the shop.

Of course, these different GUIs are just examples. We can create more complicated ones using the

complete set of methods that our implementation provides.

4.2 Programming Phases

Programming a TPS application, like the ski-rental, can be divided into four main phases, as depicted
in Figure 14 (the arrows conveys the causality). In our implementation, we associate one instance of a
publish/subscribe engine per type. If a publisher (or a subscriber) is interested in several “unrelated”
types(i.e., different typesthat do not belong to the same type hierarchy), several instances of the publish/
subscribe engine for each type of interest must be created. In Figure 14, thisis conveyed by the fact that
the type definition phase preceeds the initialization phase.

TYPE DEFINITION PHASE

Y

INITIALIZATION PHASE

v Y

SUBSCRIPTION PUBLICATION
PHASE PHASE

Fig. 14: The 4 different phases

In thefollowing, we overview the two different ways of developing the ski-rental application accord-

ing to the four phases, first using our TPS API and second using directly JXTA.

4.3 Renting skiswith TPS
We present here the different phases shown in Figure 14 to create a simple application using our TPS

architecture.

4.3.1 Type definition phase: the Ski Rent al type
We give here the basic type used in our application. This type contains the name of the renter, the
price, the brand of the skis and the number of days the skis need to berented. Hereisthe sketched source

code of our simpletype:

public class SkiRental inplements Serializable {
public SkiRental (String shop, float price, String brand, float nunber O Days) {...}
public String toString() {...}

}

4.3.2 Initialization phase

When auser wantsto usethe TPS API, he must first write few linesto initiliaze the publish/subscribe
engine:

TPSEngi ne<Ski Rent al > t pse = new TPSEngi ne<Ski Rent al >();
TPSInterface tpsint = tpse.new nterface(*JXTA”, null, new SkiRental (), argv);

Inthefirst line, we create the publish/subscribe engine and specify the type of interest. In the second
line, the second parameter specifies a criteria we want for filtering advertisements (may be null). The
third parameter isan instance of thetype of the eventswe areinterested in. We must providethisinstance
because GJ does not provide runtime information about (actual) type parameters. The last parameter de-

notes the arguments of the main class (may be null).

10

4.3.3 Subscription phase

To subscribe to events, one must create two objects (as described when presenting the sub-
scri be() method, Figure 8): one implementing the TPSCal | Backl nt er f ace interface and an-
other oneimplementingthe TPSExcept i onHandl er interface. Hereisan implementation of thefirst

interface:

public class MyCBInterface inplements TPSCal | Backl nt erface<Ski Rental > {
public void handl e(Ski Rental skiR) throws Cal | BackException {
Systemout.println(“Skis that could be rented: “+skiR);

}
}

This class defines what needs to be done when new events are received. In this case, we just print the

events into the console. Here is a sketched implementation for the second interface:

public class MyExHandl er inplements TPSExcepti onHandl er <Ski Rent al > {
public void handl e(Throwable th) {...}

}
Besides these two classes, here are the lines one must add to subscribe to the type (Ski Rent al)

specified before:

MyCBI nterface nCBInt = new MyCBInterface();
MyExHandl er nmExH = new MyExHandl er();
t psl nt.subscribe(nCBInt, nExH);

4.3.4 Publication phase
Up to now, we have only seen the subscriber perspective. If a publisher wants to publish an instance

of the Ski Rent al type, hereisthe line he must add after the initialization phase:
t psl nt. publ i sh(new Ski Rent al (“XTrenShop”, “Sal onon”, 14f, 100f);

4.4 Renting skiswith IXTA

Our aim here is to create the very same application than the one with TPS, i.e., an application with
the same functionalities' as TPS. To provide these functionalities, we have re-created the same architec-
ture presented in Figure 9, Figure 10 and Figure 11, but without the TPS flavour. We give here the
sketched source code of those files described in Figure 11 (which are anyway required by a JXTA pro-
grammer to develop a classic JXTA-WIRE application). These files are the following: (1) Adver -
ti senent sCreat or, (2) Adverti sement sFi nder, (3) Wr eSer vi ceFi nder [LPDO1].

Wewill not devel op the same structure asin Section 4.3, but we will present in detail thesethreefiles
to convey our claim that TPS hides alot of programming details. For example, writing the very same
application with JXTA implies writing about 5000 lines of code? more than usi ng directly TPS. Moreo-

ver, TPS alows the programmer to focus only on the portion of the code he is interested in.3 This pre-

1. (1) Minimization of the number of advertisementsfor the sametype, (2) management of multiple advertisements at
the same time and (3) handling of duplicate messages.

2. If the user wants to use the full API. Otherwise (not having the functionnalities of TPS), the API saves, at least, to
code 900 lines.

3. For presentation simplicity, we have used an example exploiting the static flavor of TPS (akin to subject-based
publish/subscribe). Using the dynamic flavor of TPS |ets the developper write even more code, which unlike when
using JXTA directly, nevertheless remains concise.

11

vents from spending time learning the underlying JXTA concepts. Finally, TPS preventsthe programmer

from performing wrong type casts at runtime, and hence saves precious debugging time.

4.4.1 The AdvertisementsCreator class

One of thefirst thingsanew JXTA application must do, isto tell theworld that there are new resourc-
es to share, i.e., to publish advertisements such as those presented in Section 2.1. In our Ski-Rental ap-
plication, if the Adverti senent sFi nder (see next section) does not find a Ski Rent al
advertisement, the Adver ti senment sCr eat or must create one in order to publish events and aso
for the other peers to be informed of this new interest. Figure 15 sketches the source code of the Ad-

verti senent sCr eat or class.

1. public class AdvertisenentsCreator {

2.

3. public AdvertisementsCreator(Peer G oup root Goup, Discovery discoveryService) {
4. this.rootGoup = root G oup;

5. this.discoveryService = discoveryService;

6. }

7.

8. publ i c Peer GroupAdvertisement createPeer GroupAdvertisenent(String nane) throws Exception {
9. String local Peerld = this.rootG oup.getPeerID().toString();

10. Pi peAdverti sement pi peAdv = (PipeAdvertisenent)Advertisenent Factory.

11. newAdver ti sement (Pi peAdverti senent . get Adverti sement Type());
12. pi peAdv. set Pi pel D(new Pi pel I(this.root G oup.getiD()));

13. pi peAdv. set Name(nane) ;

14.

15. Peer Group par = this.rootG oup;

16. Peer GroupAdverti sement adv = (Peer GroupAdverti senment)Adverti senent Factory.
17. newAdver ti sement (Peer G oupAdverti senent. get Adverti sement Type());
18.

19. adv. set Pi d(| ocal Peer!d);

20. adv. set G d(new PeerGroupl D().toString());

21. adv. set Name(PS_PREFI X + pi peAdv. get Nane());

22. adv. set Servi ceAdverti senent s(par. get Advertisement (). get Servi ceAdvertisenents();
23. adv. set App(par. get Advertisenent().getApp());

24. adv. set Groupl npl (par. get Adverti senment (). get G ouplnpl ());

25. Hasht abl e services = adv. get Servi ceAdvertisenents();

26.

27. Servi ceAdvertisement w reAdv = new ServiceAdv();

28. Wi reAdv. set Name(W reServi ce. WreNane) ;

29. Wi reAdv. set Versi on(WreServi ce. WreVersion);

30. W reAdv. setUri (WreService. WreUri);

31. Wi reAdv. set Code(W r eServi ce. WreCode) ;

32. Wi reAdv. set Security(WreService. WreSecurity);

33. Wi reAdv. set Pi pe(pi peAdv) ;

34. wi r eAdv. set Keywor ds(pi peAdv. get Nanme()) ;

35. adv. set | sRendezvous(true);

36.

37. Servi ceAdvertisement r = (ServiceAdvertisenent)services.get ("jxta.service.resolver");
38. Vector p = r.getParans();

39. p. addEl enent (| ocal Peer|d);

40. r.set Parans(p);

41. services. put ("jxta.service.resolver", r);

42.

43. services. put (WreService. WreName, w reAdv);

44, adv. set Servi ceAdverti senent s(services);

45.

46. this.advertisenent = adv;

47. return adv;

48. }

49.

50. public void publishAdvertisenent (Advertisenent adv, int kindOf Advertisenent) {
51. thi s. di scoveryService. publish(adv, kindOfAdvertisenent);

52. this. di scoveryService. renotePublish(adv, kindOfAdvertisenent);

53. }

54.}

Fig. 15: The Adverti senent sCr eat or class

Asshown in the above code example, the creation of aPeer Gr oupAdverti sement inwhichwe
include the W r eSer vi ce, is not straightforward. A Pi peAdverti sement needs to be created
(lines 10-13), which isused by the W r eSer vi ce (line 33). After that, aPeer G oupAdverti se-
nment needs to be created (lines 16-24) and, finally, the W r eSer vi ce is added to it (lines 27-44).
Please notethat, in our application, the name of the Pi peAdverti serment (line13) isthe name of the

type we are interested in.

12

Once the Peer Gr oupAdverti senment (containing the W r eSer vi ce) has been created, it is
published in order for the other peersto find it and useit. Thisisdone by the publ i shAdverti se-
nment () method (lines 50-53). This method usesthe JXTA Di scover ySer vi ce to send the adver-
tisement to the other peers. We can distinguish two calls here. The first call writes the advertisement to
the stable storage of the peer (if any), in order for the peers that are looking for advertisements to find
that peer (line 51) . The second call sends the advertisements to the other peers via the standard used
protocols (e.g, IP-Multicast, TCP or HTTP, line 52).

4.4.2 The AdvertisementsFinder class

1.public class AdvertisenentsFinder inplements Runnabl e, AdvertisenmentsFinderlnterface, DiscoveryListener {
2.

3. public AdvertisementsFinder(int typeOfAdvertisenment, Discovery discoveryService, String prefix) {
4. this.typeOf Advertisement = typeOf Advertisenent;

5. this.discoveryService = di scoveryService;

6. this.prefix = prefix;

7. }

8. public void run() {

9. this.discoveryService. flushAdvertisenents(null, Discovery.ADV);

10. this.discoveryService. flushAdvertisenents(null, Discovery.PEER);

11. this. discoveryService. fl ushAdvertisenents(null, Discovery.GROUP);

12.

13. while (this.goOn) {

14. switch (this.typeOf Advertisenent) {

15. case Di scovery. GROUP:

16. this. discoveryService. get Renpt eAdverti sements(null, this.typeX Advertisenment, "Nane", this.prefix+"*",
17. t hi s. NUMBER_OF_ADV_PER PEER) ;
18. break;

19. }

20. Thread. current Thread() . sl eep(this. SLEEPI NG_TI ME) ;

21. Enuner ati on enum = nul | ;

22. switch (this.typeOf Advertisenent) {

23. case Discovery. GROUP:

24. enum = this. discoveryService. getLocal Advertisenments(this.typeO Advertisenent, "Name",
25. this.prefix+"'*");

26. br eak;

27. }

28. while (enum!= null && enum hasMoreEl ements()) {

29. t hi s. handl eNewAdverti sement ((Adverti sement)enum next El enent (), this.typeX Advertisenent);
30. }

31. }

32. }

33.

34. private synchroni zed voi d addAdverti senent (Advertisement adv) {

35. this.advertisenents. add(adv);

36. Enuner ati on enum = this.advertisenentsListener.el ements();

37. while (enum!= null && enum hasMoreEl ements()) {

38. ((AdvertisenentsListenerlnterface)enum nextEl enent ()). handl eNewAdvertisements(adv);
39. }

40. }

41.

42. public bool ean findAdvertisenent(Vector advVector, Advertisenent adv) {

43. try {

44, Enuner ati on enum = advVector. el ements();

45. if (adv instanceof PeerGroupAdvertisenent) {

46. Peer GroupAdverti senent peer GAdv = (Peer GroupAdverti senent)adv;

47. if (peerGAdv.getGd() != null) {

48. while (enum!= null && enum hasMoreEl ements()) {

49. Peer GroupAdverti sement el enent = (Peer GroupAdvertisenent)(enum next El ement());
50. if (peerGAdv. getG d().conpareTo(el enent.getGd()) == 0) {

51. return true;

52. }

53. }

54. }

55. }

56. el se {return true;}

57. }

58. cat ch(C assCast Exception cce) {cce.printStackTrace();}

59. return fal se;

60. }

61.

62. private void handl eNewAdverti sement (Adverti sement adv, int typeOfAdvertisenment) {

63. switch (typeCf Advertisenent) {

64. case(Di scovery. GROUP) :

65. if (adv instanceof Peer G oupAdvertisenent) {

66. if (!this.findAdvertisenent(this.advertisenents, adv)) {

67. thi s. addAdverti sement ((Peer G oupAdverti senent)adv);

68. }

69. }

70. br eak;

71. }

72. }

73.}

Fig. 16: The Adverti senent sk nder class

13

In this class, once an interesting advertisement isfound, it is added to a vector of advertisements and
dispatched to theregistered Adver t i senent sLi st ener [LPDOL1]. The sketched source code of the

Adverti senent sFi nder (wegivehereonly the part responsiblefor finding groups adverti sements)

isgivenin Figure 16.

Each instance of this class denotes anew Javathread which looks for new advertisements (in this spe-

cial case, Peer G oupAdvert i senent s) until the application terminates. When the thread starts, old

advertisements that could be in the peer cache are flushed (lines 9-11), and a remote query to search for

new Peer G oupAdverti senment s(lines16-17) issent. After awhile, if new advertisements are re-

ceived (lines 24-25), the handl eNewAdverti senment method isinvoked. In this case, the new ad-

vertisement is added to a vector and dispatched to the registered listeners (lines 34-40).

4.4.3 The WireServiceFinder class

1.public class WreServiceFinder {

2.

3. public WreServiceFi nder (Peer G oup peer Group, Peer GroupAdvertisenent pgAdv) {
4. this. peerGoup = peer Group;

5. this. pgAdv = pgAdv;

6. }

7.

8. public Pipe | ookupWreService() throws Exception {

9. if (this.peerGoup != null && this.pgAdv != null) {

10. this.wireGoup = Peer G oupFactory. newPeer G oup();

11. this.wireGoup.init(this.peerGoup, this.pgAdv);

12. this. pipeService = (Pipe)(this.wreGoup.|ookupService(WreService. WreNane));
13. return this. pi peService;

14.

15. throw new WreServi ceFi nder Exception("Unable to | ookup the wire service");
16. }

17.

18. protected PipeAdvertisenent getPi peAdvertisenent (Pipe pipe) {

19. Servi ceAdvertisement sAdv = null;

20. sAdv = (ServiceAdvertisement)pi pe. get Advertisenent();

21. if (sAdv == null) {

22. return null;

23.

24. return sAdv. getPipe();

25. }

26.

27. public Myl nputPipe createl nputPipe() throws WreServiceFinder Exception {

28. Pi peAdverti sement pAdv = this.getPi peAdvertisenent (this. pipeService);

29. try {

30. this. nyl nput Pi pe = new Myl nput Pi pe(this. pi peService. creat el nput Pi pe(pAdv), t hi s. pgAdv);
31. return this.nyl nputPi pe;

32. }

33. catch (Exception e) {

34. throw new WreServi ceFi nder Exception("Unable to create the input pipe.");
35. }

36. }

37.

38. publ i c MyQut put Pi pe createQut put Pi pe() throws WreServiceFi nder Exception {
39. Pi peAdvertisenent pAdv = this. getPipeAdvertisenent (this. pipeService);

40. try {

41. thi s. nyQut put Pi pe = new MyQut put Pi pe(this. pi peService.

42. cr eat eQut put Pi pe(pAdv, Pi pe. NonBl ocking, TIME_TO WAIT), this.pgAdv);
43. return this. nyQutput Pi pe;

44, }

45. catch (Exception e) {

46. throw new WreServi ceFi nder Excepti on("Unable to create the output pipe.");
47. }

48. }

49.

50. public void publish(Message nmsg) throws | CException {

51. thi s. nyQut put Pi pe. send(nsg. dup());

52. }

53.}

Fig. 17: The W r eSer vi ceFi nder class

This class does three simple things: (1) searchesfor aW r eSer vi ce fromaPeer G oupAdver -

ti sement , (2) createsinput and ouput pipes and (3) sendsthe events. The sketched source codeis giv-

eninFigure 17.

14

A lookup of thisW r eSer vi ce istriggered through thel ookupW r eSer vi ce() method (lines
8-16). In this method, once the W r eSer vi ce isfound, the Pipe abject is retrieved from it (line 12).
This object isused in the cr eat el nput Pi pe() and cr eat eCut put Pi pe() methods (lines 27-
36 and lines 38-48). These methods just make a call to the appropriate methods of the Pi pe class (we
just embed heretheresultinaMy| nput Pi pe or aMyQut put Pi pe object depending on the calls) af -
ter having extracted the Pi peAdverti senment fromthePi pe object (lines18-25). To send messages
to the newly created output pipe, a call to the send() method of the MyQut put Pi pe object is per-
formed (which has the same signature than the standard JXTA Qut put Pi pe class) (line 51).

5. The perfor mance experience

This section presents the performance results of both our ski-rental application based on our TPS lay-
er (SR-TPS), and implemented directly with IXTA (SR-JXTA). Even if IXTA-WIRE aloneis not com-
parable with SR-TPS and SR-JXTA (sinceit does not insure the properties described in Section 4.4), we
use it here as a (lower bound) reference point.

We used the following computer configurations: Sun Ultra 10 (CPU 440 MHz, RAM 256 MB) on
Solaris 7; FastEthernet (100 Mbits/s); JXTA version 1.0 (build 30c, 08-24-2001); Java version "1.4.0-
beta' (Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.0-beta-b65), Java HotSpot(TM)
Client VM (build 1.4.0-beta-b65, mixed mode)); messages size: 1910 bytes.

We give here the invocation ti mel and throughput for a limited? number of participants. These tests

aim at giving a hint about the differences between the three implementations.

5.1 Invocation time

We measured the timetaken for calling thesendMessage() method: The publisher produces here
50 events one after. Theresultsare given in Figure 18. We can see that the results are not linear at all. In
fact, the one for IXTA-WIRE has a very big standard deviation (e.g., ~20% for a single subscriber and
~30% for four subscribers). Not surprisingly, IXTA-WIRE aoneis quicker than SR-JXTA and SR-TPS.
Note however that thereis virtually no difference between SR-TPS and SR-JXTA (e.g., about 1% with
one subscriber). The number of subscribers clearly affects the results. This can be explained by the fact
that the more subscribers are involved, the more connections the publisher must handle and, consequent-

ly, the slower the invocation timeis.

1. Since JXTA isnot reliable (August 2001 release) and since we do not want to modify the JXTA implementation,
we were not able to measure the latency. We focused on the invocation time instead.

2. At thetime of our implementation, JXTA was not able to handle connections between more that 5 peers sending a
lot of messages.

15

1200 T

1000

800

ms/msg

/|--®--SR-IXTA 4 subs

JXTA-WIRE 1 sub

—&—SR-JXTA 1sub

——SR-TPS 1 sub

»»»»»» JXTA-WIRE 4 subs

-+ % --SR-TPS 4 subs

Event numbet

Fig. 18: Invocation time

5.2 Throughput: the publisher viewpoint

We consider here a set of 100 published events and we measure the time for the publisher to deliver

those events to the subscriber(s). Again, the values for SR-JXTA and SR-TPS are very close. We can

also notice that our different layers are dlightly slower than IXTA-WIRE itself (e.g., about two events

per second for one subscriber) (Figure 19). When the number of subscribers increases, the differences

between the layers become insignificant (e.g., with four connected subscribers, only 0.3 events per sec-
ond between IXTA-WIRE and SR-JXTA and 0.5 events per second between JXTA-WIRE and SR-

TPS).

Nb msg snd/sec

12

10

W

JXTA-WIRE 1 sub

—®&—SR-JXTA 1 sub

——SR-TPS 1sub

-- @ - -SR-JXTA 4 subs

- % - -SR-TPS 4 subs

rrrrrr IXTA-WIRE 4 subs

Epoch

Fig. 19: Publisher's throughput

10

16

5.3 Throughput: the subscriber viewpoint

Here the publishers try to flood the subscriber (10000 events published per each publisher). Every
second, we measure the number of events that are received; during 50 seconds. The results are given in
Figure 20. Once again, we have a quite big standard deviation and the number of events received per
second isnot really stable. For example, with asingle publisher, the average throughput for IXTA-WIRE
is about 7.8 events per second and, for SR-JXTA and SR-TPS, the values are 6.1 and 6.0 respectively.
If we compare these results with the ones from Figure 19, we can see that, for one publisher, IJXTA-
WIRE saturates. JXTA-WIRE can simply not handle all published events (e.g., about nine per second
for one subscriber (see Figure 19)).

When we increase the number of publishers, the average number of events received per second re-
mains quite the same for the different layers. Again, the average drops by afactor of about three (for the

same reason explained in Section 5.1).

10

W AN WY

6 1 ——— IXTA-WIRE 1 pub

®

—=— SR-JXTA 1 pub

—»%—SR-TPS 1 pub

Nb msg rcv/sec
@
X

S R IXTAWIRE 4
pubs
----- SR-JXTA 4pubs

- - % --SR-TPS 4 pubs

mm
mmm

Second number

Fig. 20: Subscriber’s throughput

6. Concluding Remarks

This experience paper makes a case for TPS (Type-Based Publish-Subscribe) as a viable aternative
abstraction to RPC for future Internet-wide operating systems to support P2P applications. TPS fits par-
ticularly well the decoupled nature of server-less P2P applications. In short, TPSissimpleto use (almost
assimple as RPC), ensurestype-saf ety and encapsulation (just like RPC) and yet preserves the decoupled
nature of P2P applications (unlike RPC). This paper describesa TPS API and an implementation of TPS
over JXTA, and then compares the programming and performance of atestbed application over TPS and

directly over JXTA. Roughly speaking, (1) TPS makes the programming of a P2P application signifi-

17

cantly easier than using directly alibrary like JXTA and (2) does not introduce a significant overhead
with respect to JXTA.

Our current TPS prototype is based on the JXTA release of August 24, 2001. New implementations
of IXTA will obviously impact our prototype but we do not believe they will fundamentally impact the
nature of the results drawn from the present experience.

Of course, more programming and implementation testbeds need to be performed before TPS can be
realistically viewed as areasonable general abstraction for P2P applications. In particular, measuring the
lack of programming flexibility that our abstraction involvesis not clear. We can for example easily see
through our ski-rental application that our TPS API does not enable a subscriber to immediately reply to
a publisher that posted an interesting event. This would reguire a combination with a more traditional
RPC kind of interaction or directly using the underlying P2P library. Another loss of flexibility is our
assumption that the different peers must a priori agree on the Javatype system which is not the case when
using JXTA directly. Figuring out “loose” ways of achieving such common knowledge at run-time (e.g.,

by representing types through XML data structures) is the subject of ongoing investigations.

References

[BN83] Andrew D. Birrell and Bruce Jay Nelson. Implementing Remote Procedure Calls. In Pro-
ceedings of the 9th ACM Symposium on Operating Systems Principles (SOSP’ 83). October
1983.

[BOSW9S8] G. Bracha, M. Odersky, D. Stoutamire and Ph. Wadler. Making the future safe for the past:
Adding genericity to the Java programming language. In Proceedings of the 13th ACM Con-
ference on Object-Oriented Programming Systems, Languages and Applications (OOPSLA
‘98), pages 183-200. October 1998.

[CSW*00] I. Clarke, O. Sandberg, B. Wiley et a. Freenet: A Distributed Anonymous Information Stor-

age and Retrieval System. In Proceedings of the International Computer Scientist Institute
Workshop on Design Issuesin Anonymity and Unobservability (1CS’2000). July 2000.

[CRWOO0] A. Carzaniga, D. S. Rosenblum and A. L. Wolf. Achieving Scalability and Expressiveness
inan Internet-Scal e Event Natification Service. In Proceedings of the 19th ACM Symposium
on Principles of Distributed Computing (PODC' 00). July 2000.

[EGDO01] P. Th. Eugster, R. Guerraoui and Ch. H. Damm. On objects and events. In Proceedings of
the 16th ACM Conference on Object-Oriented Programming Systems, Languages and Ap-
plications (OOPSLA 2001). October 2001.

[EGS00] P. Th. Eugster, R. Guerraoui and J. Sventek. Distributed Asynchronous Collections: Ab-
stractions for Publish/Subscribe Interaction. In Proceedings of the 14th European Confer-
ence on Object-Oriented Programming (ECOOP 2000). January 2000.

[GKKO1] S. Grant, M. P. Kovacs, M. Kunnumpurath, et al. Professional IMS. Wrox Press, March
2001.

18

[Heim01]

[Gryp01]

[Mojo1]

[Mon01]

[MS01]

[MSO*01]

[Ore01]

[OPS*93]

[PFJ"01]

[PFL*00]

[SUNO1]

[LPDO1]

[Tan96]

[TIB9Y]

[Wea01]

[WS98]

D. Heimbigner. Adapting Publish/Subscribe Middleware to Achieve Gnutella-like Func-
tionality. In Proceedings of the 16th ACM Symposium on Applied Computing (SAC' 2001),
pages 176-181. 2001.

Gryphon: Publish/Subscribe over public networks. IBM T.J. Watson Research Center.
http://researchweb.watson.ibm.com/gryphon/Gryphon/gryphon.html. February 2001.

J. Majica. Developing COM+ Servers with COM, COM+ and .NET. Chapter 11 of the
COM+ Programming with Visual Basic book. June 2001.

A. Montresor. Anthill: a Framework for the Design and the Analysis of Peer-to-Peer Sys-
tems. In Proceedings of the 4th European Research Seminar on Advances in Distributed
Systems (ERSADS 01). May 2001.

D. Makhi and Y. Sella. Replication by Diffusion in Large Networks. In Proceedings of the
4th European Research Seminar on Advances in Distributed Systems (ERSADS 01). May
2001.

N. Minar, C. Shirky, T. O'Relilly et al. Peer-to-Peer Harnessing the Power of Disruptive
Technologies. O’ Reilly. March 2001.

O'Reilly web site on p2p. http://www.openp2p.com. 2001.

B. Oki, M. Pfluegl, A. Siegel et a. The Information Bus - An Architecture for Extensible
Distributed Systems. In Proceedings of the 14th ACM Symposium on Operating System
Principles (SOSP '93). December 1993.

J. Pereira, F. Fabret, H.-A. Jacobsen et a. Filtering Algorithms and Implementation for Very
Fast Publish/Subscribe Systems. In Proceedings of the 4th ACM Special Interest Group on
Management Of Data (SGMOD’01). 2001.

J. Pereira, F. Fabret, F. Llirbat et al. Publish/Subscribe on the Web at Extreme Speed. In Pro-
ceedings of the 3rd ACM Special Interest Group on Management Of Data (S GMOD'’ 00).
2000.

Project JXTA web site. http://www.jxta.org. Sun Microsystems. 2001.

LPD web site. http://Ipdwww.epfl.ch. For the full source codes, follow People / Sebastien
Baehni / Current work.

A. S. Tanenbaum. Computer Networks. Prentice-Hall, third edition. January 1996.

TIBCO. TIB/Rendezvous White Paper. http://www.rv.tibco.com. 1999.

M. Weatherford. P2P Acclaimed by Jury of Peers. |EEE Distributed Systems Online.
http://www.computer.org/dsonline. Volume 2, Number 3. 2001.

D. J. Wattsand S. H. Strogatz. Collective dynamics of “ small-world” networks. Nature, vol.
393. June 1998.

19

	OS Support for P2P Programming: a Case for TPS
	Abstract
	1. Introduction
	2. Background: JXTA
	2.1 The concepts
	2.2 The protocols
	Fig. 1: Basic view of the PDP
	Fig. 2: Basic view of the PRP
	Fig. 3: Basic view of the PIP
	Fig. 4: Basic view of the PMP
	Fig. 5: Basic view of the PBP
	Fig. 6: Basic view of the ERP

	3. TPS over JXTA
	3.1 TPS: Overview
	Fig. 7: Type-Based Publish/Subscribe (TPS)

	3.2 Generic Java
	3.3 The TPS API
	Fig. 8: The TPSInterface

	3.4 Architecture
	Fig. 9: General architecture
	Fig. 10: General architecture (details of the TPS layer)
	Fig. 11: General Architecture (details of the various blocks)

	4. The programming experience
	4.1 Ski-Rental Application
	Fig. 12: GUI of a ski-rental publisher
	Fig. 13: GUI of a ski-rental subscriber

	4.2 Programming Phases
	Fig. 14: The 4 different phases

	4.3 Renting skis with TPS
	4.3.1 Type definition phase: the SkiRental type
	4.3.2 Initialization phase
	4.3.3 Subscription phase
	4.3.4 Publication phase

	4.4 Renting skis with JXTA
	4.4.1 The AdvertisementsCreator class
	Fig. 15: The AdvertisementsCreator class

	4.4.2 The AdvertisementsFinder class
	Fig. 16: The AdvertisementsFinder class

	4.4.3 The WireServiceFinder class
	Fig. 17: The WireServiceFinder class

	5. The performance experience
	5.1 Invocation time
	Fig. 18: Invocation time

	5.2 Throughput: the publisher viewpoint
	Fig. 19: Publisher’s throughput

	5.3 Throughput: the subscriber viewpoint
	Fig. 20: Subscriber’s throughput

	6. Concluding Remarks
	References

