

The Many Faces of Publish/Subscribe

PATRICK TH. EUGSTER

Swiss Federal Institute of Technology in Lausanne

PASCAL A. FELBER

Institut Eurécom

RACHID GUERRAOUI

Swiss Federal Institute of Technology in Lausanne

and

ANNE-MARIE KERMARREC

Microsoft Research, Cambridge

Well-adapted to the loosely coupled nature of distributed interaction in large scale applications, the
publish/subscribe communication paradigm has recently received an increasing attention. With
systems based on the publish/subscribe interaction scheme, subscribers register their interest in

an event, or a pattern of events, and are subsequently asynchronously notified of events generated
by publishers. Many variants of the paradigm have recently been proposed, each variant being
specifically adapted to some given application or network model. This paper factors out the

common denominator underlying these variants: full decoupling of the communicating entities
in time, space and synchronization. We use these three decoupling dimensions to better identify
commonalities and divergences with traditional interaction paradigms. The many variations on the

theme of publish/subscribe are classified and synthesized. In particular, their respective benefits
and shortcomings are discussed both in terms of interfaces and implementations.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed Applications; D.1.3 [Programming Techniques]: Concurrent Program-

ming—Distributed Programming

General Terms: Design

Additional Key Words and Phrases: distribution, interaction, publish/subscribe

1. INTRODUCTION

The Internet has considerably changed the scale of distributed systems. Distributed
systems now involve thousands of entities—potentially distributed all over the
world—whose location and behavior may greatly vary throughout the lifetime of
the system. These constraints visualize the demand for more flexible communi-

Authors’ addresses: P.Th. Eugster, Swiss Federal Institute of Technology, 1015 Lausanne, Switzer-
land. P.A. Felber, Institut Eurécom, 2229 route des Crêtes, 06904 Sophia Antipolis, France. R.

Guerraoui, Swiss Federal Institute of Technology, 1015 Lausanne, Switzerland. A.-M. Kermarrec,

Microsoft Research Ltd., 7 J J Thomson Ave, Cambridge CB3 0FB, UK.
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2003 ACM 0000-0000/2003/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, March 2003, Pages 1–22.

2 · Patrick Th. Eugster et al.

Fig. 1. A simple object-

based publish/subscribe

system

Publisher

Publisher

Publisher

Publisher

Subscriber

Notify()

Subscriber

Notify()

Notify()

Unsubscribe()

Storage and
management of

subscriptions

Event Service

Subscribe()

Subscriber

Notify()

Subscriber

Notify()

Publish

Pu
bl

is
h

Su
bs

cr
ib

e/

Un
su

bs
cr

ib
e

Notify

cation models and systems, reflecting the dynamic and decoupled nature of the
applications. Individual point-to-point and synchronous communications lead to
rigid and static applications, and make the development of dynamic large scale
applications cumbersome. To reduce the burden of application designers, the glue
between the different entities in such large scale settings should rather be provided
by a dedicated middleware infrastructure, based on an adequate communication
scheme.

The publish/subscribe interaction scheme is receiving increasing attention and is
claimed to provide the loosely coupled form of interaction required in such large
scale settings. Subscribers have the ability to express their interest in an event,
or a pattern of events, and are subsequently notified of any event, generated by
a publisher, which matches their registered interest. An event is asynchronously
propagated to all subscribers that registered interest in that given event. The
strength of this event-based interaction style lies in the full decoupling in time,
space and synchronization between publishers and subscribers. Many industrial
systems and research prototypes support this style of interaction, and there are
several prominent research efforts on novel forms of publish/subscribe interaction
schemes. However, because of the multiplicity of these systems and prototypes, it
is difficult to capture their commonalities and draw sharp lines between their main
variations.

The aim of this paper is threefold. First we point out the common denominators
of publish/subscribe schemes: time, space and synchronization decoupling of sub-
scribers and publishers. These decoupling dimensions are illustrated by comparing
the publish/subscribe paradigm with “traditional” interaction schemes. Second,
we compare the many variants of publish/subscribe schemes: namely, topic-based,
content-based and type-based. Third, we discuss variations and tradeoffs in the
design and implementation of publish/subscribe-based systems through specific ex-
amples.

2. THE BASIC INTERACTION SCHEME

The publish/subscribe interaction paradigm provides subscribers with the ability
to express their interest in an event or a pattern of events, in order to be notified
subsequently of any event, generated by a publisher, that matches their registered
interest. In other terms, producers publish information on a software bus (an event
manager) and consumers subscribe to the information they want to receive from
ACM Journal Name, Vol. V, No. N, March 2003.

The Many Faces of Publish/Subscribe · 3

Notify()

Event Service

Subscriber
Notify()

Notify()Notify

Publisher

Event Service

Notify

Tim
e

Notify()

Notify()

Event Service

Publish

SubscriberPublisher

Notify

Publisher

Subscriber
Notify()

Notify()

Event Service

Subscriber
Notify()

Subscriber
Notify()

Publish

Notify

Notify

Notify

Space decoupling Time decoupling

Synchronization decoupling

Publisher

Subscriber
Notify()

Fig. 2. Space, time and synchronization decoupling with the publish/subscribe paradigm

that bus. This information is typically denote by the term event and the act of
delivering it by the term notification.

The basic system model for publish/subscribe interaction (Figure 1) relies on an
event notification service providing storage and management for subscriptions and
efficient delivery of events. Such an event service represents a neutral mediator
between publishers, acting as producers of events, and subscribers, acting as con-
sumers of events. Subscribers register their interest in events by typically calling a
subscribe() operation on the event service, without knowing the effective sources
of these events. This subscription information remains stored in the event ser-
vice and is not forwarded to publishers. The symmetric operation unsubscribe()
terminates a subscription.

To generate an event, a publisher typically calls a notify() (or publish())
operation. The event service propagates the event to all relevant subscribers; it
can thus be viewed as a proxy for the subscribers. Note that every subscriber
will receive an event for every event conforming to its interest (obviously, failures
might prevent subscribers from receiving some events). Publishers also often have
the ability to advertise the nature of their future events through an advertise()
operation. The provided information can be useful for (1) the event service to
adjust itself to the expected flows of events, and (2) the subscribers to learn when
a new type of information becomes available.

The decoupling that the event service provides between publishers and sub-
scribers can be decomposed along the following three dimensions (Figure 2).

— Space decoupling: the interacting parties do not need to know each other.
The publishers publish events through an event service and the subscribers get these
events indirectly through the event service. The publishers do not usually hold
references to the subscribers, neither do they know how many of these subscribers
are participating in the interaction. Similarly, subscribers do not usually hold
references to the publishers, neither do they know how many of these publishers
are participating in the interaction.

ACM Journal Name, Vol. V, No. N, March 2003.

4 · Patrick Th. Eugster et al.

Fig. 3. Message passing

interaction—The producer sends

messages asynchronously through a
communication channel (previously

set up for that purpose). The con-

sumer receives messages by listening
synchronously on that channel.

Node 1 Node 2

ConsumerProducer

Network channel

— Time decoupling: the interacting parties do not need to be actively par-
ticipating in the interaction at the same time. In particular, the publisher might
publish some events while the subscriber is disconnected, and conversely, the sub-
scriber might get notified about the occurrence of some event while the original
publisher of the event is disconnected.

— Synchronization decoupling: publishers are not blocked while producing
events, and subscribers can get asynchronously notified (through a callback) of the
occurrence of an event while performing some concurrent activity. The production
and consumption of messages do not happen in the main flow of control of the
publishers and subscribers, and do not therefore happen in a synchronous manner.

Decoupling the production and consumption of information increases scalabil-
ity by removing all explicit dependencies between the interacting participants. In
fact, removing these dependencies strongly reduces coordination and thus synchro-
nization between the different entities, and makes the resulting communication
infrastructure well adapted to distributed environments that are asynchronous by
nature, such as mobile environment [Huang and Garcia-Molina 2001].

Complementary classifications of the interaction models of distributed informa-
tion systems have been proposed in the literature. Franklin and Zdonik Franklin
and Zdonik [1997] classify dissemination-based systems according to their data de-
livery mechanisms: push vs. pull, aperiodic vs. periodic, and unicast vs. 1-to-
N. Push-based information systems have been studied extensively [Hauswirth and
Jazayeri 1999; Hauswirth 1999]. Similar characterizations are used in software en-
gineering [Sullivan and Notkin 1990; Garlan and Notkin 1991] and coordination
models [Papadopoulos and Arbab 1998].

3. THE COUSINS: ALTERNATIVE COMMUNICATION PARADIGMS

Message passing, remote invocations, notifications, shared spaces and message queu-
ing do all constitute alternative communication paradigms to the publish/subscribe
scheme. They stand at different abstraction levels and are not easy to compare.
Nevertheless, we overview below their commonalities with publish/subscribe sys-
tems and emphasize their inability to fully decouple communication between par-
ticipants.

3.1 Message passing

Message passing can be viewed as the ancestor of distributed interactions. Mes-
sage passing represents a low-level form of distributed communication, in which
participants communicate by simply sending and receiving messages. Although
complex interaction schemes are still built on top of such primitives, message pass-
ing is nowadays rarely used directly for developing distributed applications, since
ACM Journal Name, Vol. V, No. N, March 2003.

The Many Faces of Publish/Subscribe · 5

Node 1 Node 2

Consumer Producer

Network channel
Fig. 4. RPC and derivatives—The

producer performs a synchronous call,

which is processed asynchronously by
the consumer.

Stub Skeleton

Node 1 Node 2

ConsumerProducer

Network channel
Fig. 5. Decoupling synchroniza-
tion with asynchronous remote

invocation—The producer does not

expect a reply.

physical addressing and data marshaling, and sometimes even flow control (e.g.,
retransmission), become visible to the application layer. Message passing is asyn-
chronous for the producer, while message consumption is generally synchronous.
The producer and the consumer are coupled both in time and space (cf. Figure 3):
they must both be active at the same time and the recipient of a message is known
to the sender.

3.2 RPC

One of the most widely used forms of distributed interaction is the remote invoca-
tion, an extension of the notion of “operation invocation” to a distributed context.
This type of interaction has first been proposed in the form of Remote Procedure
Call (RPC) [Birrell and Nelson 1983; Tay and Ananda 1990] for procedural lan-
guages, and has been straightforwardly applied to object-oriented contexts in the
form of remote method invocations, e.g., in Java RMI [Sun 2000], CORBA [OMG
2002a], Microsoft DCOM [Horstmann and Kirtland 1997; Chung et al. 1998].

By making remote interactions appear the same way as local interactions, the
RPC model and its derivatives make distributed programming very easy. This ex-
plains their tremendous popularity in distributed computing. Distribution cannot,
however, be made completely transparent to the application, because it gives rise
to further types of potential failures (e.g., communication failures) that have to be
dealt with explicitly. As shown in Figure 4, RPC differs from publish/subscribe in
terms of coupling: the synchronous nature of RPC introduces a strong time, syn-
chronization (on the consumer side1), and also space coupling (since an invoking
object holds a remote reference to each of its invokees).

Several attempts have been made to remove synchronization coupling in remote
and avoid blocking the caller thread while waiting for the reply of a remote invo-
cation. A first variant consists in providing a special flavor of asynchronous invo-
cation for remote methods that have no return values, as shown in Figure 5. For
instance, CORBA provides a special oneway modifier that can be used to specify

1The distinction between consumer and producer roles is not straightforward in RPC. We assume

here that an RPC that yields a reply attributes a consumer role to the invoker, while the invokee
acts as producer. As we will point out, the roles are inverted with asynchronous invocations (that

yield no reply).

ACM Journal Name, Vol. V, No. N, March 2003.

6 · Patrick Th. Eugster et al.

Fig. 6. Decoupling synchronization

with future remote invocation—The
producer is not blocked and can ac-

cess the reply later when it becomes
available. Node 1 Node 2

Consumer Producer

Network channel

Fig. 7. Notifications—Producers
and consumers communicate using

asynchronous invocations flowing in

both directions.
Node 1 Node 2

Consumer Producer

Network channel

such methods [OMG 2002a]. This approach leads to invocations with weak relia-
bility guarantees because the sender does not receive success or failure notifications
(this type of interaction is often called fire-and-forget). The second, less restrictive
variant supports return values, but does not make them directly available to the
calling thread. Instead, the result of a remote invocation is a handle through which
the actual return values will be accessed when needed. With this approach, known
as future or future type message passing [Yonezawa et al. 1987; Ananda et al. 1992]
or wait-by-necessity [Caromel 1993], the invoking thread can continue processing
and request the return value later, thanks to the handle (Figure 6).

3.3 Notifications

In order to achieve synchronization decoupling, a synchronous remote invocation is
sometimes split into two asynchronous invocations: the first one sent by the client
to the server—accompanied by the invocation arguments and a callback reference
to the client—and the second one sent by the server to the client to return the
reply. This scheme can be easily extended to return several replies by having the
server make several callbacks to the client. Such notification-based interaction is
widely used to ensure consistency of Web caches [Wessels 1995]: upon download of
Web contents, Web proxies receive a promise to be notified if any change occurs at
the Web server. This implements a limited form of publish/subscribe interaction
in which Web proxies act as subscribers and the Web server as the publisher.

This type of interaction—where subscribers register their interest directly with
publishers, which manage subscriptions and send events—corresponds to the so-
called observer design pattern [Gamma et al. 1995] (Figure 7). It is generally
implemented using asynchronous invocations in order to enforce synchronization
decoupling. Although publishers notify subscribers asynchronously, they both re-
main coupled in time and in space. Furthermore the communication management
is left to the publisher and can become burdensome as the system grows in size.

3.4 Shared spaces

The distributed shared memory (DSM) paradigm [Li and Hudak 1989; Tam et al.
1990] provides hosts in a distributed system with the view of a common shared
space across disjoint address spaces, in which synchronization and communication
ACM Journal Name, Vol. V, No. N, March 2003.

The Many Faces of Publish/Subscribe · 7

Node 1 Node 2

ConsumerProducer

Logical container

Fig. 8. Shared space—Producers in-

sert data asynchronously into the

shared space, while consumers read
data synchronously.

between participants take place through operations on shared data. The notion of
tuple space has been originally integrated at the language level in Linda [Gelernter
1985], and provides a simple and powerful abstraction for accessing shared memory.
A tuple space is composed of a collection of ordered tuples, equally accessible to all
hosts of a distributed system. Communication between hosts takes place through
the insertion/removal of tuples into/from the tuple space. Three main operations
can be performed: out() to export a tuple into a tuple space, in() to import (and
remove) a tuple from the tuple space, and read() to read (without removing) a
tuple from the tuple space.

The interaction model provides time and space decoupling, in that tuple produc-
ers and consumers remain anonymous with respect to each other. The creator of
a tuple needs no knowledge about the future use of that tuple or its destination.
An in-based interaction implements one-of-n semantics (only one consumer reads
a given tuple) whereas read-based interaction can be used to implement one-to-n
message delivery (a given tuple can be read by all consumers). Unlike the pub-
lish/subscribe paradigm, the DSM model does not provide synchronization decou-
pling because consumers pull new tuples from the space in a synchronous style (Fig-
ure 8). This limits the scalability of the model due to the required synchronization
between the participants. To compensate the lack of synchronization decoupling,
some modern tuple space systems like JavaSpaces [Sun 2002], TSpaces [Lehman
et al. 1999], and WCL [Rowstron 1998] extend the Linda tuple space model with
asynchronous notifications.

A similar communication abstraction, called rendezvous, has been introduced in
the Internet Indirection Infrastructure (I3) [Stoica et al. 2002]. Instead of explicitly
sending a packet to a destination, each packet is associated with an identifier; this
identifier is then used by the receiver to obtain delivery of the packet. This level of
indirection decouples the act of sending from the act of receiving.

3.5 Message queuing

Message queuing [Blakeley et al. 1995] is a more recent alternative for distributed
interaction. In fact, the term message queuing is often used to refer to a family of
products (e.g., [Corporation 1995; Houston 1998; DEC 1994; Oracle 2002]) rather
than to a specific interaction scheme. Message queuing and publish/subscribe
are tightly intertwined: message queuing systems usually integrate some form of
publish/subscribe-like interaction. Such message-centric approaches are often re-
ferred to as Message-Oriented Middleware (MOM) [Banavar et al. 1999].

At the interaction level, message queues recall much of tuple spaces: queues can
ACM Journal Name, Vol. V, No. N, March 2003.

8 · Patrick Th. Eugster et al.

Fig. 9. Message queuing—Messages
are stored in a FIFO queue. Produc-

ers append messages asynchronously

at the end of the queue, while con-
sumers dequeue them synchronously

at the front of the queue.
Node 1 Node 2

ConsumerProducer

Logical queue

Fig. 10. The publish/subscribe in-
teraction paradigm decouples con-

sumers and producers in terms of

space, time, and synchronization.

Node 1 Node 2

ConsumerProducer

Logical
channel

Table I. Decoupling abilities of interaction paradigms

Abstraction Space de-
coupling

Time de-
coupling

Synchronization
decoupling

Message Passing No No Producer-side
RPC/RMI No No Producer-side
Asynchronous RPC/RMI No No Yes
Future RPC/RMI No No Yes
Notifications (Observer Pattern) No No Yes
Tuple Spaces Yes Yes Producer-side
Message Queuing (Pull) Yes Yes Producer-side
Publish/Subscribe Yes Yes Yes

be seen as global spaces, which are fed with messages from producers. From a func-
tional point of view, message queuing systems additionally provide transactional,
timing, and ordering guarantees not necessarily considered by tuple spaces.

In message queuing systems, messages are concurrently pulled by consumers with
one-of-n semantics similar to those offered by tuple spaces through the in() opera-
tion (Figure 9). These interaction model is often also referred to as Point-To-Point
(PTP) queuing. Which element is retrieved by a consumer is not defined by the
element’s structure, but by the order in which the elements are stored in the queue
(generally FIFO or priority-based order).

Similarly to tuple spaces, producers and consumers are decoupled in both time
and space. As consumers synchronously pull messages, message queues do not
provide synchronization decoupling. Some message-queuing systems offer limited
support for asynchronous message delivery, but these asynchronous mechanisms do
not scale well to large populations of consumers because of the additional interac-
tions needed to maintain transactional, timing, and ordering guarantees.

3.6 Summary

Traditional interaction paradigms essentially differ from publish/subscribe commu-
nication (Figure 10) by their limited support for time, space and synchronization
decoupling. Table I summarizes the decoupling properties of the aforementioned
ACM Journal Name, Vol. V, No. N, March 2003.

The Many Faces of Publish/Subscribe · 9

communication models.

4. THE SIBLINGS: PUBLISH/SUBSCRIBE VARIATIONS

Subscribers are usually interested in particular events or event patterns, and not
in all events. The different ways of specifying the events of interest have led to
several subscription schemes. In this section we compare the two most widely
used schemes, namely topic-based and content-based publish/subscribe, as well the
recently proposed type-based subscription scheme.

4.1 Topic-based publish/subscribe

The earliest publish/subscribe scheme is based on the notion of topics or subjects,
and is implemented by many industrial strength solutions (e.g., [Altherr et al. 1999;
Corporation 1999; Skeen 1998; TIBCO 1999]). It extends the notion of channels,
used to bundle communicating peers, with methods to characterize and classify
event content. Participants can publish events and subscribe to individual topics,
which are identified by keywords. Topics are strongly similar to the notion of groups,
as defined in the context of group communication [Powell 1996] and often used for
replication [Birman 1993]. This similarity is not surprising, since some of the first
systems to offer publish/subscribe interaction were based on the Isis [Birman et al.
1990] group communication toolkit and the subscription scheme was thus inherently
based on groups. Consequently, subscribing to a topic T can be viewed as becoming
member of a group T , and publishing an event on topic T translates accordingly into
broadcasting that event among the members of T . Although groups and topics are
similar abstractions, they are generally associated to different application domains:
groups are used for maintaining strong consistency between the replicas of a critical
component in a LAN, whereas topics are used to model large scale distributed
interactions.

In practice, topic-based publish/subscribe systems introduce a programming ab-
straction which maps individual topics to distinct communication channels. They
present interfaces similar to those of the event service of Section 2, and the topic
name is usually specified as an initialization argument. Every topic is viewed as
an event service of its own, identified by a unique name, with an interface offering
notify() and subscribe() operations.

The topic abstraction is easy to understand, and enforces platform interoper-
ability by relying only on strings as keys to divide the event space. Additions to
the topic-based scheme have been proposed by various systems. The most useful
improvement is the use of hierarchies to orchestrate topics. While group-based
systems offer flat addressing, where groups represent disconnected event spaces,
nearly all modern topic-based engines offer a form of hierarchical addressing, which
permits programmers to organize topics according to containment relationships. A
subscription made to some node in the hierarchy implicitly involves subscriptions
to all the subtopics of that node. Topic names are generally represented with a
URL-like notation and introduce a hierarchy very similar to the USENET news.
Most systems allow topic names to contain wildcards, first introduced in TIBCO
Rendezvous [TIBCO 1999], which offer the possibility to subscribe and publish to
several topics whose names match a given set of keywords, like an entire subtree or
a specific level in the hierarchy.

ACM Journal Name, Vol. V, No. N, March 2003.

10 · Patrick Th. Eugster et al.

public class StockQuote implements Serializable {
public String id, company, trader;
public float price;

public int amount;

}
public class StockQuoteSubscriber implements Subscriber {

public void notify(Object o) {
if (((StockQuote)o).company == ‘TELCO’ && ((StockQuote)o).price < 100)

buy();

}
}
// ...

Topic quotes = EventService.connect(“/LondonStockMarket/Stock/StockQuotes”);

Subscriber sub = new StockQuoteSubscriber();
quotes.subscribe(sub);

Fig. 11. Sample code for topic-based publish/subscribe.

Fig. 12. Topic-based pub-

lish/subscribe interactions. LondonStockMarket

m1 m2

Subscribe

Deliver

Publish
P

Publisher

Subscriber

P

S

m1, m2

Stock

StockQuotes

S

Consider the example of stock quotes disseminated to a large number of interested
brokers. In a first step, we are interested in buying stocks, advertised by stock
quote events. Such events consist of five attributes: a global identifier, the name
of the company, the price, the amount of stocks, and the identifier of the selling
trader. Figure 11 shows how to subscribe to all stock quotes, and Figure 12 gives
an overview of the resulting distributed interaction.

4.2 Content-based publish/subscribe

Despite improvements like hierarchical addressing facilities and wildcards, the topic-
based publish/subscribe variant represents a static scheme which offers only limited
expressiveness. The content-based (or property-based [Rosenblum and Wolf 1997])
publish/subscribe variant improves on topics by introducing a subscription scheme
based on the actual content of the considered events. In other terms, events are
not classified according to some pre-defined external criterion (e.g., topic name),
but according to the properties of the events themselves. Such properties can be
internal attributes of data structures carrying events, as in Gryphon [Banavar et al.
1999], Siena [Carzaniga et al. 2000], Elvin [Segall et al. 2000], and Jedi [Cugola et al.
2001], or meta-data associated to events, as in the Java Messaging Service [Hapner
et al. 2002].

Consumers subscribe to selective events by specifying filters using a subscrip-
tion language. The filters define constraints, usually in the form of name-value
ACM Journal Name, Vol. V, No. N, March 2003.

The Many Faces of Publish/Subscribe · 11

public class StockQuote implements Serializable {
public String id, company, trader;
public float price;

public int amount;

}
public class StockQuoteSubscriber implements Subscriber {

public void notify(Object o) {
buy(); // company == ‘TELCO’ and price < 100

}
}
// ...
String criteria = (“company == ‘TELCO’ and price < 100”);

Subscriber sub = new StockQuoteSubscriber();

EventService.subscribe(sub, criteria);

Fig. 13. Sample code for content-based publish/subscribe.

pairs of properties and basic comparison operators (=, <, ≤, >, ≥), which iden-
tify valid events. Constraints can be logically combined (and, or, etc.) to form
complex subscription patterns. Some systems, like the Cambridge Event Architec-
ture (CEA) [Bacon et al. 2000], also provide for event correlation: participants can
subscribe to logical combinations of elementary events and are only notified upon
occurrence of the composite events. Subscription patterns are used to identify the
events of interest for a given subscriber and propagate events accordingly. For sub-
scribing, a variant of the subscribe() operation is provided by the event service,
with an additional argument representing a subscription pattern. There are several
means of representing such patterns:

— String: Subscription patterns are most frequently expressed using strings.
Filters must conform to a subscription grammar, such as SQL [Hapner et al. 2002;
Oracle 2002; Lewis 1999], OMG’s Default Filter Constraint Language [OMG 2002b],
XPath [Altinel and Franklin 2000; Chan et al. 2002; Diao et al. 2002], or some
proprietary language [Banavar et al. 1999; Carzaniga et al. 2001; Segall and Arnold
1997]. Strings are then parsed by the engine.

— Template object: Inspired by tuple-based matching, JavaSpaces [Freeman
et al. 1999] adopts an approach based on template objects. When subscribing, a
participant provides an object t, which indicates that the participant is interested
in every event that conforms to the type of t and whose attributes all match the
corresponding attributes of t, except for the ones carrying a wildcard (null).

— Executable code: Subscribers provide a predicate object able to filter events
at runtime. The implementation of that object is usually left to the application
developer. An alternative approach, based on a library of filter objects implemented
using reflection, is described in [Eugster and Guerraoui 2001]. Executable code
is not widely used in practice because the resulting filters are extremely hard to
optimize, and they must generally be applied to each event sequentially, leading to
poor scalability.

Figures 13 and 14 illustrate the use of string-based filters. The example outlines
how a content-based scheme enforces a finer granularity than a static scheme based
on topics. To achieve the same functionality with topics, the subscriber would either

ACM Journal Name, Vol. V, No. N, March 2003.

12 · Patrick Th. Eugster et al.

Fig. 14. Content-based pub-
lish/subscribe interactions. LondonStockMarket

m1 m2

Subscribe

Deliver

Publish
P

Publisher

Subscriber

P

S

m2

S

m1: { ..., company: "Telco", price: 120, ..., ... }

m2: { ..., company: "Telco", price: 90 , ..., ... }

have to filter out irrelevant events, or topics would need to be split into several
subtopics—one for each company (and recursively several subtopics for different
price “categories”). The first approach leads to an inefficient use of bandwidth,
while the second approach results in a high number of topics and an increased risk
of redundant events.

4.3 Type-based publish/subscribe

Topics usually regroup events that present commonalities not only in content, but
also in structure. This observation has led to the idea of replacing the name-
based topic classification model by a scheme that filters events according to their
type [Eugster et al. 2001]. In other terms, the notion of event kind is directly
matched with that of event type. This enables a closer integration of the language
and the middleware. Moreover, type safety can be ensured at compile-time by
parameterizing the resulting abstraction interface by the type of the corresponding
events (without any type cast in the resulting code). In contrast, the aforementioned
template-based approach of JavaSpaces [Freeman et al. 1999] considers the type
of events as a dynamic property, and the resulting JavaSpace API enforces the
application to perform explicit type casts. Similarly, the TAO CORBA Event
Service [Harrison et al. 1997] does not view the type of an event object as an
implicit attribute.

The example in Figure 15 illustrates type-based subscription. Stock events can
be split into two distinct types: stock quotes (for sale) and stock requests, as shown
in Figure 16. Brokers use stock requests to express their interest in buying stock.
In contrast to quotes, requests have a range of possible prices. Subtyping can be
used to subscribe to both stock quotes and requests.

It is important to notice that type-based publish subscribe can lead to a natural
description of content-based filtering through public members of the considered
event type, while ensuring the encapsulation of these events. This can is achieved
in our example of Figure 15 by declaring only private data members and enforcing
their access through public methods.

4.4 Summary

There exists several variants for designing publish/subscribe systems, which offer
different degrees of expressiveness and, as we shall see in the next section, different
performance overhead. Topic-based publish/subscribe is rather static and primitive,
ACM Journal Name, Vol. V, No. N, March 2003.

The Many Faces of Publish/Subscribe · 13

public class LondonStockMarket implements Serializable {
public String getId() {...}

}
public class Stock extends LondonStockMarket {

public String getCompany() {...}
public String getTrader() {...}
public int getAmount() {...}

}
public class StockQuote extends Stock {

public float getPrice() {...}
}
public class StockRequest extends Stock {

public float getMinPrice() {...}
public float getMaxPrice() {...}

}
public class StockSubscriber implements Subscriber<StockQuote> {

public void notify(StockQuote s) {
if (s.getCompany() == ‘TELCO’ && s.getPrice() < 100)

buy();
}

}
// ...
Subscriber<StockQuote> sub = new StockSubscriber();

EventService.subscribe<StockQuote>(sub);

Fig. 15. Sample code for type-based publish/subscribe.

LondonStockMarket

StockQuote m1 StockRequest m2

P

m2

StockRequest

S

StockQuote

LondonStockMarket

Stock

StockRequestStockQuote

...

Type hierarchy: Subscribe

Deliver

Publish

Publisher

Subscriber

P

S

A

B
B subtypes A

Fig. 16. Type-based publish/subscribe interactions.

but can be implemented very efficiently. On the other hand, content-based pub-
lish/subscribe is highly expressive, but requires sophisticated protocols that have
higher runtime overhead. Because of this additional overhead, one should generally
prefer a static scheme whenever a primary property ranges over a limited set of
possible discrete values, e.g., stock quotes/requests. As outlined in [Eugster and
Guerraoui 2001], additional expressiveness can be achieved by applying content-
based filters in the context of statically-configured topics, in particular types, to
express constraints on properties that are not within discrete ranges (e.g., stock
prices).

ACM Journal Name, Vol. V, No. N, March 2003.

14 · Patrick Th. Eugster et al.

5. THE INCARNATIONS: IMPLEMENTATION ISSUES

This section discusses some implementation issues underlying publish/subscribe
schemes, and how these issues are addressed in current systems and prototypes.
We focus on three major aspects of publish/subscribe middleware: the events, the
media, and qualities of service, in the context of the classification introduced in the
previous sections. Furthermore, we discuss the different tradeoffs that result from
different approaches, in terms of flexibility, reliability, scalability, and performance.
Additional details on specific implementation issues of publish/subscribe systems
can be found in [Rosenblum and Wolf 1997; Banavar et al. 1999; Tai and Rouvellou
2000].

5.1 Events

Events are found in two forms: messages or invocations. In the first case, events
are delivered to a subscriber through a single generic operation (e.g., notify()),
while in the second case events trigger the execution of specific operations of the
subscriber.

5.1.1 Messages. At the lowest level, any data that goes on the network is a
message. In most systems, event notifications take the form of messages, which are
explicitly created by the application. Messages are generally made of a header that
contains message-specific information in a generic format, and payload data that
contains user-specific information. Typical header fields include message identifier,
issuer, priority, or expiration time, which can be interpreted by the system or purely
serve as information for the consumers. Some systems (e.g., IBM MQSeries [Lewis
1999] and Oracle Advanced Queuing [Oracle 2002]) do not make any assumption
on the type of the payload data and treat it as an opaque array of bytes. Some
other systems (e.g., JMS [Hapner et al. 2002], CORBA Notification Service [OMG
2002b]) provide a set of message types, such as text or XML messages. Finally,
some systems provide self-describing messages. TIBCO Rendezvous [TIBCO 1999],
for instance, defines a message format that does not have header information, but
allows the programmer to create his own message structure based on a set of basic
types that can be structured hierarchically. The type of messages can be queried
later at runtime. DAC [Eugster et al. 2000] and JMS [Hapner et al. 2002] even
support object messages, where the event can be any serializable Java object. In
most cases, messages are viewed as records with several fields.

5.1.2 Invocations. At a higher level, we generally differentiate between invoca-
tions and messages. An invocation is directed to a specific type of object, and has
well-defined semantics. The system ensures that all consumers have a matching
interface for processing the invocation. The interface acts as a binding contract be-
tween the invoker and the invokees. Systems which offer invocation-style interaction
along with different semantics and various addressing schemes are usually termed
messaging systems. They incorporate additional logic on top of a publish/subscribe
or message queuing system to transform low-level messages into invocations to
methods of the subscribers, which must all be of the same type. While certain
systems take into account return values of invocations, the typed publish/subscribe
models of COM+ [Sessions 1997] or the CORBA Event Service [OMG 2001] typ-
ACM Journal Name, Vol. V, No. N, March 2003.

The Many Faces of Publish/Subscribe · 15

ically only consider one-way invocations. Producers invoke operations on some
intermediary object (e.g., event channel) that exhibits the same interface as the
actual consumers and forwards events to all registered consumers. COM+ further-
more provides a form of content-based filtering, by offering the possibility to specify
values for invocation arguments in order to restrict the potential invocations.

5.2 The media

The transmission of data between producers and consumers is the task of the mid-
dleware medium. Media can be classified according to characteristics like their
architecture or the guarantees they provide for the data, such as persistence or
reliability.

5.2.1 Architectures. The role of publish/subscribe systems is to permit the ex-
change of events between producers and consumers in an asynchronous manner.
Asynchrony can be implemented by having producers send messages to a specific
entity that stores them, and forwards them to consumers on demand. We call
this approach a centralized architecture because of the central entity that stores
and forwards messages. This approach is adopted by queuing systems like IBM
MQSeries [Lewis 1999] and Oracle Advanced Queuing [Oracle 2002], which are
built on top of a centralized database. Applications based on such systems have
strong requirements in terms of reliability, data consistency, or transactional sup-
port, but do not need a high data throughput. Examples of such applications are
electronic commerce or banking applications.

Asynchrony can also be implemented by using smart communication primitives
that implement store and forward mechanisms both in the producer’s and con-
sumer’s processes, so that communication appears asynchronous and anonymous to
the application without the need for an intermediary entity. We call this approach
a distributed architecture because there is no central entity in the system. TIBCO
Rendezvous [TIBCO 1999] uses a decentralized approach in which no process acts
as a bottleneck or a single point of failure. Such architectures are well suited for
fast and efficient delivery of transient data, which is required for applications like
stock exchange or multimedia broadcasting.

An intermediate approach, adopted for instance by Gryphon [Banavar et al.
1999], Siena [Carzaniga et al. 2000], and Jedi [Cugola et al. 2001], consists in im-
plementing the event notification service as a distributed network of servers. In
contrast to completely decentralized systems, this approach discharges the par-
ticipating processes by using dedicated servers to execute the complex protocols
required for persistence, reliability or high-availability, as well as content-based fil-
tering and routing. There are different topologies for these servers. Jedi’s event
dispatchers are organized in a hierarchical structure, where clients can connect to
any node. Subscriptions are propagated upwards the tree of servers. Such hierar-
chical topologies tend, however, to heavily load the root servers, and the failure of
a server might disconnect the entire subtree. In Gryphon, a graph summarizing the
common interests of subscribers is superimposed with the message broker graph,
to avoid redundant matches. Siena uses subscription and advertisement forwarding
to set the paths for notifications. Event servers keep track of useful information
to efficiently match events with subscriptions. Several server topologies have been

ACM Journal Name, Vol. V, No. N, March 2003.

16 · Patrick Th. Eugster et al.

considered, each with respective advantages and shortcomings.

5.2.2 Dissemination. The actual transmission of data can happen in various
ways. In particular, data can be sent using point-to-point communication primi-
tives, or using hardware multicast facilities like IP multicast [Deering]. The choice
of the communication mechanism depends on factors such as the target environment
and the architecture of the system.

Centralized approaches like certain message queuing systems are likely to use
point-to-point communication primitives between producers/consumers and the
centralized broker. As already mentioned, these systems focus more on strong
guarantees than on high throughput and scalability. Topic-based publish/subscribe
systems can straightforwardly benefit from the vast amount of studies on group
communication [Powell 1996] and the resulting protocols to disseminate events to
subscribers. To ensure high throughput, IP multicast or a wide range of reliable
multicast protocols [Floyd et al. 1997; Holbrook et al. 1995; Lin and Paul 1996;
Castro et al. 2002; Banerjee et al. 2002; Ratnasamy et al. 2001; Zhuang et al. 2001]
are commonly employed.

Efficient multicast of events in content-based publish/subscribe systems remains
an issue. Gryphon and Siena both use algorithms [Aguilera et al. 1999; Carzaniga
et al. 2001] that deliver events to a logical network of servers in such a way that an
event is propagated only to the servers that manage subscribers interested by that
event. The performance of such dissemination-based systems is strongly affected
by the cost of event filtering on each of the server, which directly depends on the
number of subscription in the system. Highly-efficient and scalable algorithms have
been recently proposed for filtering data in publish/subscribe systems [Altinel and
Franklin 2000; Pereira et al. 2000; Fabret et al. 2001; Campailla et al. 2001; Chan
et al. 2002; Diao et al. 2002]. The problem of aggregating subscriptions to increase
the filtering speed at each server, at the price of a small loss in precision, has been
studied in [Chan et al. 2002]. Irrespective of the filtering techniques, the selective
event routing inherent to content-based publish/subscribe makes the exploitation
of network-level multicast primitives difficult.

5.3 Qualities of service

The guarantees provided by the medium for every message varies strongly between
the different systems. Among the most common qualities of service considered in
publish/subscribe, we have persistence, transactional guarantees and priorities.

5.3.1 Persistence. In RPC-like systems, a method invocation is by definition a
transient event. The lifetime of a remote invocation is short and, if the invokee
does not get a reply after a given period of time, it may re-issue the request. The
situation is different in publish/subscribe or queuing systems. Messages may be
sent without generating a reply, and they may be processed hours after having been
sent. The communicating parties do not control how messages are transmitted and
when they are processed. Thus, the messaging system must provide guarantees not
only in terms of reliability, but also in terms of durability of the information. It is
not sufficient to know that a message has reached the messaging system that sits
between the producers and consumers; we must get the guarantee that the message
will not be lost upon failure of that messaging system.
ACM Journal Name, Vol. V, No. N, March 2003.

The Many Faces of Publish/Subscribe · 17

Persistence is generally present in publish/subscribe systems that have a cen-
tralized architecture and store messages until consumers are able to process them.
Queuing systems like IBM MQSeries [Lewis 1999] and Oracle Advanced Queu-
ing [Oracle 2002] offer persistence using an underlying database. Distributed pub-
lish/subscribe systems do not generally offer persistence since messages are directly
sent by the producer to all subscribers. Unless the producer keeps a copy of each
message, a faulty subscriber may not be able to get missed messages when recover-
ing. TIBCO Rendezvous [TIBCO 1999] offers a mixed approach, in which a process
may listen to specific subjects, store messages on persistent storage, and re-send
missed messages to recovering subscribers. The Cambridge Event Architecture [Ba-
con et al. 2000] provides a potentially distributed event repository for event storage
and efficient retrieval (with searching facilities for simple and composite events)
that enables the replaying of stored sequences of events.

5.3.2 Priorities. Like persistence, message prioritization is a quality of service
offered by some messaging systems. Indeed, it may be desirable to sort the messages
waiting to be processed by a consumer in order of priority. For instance, a real-
time event may require immediate reaction (e.g., failure notification) and should
be processed before other messages.

Priorities affect messages that are in transit, i.e., not being processed. Runtime
execution priorities are handled by the application scheduler and are not managed
by the messaging system. In particular, this implies that two subscribers listening
to the same topics may process messages in different orders because they process
messages at different speeds, even though communication channels are FIFO. Pri-
orities should be considered as a best-effort quality of service (unlike persistence).

Most publish/subscribe messaging systems (centralized or distributed) provide
priorities, although the number of priorities and the way they are applied differ.
IBM MQSeries [Lewis 1999], Oracle Advanced Queuing [Oracle 2002], TIBCO Ren-
dezvous [TIBCO 1999] and the JMS specification [Hapner et al. 2002] all support
priorities.

5.3.3 Transactions. Transactions are generally used to group multiple opera-
tions in atomic blocks that are either completely executed, or not at all. In mes-
saging systems, transactions are used to group messages into atomic units: either
a complete sequence of messages is sent (received), or none of them is. For in-
stance, a producer that publishes several semantically-related messages may not
want consumers to see a partial (inconsistent) sequence of messages if it fails dur-
ing emission. Similarly, a mission-critical application may want to consume one
or several messages, process them, and then only commit the transaction. If the
consumer fails before committing, all messages are still available for re-processing
after recovery.

Due to their tight integration with databases, IBM MQSeries [Lewis 1999] and
Oracle Advanced Queuing [Oracle 2002] provide a wide range of transactional mech-
anisms. JMS [Hapner et al. 2002] and TIBCO Rendezvous [TIBCO 1999] also pro-
vide transaction support for grouping messages in the context of a single session.
JavaSpaces [Freeman et al. 1999] provides lightweight transactional mechanisms to
guarantee atomicity of event production and consumption. An event published in a

ACM Journal Name, Vol. V, No. N, March 2003.

18 · Patrick Th. Eugster et al.

JavaSpace in the context of a transaction is not visible outside the transaction until
it is committed. Similarly, a consumed event is not removed from a JavaSpace until
the enclosing transaction commits. Several events can be produced and consumed
in the context of the same transaction.

5.3.4 Reliability. Reliability is an important feature of distributed information
systems. It is often necessary to have strong guarantees about the reliable delivery
of information to one or several distributed entities. Because of the loose synchro-
nization between producers and consumers of information, implementing reliable
event propagation (“guaranteed delivery”) is challenging.

Centralized publish/subscribe systems generally use reliable point-to-point chan-
nels to communicate with publishers and subscribers, and keep copies of events on
stable storage. Events are therefore reliably delivered to all subscribers, although
a failure of the centralized event broker may delay delivery.

Systems based on an overlay network of distributed event brokers often use re-
liable protocols to propagate events to all or a subset of the brokers. Protocols
based on group communication [Powell 1996] and reliable application-layer multi-
cast [Floyd et al. 1997; Holbrook et al. 1995; Lin and Paul 1996; Castro et al. 2002;
Banerjee et al. 2002; Ratnasamy et al. 2001; Zhuang et al. 2001] are good candi-
dates as they are resilient to the failure of some of the brokers. Individual publishers
and subscribers generally communicate with the nearer broker using point-to-point
communication channels.

Finally, systems that let publishers and subscriber communicate directly with
each other, such as TIBCO Rendezvous [TIBCO 1999], also use lightweight reliable
multicast protocols. As events are generally not kept in the system for failed or dis-
connected (time-decoupled) subscribers, guaranteed delivery must be implemented
by deploying dedicated processes that store events and replay them to requesting
subscribers.

6. CONCLUDING REMARKS

Publish/subscribe is a distributed interaction paradigm well adapted to the deploy-
ment of scalable and loosely-coupled systems. To survey and compare distributed
event-based abstractions, we have introduced a classification based on three dimen-
sions: the decoupling in time, space and synchronization between producers and
consumers of information. Decoupling is a desirable property because it enforces
scalability at the abstraction level, by allowing participants to operate indepen-
dently of one another. At the implementation level however, scalability remains a
sensitive issue, because publish/subscribe interaction can be build on top of var-
ious communication substrates and can easily be hampered by an inappropriate
architecture, in particular when publish/subscribe systems are built on top of in-
frastructures that were not designed with scalability in mind.

Scalability also often conflicts with other desirable properties. For instance,
highly expressive and selective subscriptions require complex and expensive filter-
ing and routing algorithms, and thus limit scalability. Similarly, strong reliability
guarantees involve important overheads, because events must be logged, and missed
events must be detected and retransmitted. Even protocols developed especially for
wide-area networks, such as the sender-reliable Reliable Multicast Transport Proto-
ACM Journal Name, Vol. V, No. N, March 2003.

The Many Faces of Publish/Subscribe · 19

col (RMTP) [Lin and Paul 1996], do not scale well to large numbers of subscribers
because of the considerable amount of traffic resulting from message acknowledg-
ments.

Recently, probabilistic protocols have received increasing attention since they
match the decoupled and peer-based nature of publish/subscribe systems. Instead
of providing deterministic (guaranteed) reliability, probabilistic multicast protocols
ensure that a given event will reach all subscribers with a very high and quantifi-
able probability [Birman et al. 1999]. Integration of such probabilistic protocols in
content-based publish/subscribe systems remains a challenging issue.

While programming abstractions for publish/subscribe are plentiful, designing
appropriate algorithms for deploying such systems in a large scale is still an open
issue, and trade-offs must be dealt with to cope with scalability, expressiveness and
quality of service. Significant research efforts remain to be invested, in particular
as tribute to the unpredictability of the Internet.

REFERENCES

Aguilera, M. K., Strom, R. E., Sturman, D. C., Astley, M., and Chandra, T. D. 1999.
Matching Events in a Content-based Subscription System. In Proc. of ACM PODC. Atlanta,

GA, 53–61.

Altherr, M., Erzberger, M., and Maffeis, S. 1999. iBus – a software bus middleware for the
Java platform. In International Workshop on Reliable Middleware Systems. 43–53.

Altinel, M. and Franklin, M. 2000. Efficient Filtering of XML Documents for Selective Dis-

semination of Information. In Proceedings of the 26th International Conference on Very Large

Data Bases (VLDB 2000). 53–64.

Ananda, A., Tay, B., and Koch, K. 1992. A Survey of Asynchronous Remote Procedure Calls.
ACM Operating Systems Review 26, 2 (July), 92–109.

Bacon, J., Moody, K., Bates, J., R.Hayton, Ma, C., McNeil, A., Seidel, O., and Spiteri,

M. 2000. Generic support for distributed applications. IEEE Computer .

Banavar, G., Chandra, T., Mukherjee, B., Nagarajarao, J., Strom, R., and Sturman, D.
1999. An efficient multicast protocol for content-based publish-subscribe systems. In Proceed-

ings of the 19th International Conference on Distributed Computing Systems (ICDCS’99).

Banavar, G., Chandra, T., Strom, R., and Sturman, D. 1999. A case for message oriented

middleware. In 13th International Symposium on Distributed Computing (DISC 99). 1–18.

Banerjee, S., Bhattacharjee, B., and Kommareddy, C. 2002. Scalable application layer mul-
ticast. In Proceedings of ACM SIGCOMM.

Birman, K. 1993. The process group approach to reliable distributed computing. Communications

of the ACM 36, 12 (Dec.), 36–53.

Birman, K., Cooper, R., Joseph, T., Marzullo, K., Makpangou, M., Kane, K., Schmuck, F.,
and Wood, M. 1990. The Isis System Manual. Dept. of Computer Science, Cornell University.

Birman, K., Hayden, M., O.Ozkasap, Xiao, Z., Budiu, M., and Minsky, Y. 1999. Bimodal

multicast. ACM Transactions on Computer Systems 17, 2 (May), 41–88.

Birrell, A. D. and Nelson, B. J. 1983. Implementing remote procedure calls. In Proceedings

of the ACM Symposium on Operating System Principles. Bretton Woods, NH, 3.

Blakeley, B., Harris, H., and Lewis, J. 1995. Messaging and Queuing Using the MQI.
McGraw-Hill.

Campailla, A., Chaki, S., Clarke, E., Jha, S., and Veith, H. 2001. Efficient filtering in publish-

subscribe systems using binary decision. In International Conference on Software Engineering.
443–452.

Caromel, D. 1993. Towards a method of object-oriented concurrent programming. Communi-

cations of the ACM 36, 90–102.

ACM Journal Name, Vol. V, No. N, March 2003.

20 · Patrick Th. Eugster et al.

Carzaniga, A., Rosenblum, D., and Wolf, A. 2000. Achieving scalability and expressiveness in

an internet-scale event notification service. In Proc. Nineteenth ACM Symposium on Principles
of Distributed Computing (PODC 2000).

Carzaniga, A., Rosenblum, D., and Wolf, A. 2001. Design and Evaluation of a Wide-Area

Event Notification Service. ACM Trans. on Computer Systems 19, 3 (August), 332–383.

Castro, M., Druschel, P., Kermarrec, A.-M., and Rowstron, A. 2002. SCRIBE: A large-
scale and decentralized application-level multicast infrastructure. IEEE Journal on Selected

Areas in communications (JSAC) 20, 8 (oct).

Chan, C.-Y., Fan, W., Felber, P., Garofalakis, M., and Rastogi, R. 2002. Tree Pattern
Aggregation for Scalable XML Data Dissemination. In Proceedings of the 28th International

Conference on Very Large Data Bases (VLDB 2002). Hong Kong, China.

Chan, C.-Y., Felber, P., Garofalakis, M., and Rastogi, R. 2002. Efficient Filtering of XML
Documents with XPath Expressions. In Proceedings of the 18th International Conference on

Data Engineering (ICDE 2002). San Jose, CA.

Chung, P., Huang, Y., Yajnik, S., Liang, D., Shih, J., Wang, C.-Y., and Wang, Y. 1998.
DCOM and CORBA side by side, step by step, and layer by layer. C++ Report 10, 1 (Jan).

Corporation, I. 1995. MQSeries: An introduction to messaging and queuing. Tech. Rep. GC33-

0805-01, IBM Corporation. Jul.

Corporation, T. 1999. Everything You need to know about Middleware: Mission-Critical Inter-
process Communication (White Paper). http://www.talarian.com/.

Cugola, G., Nitto, E. D., and Fugetta, A. 2001. The jedi event-based infrastructure and its

application to the development of the opss wfms. IEEE Transactions on Software Engineer-
ing 27, 9 (Sept.), 827–850.

DEC. 1994. DECMessageQ: Introduction to Message Queuing.

Deering, S. Host extension for ip multicast. IETF RFC 1112.

Diao, Y., Fischer, P., Franklin, M., and To, R. 2002. YFilter: Efficient and Scalable Filtering
of XML Documents. In Proceedings of the 18th International Conference on Data Engineering

(ICDE 2002). San Jose, CA.

Eugster, P. and Guerraoui, R. 2001. Content-Based Publish/Subscribe with Structural Re-
flection. In Proceedings of the 6th Usenix Conference on Object-Oriented Technologies and

Systems (COOTS’01).

Eugster, P., Guerraoui, R., and Damm, C. 2001. On Objects and Events. In Proceedings
of the OOPSLA ’01 Conference on Object Oriented Programming Systems Languages and

Applications. ACM Press, 254–269.

Eugster, P., Guerraoui, R., and Sventek, J. 2000. Distributed Asynchronous Collections:
Abstractions for publish/subscribe interaction. In Proceedings of the 14th European Conference

on Object-Oriented Programming (ECOOP’2000).

Fabret, F., Jacobsen, H., Llirbat, F., Pereira, J., Ross, K., and Shasha, D. 2001. Filtering

Algorithms and Implementations for Very Fast Publish/Subscribe Systems. In Proc. of ACM
SIGMOD. Santa Barbara, California, 115–126.

Floyd, S., Jacobson, V., liu, C., McCanne, S., and Zhang, L. 1997. A reliable multicast

framework for light-weight sessions and application level framing. IEEE/ACM Transaction on
networking, 784–803.

Franklin, M. and Zdonik, S. 1997. A framework for scalable dissemination-based systems. In

Proceedings of the 12th ACM Conference on Object-Oriented Programming Systems, Languages
and Applications (OOPSLA’97). 94–105.

Freeman, E., Hupfer, S., and Arnold, K. 1999. JavaSpaces Principles, Patterns, and Practice.

Addison Wesley.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1995. Design Patterns, Elements of
Reusable Object-Oriented Software. Addison Wesley.

Garlan, D. and Notkin, D. 1991. Formalizing design spaces: Implicit invocation mechanisms.

In VDM ’91: Formal Software Development Methods. Lecture Notes in Computer Science, vol.
551. Springer-Verlag, 31–44.

ACM Journal Name, Vol. V, No. N, March 2003.

The Many Faces of Publish/Subscribe · 21

Gelernter, D. 1985. Generative communication in Linda. ACM Trans. Program. Lang. Syst. 7,

80–112.

Hapner, M., Burridge, R., Sharma, R., Fialli, J., and Stout, K. 2002. Java Message Service.
Sun Microsystems Inc.

Harrison, T., Levine, D., and Schmidt, D. 1997. The design and performance of a real-

time CORBA event service. In Proceedings of the 12th ACM Conference on Object-Oriented

Programming Systems, Languages and Applications (OOPSLA’97). 184–200.

Hauswirth, M. 1999. Internet-scale push systems for information distribution - architecture,
components, and communication. Ph.D. thesis, Technical University of Vienna.

Hauswirth, M. and Jazayeri, M. 1999. A component and communication model for push

systems. In Proceedings of Software Engineering - ESEC/FSE’99. 20–28.

Holbrook, H., Singhal, S., and Cheriton, D. 1995. Log-based receiver-reliable multicast for
distributed interactive simulation. In Proc. of ACM SIGCOMM’95.

Horstmann, M. and Kirtland, M. 1997. DCOM Architecture.
www.microsoft.com/com/tech/DCOM.asp.

Houston, P. 1998. Building Distributed Applications with Message Queuing Middleware (White

Paper).

Huang, Y. and Garcia-Molina, H. 2001. Publish/subscribe in a mobile enviroment. In Pro-
ceedings of MobiDE. 27–34.

Lehman, T., Laughry, S. M., and Wyckoff, P. 1999. Tspaces: The next wave. In Proc. of

Hawaii International Conference on System Sciences (HICSS-32).

Lewis, R. 1999. Advanced Messaging Applications with MSMQ and MQSeries. QUE.

Li, K. and Hudak, P. 1989. Memory coherence in shared memory systems. ACM Transactions

on Computers Systems 7, 4 (Nov.), 321–359.

Lin, J. and Paul, S. 1996. A reliable multicast transport protocol. In Proc. of IEEE INFO-
COM’96. 1414–1424.

OMG. 2001. CORBA Event Service Specification. OMG.

OMG. 2002a. The Common Object Request Broker: Core Specification. OMG.

OMG. 2002b. CORBA Notification Service Specification. OMG.

Oracle 2002. Oracle9i Application Developer’s Guide – Advanced Queuing. Oracle.

Papadopoulos, G. and Arbab, F. 1998. Coordination models and languages. In The Engineering

of Large Systems. Advances in Computers, vol. 46. Academic Press.

Pereira, J., Fabret, F., Llirbat, F., and Shasha, S. 2000. Efficient matching for web-based

publish/subscribe systems. In Proceedings of CoopIS.

Powell, D. 1996. Group communication. Communications of the ACM 39, 4 (Apr.), 50–97.

Ratnasamy, S., Handley, M., Karp, R., and Shenker, S. 2001. Application-level multicast
using content-addressable networks. In Proceedings of the Third International Workshop on

Networked Group Communication.

Rosenblum, D. and Wolf, A. 1997. A design framework for internet-scale event observation
and notification. In 6th European Software Engineering Conference/ACM SIGSOFT 5th Sym-

posium on the Foundations of Software Engineering. 344–360.

Rowstron, A. 1998. Wcl: A co-ordination language for geographically distributed agents. World

Wide Web, 167–179.

Segall, B. and Arnold, D. 1997. Elvin has left the building: A publish/subscribe notification
service with quenching. In Proceedings of the Australian UNIX and Open Systems User Group

Conference (AUUG’97). http://www.dtsc.edu.au/.

Segall, B., Arnold, D., Boot, J., Henderson, M., and Phelps, T. 2000. Content Based

Routing with Elvin4. In AUUG2K. Canberra, Australia.

Sessions, R. 1997. COM and DCOM: Microsoft’s Vision for Distributed Objects. John Wiley &
Sons.

Skeen, D. 1998. Vitria’s Publish-Subscribe Architecture: Publish-Subscribe Overview.

http://www.vitria.com.

ACM Journal Name, Vol. V, No. N, March 2003.

22 · Patrick Th. Eugster et al.

Stoica, I., Adkins, D., Zhuang, S., Shenker, S., and Surana, S. 2002. Internet indirection

infrastructure. In Proceedings of ACM SIGCOMM.

Sullivan, K. and Notkin, D. 1990. Reconciling environment integration and component inde-
pendence. In Proceedings of the fourth ACM SIGSOFT symposium on Software development

environments. ACM Press, 22–33.

Sun. 2000. Java Remote Method Invocation Specification.

Sun. 2002. JavaSpaces Service Specification.

Tai, S. and Rouvellou, I. 2000. Strategies for integrating messaging and distributed object
transactions. In Proceedings of the IFIP/ACM International Conference on Distributed Sys-

tems Platforms and Open Distributed Processing (Middleware 2000). 308–330.

Tam, M., Smith, J., and Farber, D. 1990. A taxonomy-based comparison of several distributed
shared memory systems. Operating Systems Review 24, 3 (July), 40–67.

Tay, B. H. and Ananda, A. L. 1990. A Survey of Remote Procedure Calls. ACM Operating
Systems Review 24, 3 (July), 68–79.

TIBCO. 1999. TIB/Rendezvous (White Paper).

Wessels, D. 1995. Intelligent caching for world-wide-web objects. In Proc. of INET’95. Honolulu,
Hawaii.

Yonezawa, A., Shibayama, E., Takada, T., and Honda, Y. 1987. Object-Oriented Concur-
rent Programming. MIT Press, Chapter Modeling and Programming in an Object-Oriented
Concurrent Language ABCL/1, 55–89.

Zhuang, S., Zhao, B., Joseph, A., Katz, R., and Kubiatowicz, J. 2001. Bayeux: An archi-
tecture for scalable and fault-tolerant wide-area data dissemination. In Proc. of the Eleventh

International Workshop on Network and Operating System Support for Digital Audio and
Video (NOSSDAV 2001).

Received January 2001; December 2002; accepted March 2003

ACM Journal Name, Vol. V, No. N, March 2003.

