Toward a Theory of Transactional
Contention Managers

Rachid Guerraoui
School of Computer and
Communication Sciences

EPFL

rachid.guerraoui@epfl.ch

ABSTRACT

In recent software transactional memory proposals, a con-
tention manager module is responsible for ensuring that
the system as a whole makes progress. A number of con-
tention manager algorithms have been proposed and empir-
ically evaluated.

In this paper we lay some foundations for a theory of
contention management. We present the greedy contention
manager, the first to combine non-trivial provable properties
with good practical performance.

In a model where transaction delays are finite, the greedy
manager guarantees that every transaction commits within a
bounded time, and the time to complete n concurrent trans-
actions that share s objects is within a factor of s(s+1) 42
of the time that would have been taken by an optimal off-
line list scheduler. No contention manager reviewed in the
literature satisfies both the properties. Benchmark results
convey our claim of the practicality of the greedy manager.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Program-
ming; F.2.2 [Analysis of Algorithms and Problem Com-
plexity]: Nonnumerical Algorithms and Problems—Sequenc-
ing and scheduling

General Terms
Algorithms, Theory

Keywords

Software transactional memory, Transactions, Contention
management

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

PODC' 05, July 17-20, 2005, Las Vegas, Nevada, USA.

Copyright 2005 ACM 1-59593-994-2/05/0007 ...$5.00.

Maurice Herlihy
Brown University and
Microsoft Research

mph@cs.brown.edu

Bastian Pochon
School of Computer and
Communication Sciences

EPFL

bastian.pochon@epfl.ch

1. INTRODUCTION

The limitations of conventional multiprocessor synchro-
nization techniques based on locks and condition variables
are well-known. Recently, transactional models of synchro-
nization have received attention as an alternative program-
ming model.

A transaction, like a critical section, is an explicitly de-
limited sequence of steps to be executed atomically by a
single thread. Unlike critical sections, a transaction can
either commit (take effect), or abort (have no effect). If
a transaction aborts, it is typically retried until it com-
mits. Transactional APIs for multiprocessor synchroniza-
tion, called Transactional memories, have been proposed
both for hardware [6, 9, 16, 19, 20, 26] and in software [7, 8,
10, 12, 18, 25, 15]. In this paper, we are primarily concerned
with the structure of software transactional memory (STM)
systems.

A concurrent algorithm is obstruction-free [9] if it guar-
antees that any thread, if run by itself for long enough, will
make progress. The obstruction-free property is attractive
for an STM because it supports a clean separation of con-
cerns: correctness and progress can be addressed by different
modules. In recent STM proposals [9, 23], progress is the
responsibility of a contention manager module.

Transactions read and write shared objects. Two transac-
tions conflict if they access the same object and one access
is a write. Transaction synchronization is optimistic [13]: a
transaction commits only if, at the time it finishes, no other
transaction has executed a conflicting access. It is not hard
to see that optimistic synchronization is obstruction-free.

If transaction A discovers it is about to conflict with B,
then it has a choice: it can pause, giving B a chance to
finish, or it can proceed, forcing B to abort. Faced with this
decision, A will ask its local contention manager module
which choice to make.

The literature includes a number of contention manager
proposals [10, 23], ranging from simple (exponential back-
off) to elaborate (various priority-based schemes). Empirical
studies have shown that the choice of a contention manager
algorithm can affect transaction throughput, sometimes sub-
stantially.

While empirical evaluation will always be essential for
evaluating contention manager designs, we think the time
has come to develop a more systematic theory of contention
management. For example, if a contention manager never
allows one transaction to abort another, then deadlock can
happen. If a contention manager always advises transactions

to abort one another, then live-lock can happen. Between
these extremes, what kinds of progress properties, if any,
can one guarantee? Adaptive backoff seems to work well
in practice when transactions have roughly the same size,
but is less effective if long transactions must compete with
shorter transactions. Can we put bounds on the worst-case
behavior of a contention manager, perhaps by comparing to
an optimal off-line scheduler?

In this paper we lay some foundations for a theory of
contention management. We present the greedy contention
manager, the first to combine non-trivial provable properties
with empirically promising performance.

In a model where transaction delays are finite, the greedy
manager guarantees that:

e every transaction commits within a bounded time, and

e the time to complete n concurrent transactions that
share s objects is within a factor of s(s+ 1) + 2 of the
time that would have been taken by an optimal off-line
list scheduler.

None of the the contention managers proposed in the lit-
erature satisfies both properties.

We present experimental results showing that the greedy
manager has a very reasonable worst-case performance with-
out being outperformed in average cases by other managers
experimented so far in practice. Finally, we discuss simple
extensions to this manager for models in which transactions
can halt undetectably and we open some problems related
to the theoretical study of contention management.

The principal contribution of this paper is to demonstrate
that contention management raises theoretical as well as
pragmatic issues. Because effective contention management
is central to making software transactional memory work
in practice, this area is one where theoretical and practical
analysis are intertwined.

2. SCOPING CONTENTIONMANAGEMENT

Although contention management can be viewed as a task
scheduling problem, contention managers differ in important
ways from the schedulers considered in most of the litera-
ture (for surveys of scheduling literature, see Chaplin [2]
or Gonzalez [4]). Many classical scheduling algorithms use
centralized data to make decisions (for example, choosing
the first runnable job from a queue). Contention managers,
by contrast, are highly decentralized: one transaction de-
cides whether to abort another based only on a comparison
of the two transactions’ states. While it might be possi-
ble to collect other information, this might be inefficient,
especially if synchronization were needed, and of doubtful
value. Contention managers cannot use protocols that re-
quire the active participation of multiple transactions, since
one transaction may be blocked or swapped-out.

In addition, most of the scheduling algorithms in the lit-
erature are off-line in the sense that task durations and
resource requirements are usually known in advance. By
contrast, a contention manager does not know how long a
transaction will take, nor any of its future resource needs. It
would be unacceptably cumbersome (not to mention a vio-
lation of modularity) to require a transaction to predeclare
its set of data accesses.

At first glance, a contention manager looks like a concur-
rency controller in a database system, e.g., [22, 13]. Both

have to do with delaying or aborting transactions. There
is however a fundamental difference. Whereas the goal of
a concurrency controller is to ensure serializability (a safety
property), a contention manager seeks only to enhance pro-
gress (liveness). The serializability of transactions in STM
systems is taken for granted when devising contention man-
agers [10, 23].

Some optimistic concurrency controllers [11] use a conflict
resolution algorithm that is similar to a contention manager.
In contrast with our scheme, where conflict detection occurs
when a transaction executes, optimistic concurrency con-
trollers detect conflicts when a transaction tries to commit
(after it has accessed all objects).

Just like contention managers, certain unreliable failure
detectors [1, 5] can also be viewed as progress boosters, to
be used in conjunction with algorithms inherently devised
to cope with safety. As their names indicate, failure detec-
tors track the failure of processes. They depend solely on
the failure pattern and not on the computation [1]. Con-
tention managers on the other hand depend primarily on
the computation, i.e., on whether two transactions conflict
by accessing the same object.

3. THEGREEDY CONTENTIONMANAGER

The contention manager we introduce in this paper makes
use of three components of a transaction state.

e First, when a transaction begins, it is given a times-
tamp which it retains even if it aborts and restarts.
A transaction with an earlier timestamp has higher
priority than a transaction with a later timestamp.
In the set of rules described below, timestamps are
generated by atomically incrementing a shared vari-
able. One could generate timestamps by a variety of
methods, including logical clocks. The key property
we need is that if a transaction takes a timestamp ¢,
then there is henceforth a fixed bound (usually n — 1)
on the number of transactions that execute with earlier
timestamps.

e Second, the transaction’s status field indicates whether
the transaction is active, committed, or aborted. A
transaction commits by applying a compare-and-swap
instruction to change its status field from active to
committed. One transaction aborts the other by ap-
plying a compare-and-swap to change its status from
active to aborted.

e Finally, each transaction has a public Boolean waiting
field that indicates whether it is waiting for another
transaction.

Our greedy contention manager has two simple rules. Sup-
pose transaction A discovers it is about to perform an access
that conflicts with transaction B.

1. If B is lower priority than A, or if B is waiting for
another transaction, then A aborts B.

2. If B is higher priority than A and is not waiting, then
A waits until B commits, aborts, or starts waiting. (If
B starts to wait, see Rule 1.)

Naturally, these rules make sense only if transaction delays
are bounded (otherwise A might wait forever for a halted
B). We discuss later how to extend these rules to cope with
halted transactions.

4. PROPERTIES

The number of transactions with higher priority than a
given transaction is bounded. Given that the greedy man-
ager ensures that the highest-priority transaction never waits
and is never aborted by a synchronization conflict, we im-
mediately obtain the following.

THEOREM 1. Ewvery transaction commits after a bounded
delay.

In the following, we prove a property (Theorem 9) on the
time taken by our greedy contention manager to commit
transactions. We show that the time to complete n concur-
rent transactions that share s objects is within a factor of
s(s + 1)/2 of the time that would have been taken by an
optimal off-line list scheduler (one that knows transactions’
resource requirements in advance).

As we discussed earlier in the paper, a contention man-
ager is indeed a kind of scheduler. It is well-known that
optimal off-line scheduling of tasks with shared resources is
NP-complete. Hence, the best one can expect is to approx-
imate an optimal schedule.

Consider an execution in which n concurrent transactions
start at time 0. The makespan is the duration until the last
of them commits.

The greedy contention manager schedules transactions while
their resources appear to be available, but because it does
not know a transaction’s resource demands in advance, it
does not always make optimal choices.

Consider transactions Ty, ...,Ts and objects Xi,..., Xs.
Each transaction runs for one time unit. 7; has higher pri-
ority (an earlier timestamp) than T;—1. Ty accesses X1, Ts
accesses X, each remaining T; accesses X; and X;41. A list
scheduler might run the even transactions and then the odd,
yielding a makespan of 2 (which happens to be optimal).

By contrast, the greedy contention manager does not do
as well. At time 0, each T3, 0 < 7 < s, accesses Xit1.
At time 1 — ¢, T1 accesses X1, aborting Tp. In turn, each
T; opens X;, aborting T;_1. At time 1, only Ts commits.
After repeating this scenario s more times, all transactions
commit, yielding a makespan of s + 1.

It is known that simple off-line schedulers yield schedules
within a factor of (s + 1) of optimal [3]. Here, we will show
that any on-line contention manager which ensures only the
property that at any time, some running transaction will run
uninterrupted until it commits, is within a factor of s(s +
1)/2 of optimal. This property, which we call the pending
commit property, is clearly satisfied by our greedy manager.
This is because the running transaction with highest priority
will neither wait nor be aborted by any other transaction.

4.1 Tasksand Resources

We follow the model of Garey and Graham [3]. A task
system is given by a set of tasks {T1,...,Tn} and a set of
shared resources {Ri,...,Rs}. Each T; has an associated
length 7; > 0, and uses R;(T};) units of resource R;, where
resources are normalized so that 0 < R;(7T;) < 1.

A list scheduler maintains a list of tasks, and each proces-
sor instantaneously scans the list from front to back and
starts the first unstarted task whose resources are avail-
able. (Here, we are concerned only with the case in which
the number of processors equals the number of tasks.) It
is known that computing an optimal list scheduler is NP-
complete, but that any list schedule is within a factor of

(s + 1) of the optimal [3]. Notice that list schedulers have
the following list scheduler property: no task is waiting to
execute if the resources it needs are available.

Informally, the system starts executing the tasks at time
0, and each T} requires exclusive use of R;(T}) units of re-
source R; at all times during its execution. Tasks are non-
preemptable: once T is started, it runs to completion in
time 7;. Formally, an ezecution E is a map from times to
sets of tasks: E(t) is the set of transactions running at time
t.

We divide each time unit into m discrete “ticks”, for some
sufficiently large integer m, and we assume without loss of
generality' that tasks start and stop only at these discrete
ticks.

For each ¢, let r;(¢) denote the total amount of resource
R; in use at time ¢:

ri(t)= > Ri(Ty).

T;€E(t)
Executions satisfy the following constraint:

ri(t) <1 forall t>0. (1)

Later on, we will construct task executions in which 7;(t)
may exceed 1. Such executions are said to be overloaded.

As noted, a list scheduler guarantees that no task is wait-
ing to be executed at a time when its resource requirements
can be satisfied: for all ¢, if 1 — r;(t) > R;(T}), then T; has
started to execute.

4.2 Optimal Transactional Executions

Transactions exhibit more complicated behavior than tasks.
We are given a set of transactions Ty, ..., T,, where T;, if
run by itself, runs for duration 7;. Transactions share a set
of objects X1,...,X,s. Each transaction T} requires the use
of X;(T};) units of object X; after some point in its execu-
tion. If T; updates X;, then X;(73) = 1, and if it reads X;
without updating, then X;(7;) = 1/n. T; and Tk conflict
at X; if X»L(TJ) +X1(Tk) > 1.

We define a corresponding task system in a straightfor-
ward way. For each transaction T, 0 < j < n, of duration
d;, define a task 77" also of duration §;. For each object X,
1 <i < s, define a resource X" such that X7 (T7) = X;(T3).
Let E* be an optimal execution for this task system.

Assume without loss of generality that E* has makespan
1. Let r;(t) denote the amount of resource X; in use at
time ¢.

LEMMA 2. For1<i:<s,

Tilr; <%> - /000 ()t < 1.

k=0

Proor. This function’s value is constant on each interval
[k/m, (k+ 1)/m), it does not exceed 1 in the interval [0, 1],
and it is O for values greater than 1. [

4.3 Actual Transactional Executions

Consider a contention manager that guarantees the pend-
ing commit property: at any time, some running transaction
will run uninterrupted to commit.

In more detail, an execution of a transaction 7 is a se-
quence of actions where each action represents an interval

!See Garey and Graham [3] Lemma 3.

during which the transaction is continuously running. The
last action finishes when the transaction commits, and each
previous action, if any, finishes when the transaction aborts
or waits. A transaction execution E is a map from time
to the set of actions running at that time. The pending
commit property states that at any time t earlier than the
execution’s makespan, some action in E(t) will commit.

Given a transactional execution E, we now construct a
corresponding task execution E’. This task execution is (in
general) overloaded, since it may sometimes permit more
than a unit of a resource to be in use.

For each transaction Ty, 1 < k < n, let Ax be the last
(committing) action for Tk, and let §;, be its length. Note
that d;, < . Define a task execution E’ so that each task
runs for the same time as the corresponding transaction’s
last action:

T, € E'(t) iff A; € E(t).

For each pair of objects X;, X;, 1 < i < j < s, define a
resource X;;. (There are s(s+ 1)/2 such resources.) Infor-
mally, we use X/; to track object X;, and X, for distinct ¢
and j, is a bookkeeping device to track indirect dependen-
cies between transactions that access objects X; and Xj. If
transaction T} updates object X;, then task T}, requires all
of resources X;;, for ¢ < j <'s, and X};, for 1 < j < i, and
similarly for read access. Formally,

X5 (Tie) = max(Xi(Tk), X; (Th))-

Let r;;(t) be the amount of X;; in use at time ¢. Notice
that the resulting schedule is overloaded: it is possible for
7i;(t) to exceed 1. The execution E’ trivially satisfies the
list scheduler property: if 7} has not yet started, yet all
the resources it needs are available, then no task is running,
contradicting the pending commit property.

LEMMA 3. For 1 <i<s,

/ rii(t)dtg/ ri (t)dt.
0 0

PrOOF. In E*, T} contributes either 6; (update) or ¢;/n
(read). In E', T; contributes either &; (update) or &;/n
(read), and &5 < §;. O

Combining with Lemma 2:

COROLLARY 4. For1<1i<s,
/ ri;(t)dt < 1.
0

LEMMA 5. For1 <i<j<s,

/ rgj(t)dtg/ r;i(t)dt+/ 55 (t)dt.
0 0 0

PROOF. If a task is using r units of X;; at time ¢, then it
is using at most r units of either X;; or X}, at time ¢t. [

Combining with Lemma 2:

COROLLARY 6. For1<i< j<s,

/ ri;(H)dt < 2.
0

Let G = (V, E) denote a graph with vertex set V and edge
set E. A walid labeling of G is a function L : V — [0, 00)
which satisfies

for all e=(u,v) € E,L(u) + L(v) > 1.
Define the score of G, denoted by S(G), by

S(G) = inf L(v).
(@ =gt 3 1w
Define the graph G(m, s) to have vertex set {0,1,..., (s+
1)m — 1}, and an edge between vertexes a and b whenever
la — b > m.
The following is Garey and Graham’s Lemma 2:

LEMMA 7. Suppose G(m, s) is partitioned into s spanning
subgraphs H;, 1 <1 <s. Then

max S(H;) > m.
1<i<s

We will make use of the following corollary:

COROLLARY 8. Suppose G(2m, s(s + 1)/2) is partitioned
into s(s+1)/2 spanning subgraphs H;, 1 < i < s(s+1)/2.
Then

max >
1<i<s(s+1)/2

Now we proceed to prove our main result. Assume, with-
out loss of generality, that w*, the makespan of the opti-
mal execution, is 1. Assume, by way of contradiction, that
w > s(s+ 1) + 2. Recall that each unit of time is divided
into m discrete ticks, and tasks start and stop at times k/m,
where k is a positive integer. It follows that k& < m, since
7 <w' =1

Notice that for 0 < to < t1, where t1 —to > 1,

| Jnax 7 (to) + 75 (h) > 1, (2)

because otherwise any task running at time ¢; should have
been running at time to or earlier.

For each 1 <i < j < s, construct a graph H;; as follows:

V(Hij):{o,...,<w“> 2m—1} (3)

(a,b) is anedgeof H;; iff ri(a/m)+rii(b/m)> 1.

(4)
If |a — b] > 2m, then (a,b) is an edge in at least one Hj;
(Equation 2), so G(2m, s(s+1)/2) C U, ;H;;. Notice that if
G C @', then S(G) < S(G"). Because Equation 2 is a strict
inequality, Lemma 7 implies that:

(24D L 1yom—1

max E

i
»J k=0

o (£) > maxstits) = 2m.

4]

Equivalently,

) (24D L 1yom 1
RS
m

k
] m
k=0

This sum is just the area under the resource usage curve:

1

(24D L 1yom 1
max —

/ k _ <,
i m Z Tij (E) —/) le(t)dt

k=0

Putting these equations together implies that for some 1 <
1<j<s,

/ Tdt > 2. (5)
0

which contradicts Corollaries 4 and 6.
We have just shown the following;:

THEOREM 9. Any contention manager that satisfies the
pending commit property produces a makespan within a fac-
tor of s(s+ 1) + 2 of optimal.

5. EXPERIMENTAL RESULTS

The makespan argument characterizes the manager’s worst-
case performance, and says little about how it behaves for
common cases. In this section, we report some experimental
results comparing the greedy manager against other man-
agers that appear in the literature. The point of the exper-
iments is not to establish one or more contention managers
as superior (that would take much more extensive bench-
marking) but to show that the greedy contention manager
has respectable practical performance, i.e., average case be-
havior.

The experiments were done using the SXM software trans-
actional memory system, a system written in C# currently
under development at Microsoft Research Cambridge [21].
The SXM package differs from the earlier Java-based Dy-
namic STM package [10] by using run-time code generation
instead of programmer convention to synchronize shared ob-
jects. The contention managers from Scherer and Scott [23]
were ported to C# either from the original Java code, or
from their written descriptions. The benchmarks were run
on a machine with four Intel Xeon processors with 2-way
hyperthreading turned on. Each processor runs at 2.0 GHz
and has 1 GB of RAM.

Figures 1 to 4 compare several contention managers de-
fined in the literature [23, 24], for various applications, and
under low and high contention scenarios. We use four data
structures used as benchmark applications: a list, a skip-
list [10], a red-black tree [10], and a red-black forest (a data
structure made of fifty red-back trees, in which insertions
and removals of elements proceed in either one or all trees
on a random basis; the distribution of the lengthes of the
transactions produced which a red-black forest thus exhibits
a high variance).

We consider constant size transactions, in which a number
of threads ranging from 1 to 32 continuously insert and re-
move elements taken from a small set of 256 integers, hence
forcing contention to happen, and an update rate of 100%.
All figures depict the number of committed transactions per
second, as a function of the number of threads.

Interestingly enough, as conveyed by Figures 1 to 4, the
best contention manager for a given transaction is not neces-
sarily the best contention manager for another transaction.
Which contention manager suits best for a given transaction
depends on various factors, such as the contention pattern
with conflicting transactions, the length of the contented
vs. uncontented periods within the transaction, etc.

As depicted by Figures 1 and 2, karma [23] and polka [24]
contention managers provide a better throughput in a con-
tention-intensive scenario.

Figure 3 exhibits a low contention pattern among trans-
actions by making threads perform computations unrelated

to the effective transactions at the end. In our SXM imple-
mentation, when there is no contention among transactions
at the end of the computation, for various length of uncon-
tented periods, and when transactions are approximately of
the same size, the greedy contention manager provides the
best throughput.

Figure 4 exhibits an intensive contention pattern among
transactions of irregular length. In this case, the best con-
tention management policies seem uncertain. More pre-
cisely, it highly varies depending on the number of threads

In short, and to to the best of our understanding, the
greedy contention manager performs well when there is no or
few contention. This is because the greedy contention man-
ager does not maintain costly data structures for assigning
priority to transactions. On the other hand, karma performs
well when contention is intensive, because the priority it as-
signs to transactions, though more costly to update, reveals
itself a very good estimator of the importance of the trans-
actions.

6. CONCLUDING REMARKS

Contention managers were first proposed in [10], and a
comprehensive survey on the subject is due to Scherer and
Scott [23]. The notion that waiting transactions should not
obstruct active transactions has been used by McWherter
et al. [17] to improve the throughput of web-based on-line
transaction systems.

Using timestamp-based priorities to guarantee progress is
an old trick: it goes at least as far back as 1978 [22], and
has been used in more recent transactional memory propos-
als [20].

None of the contention managers explored in [23] satisfies
the pending commit property, i.e., at any time, some run-
ning transaction will commit, which our theoretical analysis
reveals to be fundamental for worst-case analysis. Clearly,
none of the polite or randomized managers provide any deter-
ministic guarantee. As explained in [23], the queueOnBlock
manager is prone to dependency cycles whereas the aggres-
sive manager is prone to livelocks. Aborting enemies after a
time-out, as in the killBlocked, kindergarten, and timestamp
managers, diminishes the probability of livelocks without
however canceling it. The karma and eruption contention
managers account for the work performed by a conflicting
transaction and the number of times it already aborted, be-
fore aborting it. In theory however, any transaction A might
get repeatedly aborted due to newcomer transactions that,
between two aborts of A, get aborted more often and access
more objects.

Some STM implementations, as described by Harris and
Frasier [7] and Harris et al. [8], discover conflicts when trans-
actions commit, not while they are executing. Contention
managers do not seem well-suited to these kinds of STMs,
and the question of ensuring progress for this kind of STM
design remains largely unexplored.

With the exception of Scherer and Scott’s timestamp man-
ager [23], none of the contention managers we know of ensure
progress if transactions can stop prematurely. Interestingly,
our greedy contention manager can be extended to cope with
failures in much the same way as the timestamp manager:
add a rule which stipulates that whenever a transaction A
waits for a higher priority transaction B, A does so only
until a time-out expires; choose the time-out period to be
proportional to the number of times A had to wait for B

50k

45k % Eruption — | |

40k F1 Greedy --- |
Aggressive

35k

' Backoff
30k | 1

25k |
20k |
15k | .
10k F Tl o
5k | T .

Committed transactions per sec

0 5 10 15 20 25 30 35
Number of threads

Figure 1: List application
12k

10k J

8k |

4k + 1

2k J

Committed transactions per sec

Ok ‘ ‘ ‘ ‘ ‘ ‘
0 5 10 15 20 25 30 35

Number of threads

Figure 3: Red-black application (low contention)

and then aborted B. This growth can simply be performed
by doubling the time for each such new discovery.

We close with some open problems. We do not know if the
s(s4+1)42 bound for the greedy contention manager is tight.
Are there other contention managers that provide similar,
provable properties? For example, can one use randomiza-
tion to implement a contention manager that is proved to
behave well with high probability?

We evaluated the greedy contention manager’s efficiency
by comparing its makespan for n concurrent transactions
against the same makespan for an optimal off-line list sched-
uler. An open problem is to do the same for threads that ex-
ecute a sequence of transactions, instead of just one. Similar
analyses for off-line task scheduling exist for unit-execution
time (UET) tasks [3, 14]. The UET assumption reduces the
problem to multidimensional bin-packing, an approach not
easily adapted to transactions of unknown duration.

Acknowledgments

We are grateful to Bill Scherer for sharing his contention
manager source code.

7. REFERENCES

[1] Tushar Deepak Chandra and Sam Toueg. Unreliable
failure detectors for reliable distributed systems.

Committed transactions per sec

Committed transactions per sec

22k
20k | : E
18k | .
16k f fhr
14k |
12k |
10k t
8k -
6k
4k +
2k +

0 5 10 15 20 25 30 35
Number of threads

Figure 2: Skiplist application
12k

10k [0 T]

o | 2:.. .

ak |

2k |

Ok

0 5 10 15 20 25 30 35
Number of threads

Figure 4: Red-black forest application

Journal of the ACM, 43(2):225-267, March 1996.

[2] Steve J. Chapin. Distributed and multiprocessor
scheduling. ACM Comput. Surv., 28(1):233-235, 1996.

[3] M. R. Garey and Ronald L. Graham. Bounds for
multiprocessor scheduling with resource constraints.
SIAM J. Comput., 4(2):187-200, 1975.

[4] Mario J. Gonzalez, Jr. Deterministic processor
scheduling. ACM Comput. Surv., 9(3):173-204, 1977.

[5] R. Guerraoui. Indulgent algorithms. In Proceedings of
the nineteenth annual symposium on Principles of
distributed computing, pages 289-299. ACM Press,
2000.

[6] Lance Hammond, Vicky Wong, Mike Chen, Ben
Hertzberg, Brian D. Carlstrom, John D. Davis,
Manohar K. Prabhu, Honggo Wijaya, Christos
Kozyrakis, and Kunle Olukotun. Transactional
memory coherence and consistency. In Proceedings of
the thirty-first Annual International Symposium on
Computer Architecture, June 2004.

[7] Tim Harris and Keir Fraser. Language support for
lightweight transactions. In Proceedings of the
eighteenth ACM Conference on Object-oriented
programing, systems, languages, and applications,
pages 388-402. ACM Press, 2003.

[8] Tim Harris, Simon Marlow, Simon Peyton Jones, and

[9]

(10]

(13]

(14]

(15]

(16]

(17]

Maurice Herlihy. Composable memory transactions. In
Principles and Practice of Parallel Programming,
2005. To appear.

Maurice Herlihy, Victor Luchangco, and Mark Moir.
Obstruction-free synchronization: Double-ended
queues as an example. In Proceedings of the
twenty-third International Conference on Distributed
Computing Systems, pages 522-529, May 2003.
Maurice Herlihy, Victor Luchangco, Mark Moir, and
William N. Scherer, ITI. Software transactional
memory for dynamic-sized data structures. In
Proceedings of the twenty-second annual symposium on
Principles of distributed computing, pages 92—-101.
ACM Press, 2003.

J. Huang, J. Stankovic, K. Ramamritham, and

D. Towsley. Experimental evaluation of real-time
optimistic concurrency control schemes. In Proceedings
of the seventeenth Conference on Very Large
Databases. Morgan Kaufman, 1991.

Amos Israeli and Lihu Rappoport.
Disjoint-access-parallel implementations of strong
shared memory primitives. In Proceedings of the
thirteenth annual ACM symposium on Principles of
distributed computing, pages 151-160. ACM Press,
1994.

H. T. Kung and John T. Robinson. On optimistic
methods for concurrency control. ACM Trans.
Database Syst., 6(2):213-226, 1981.

Errol L. Lloyd. Critical path scheduling of task
systems with resource and processor constraints
(extended abstract). In Proceedings of the twelfth
annual ACM symposium on Theory of computing,
pages 436—446. ACM Press, 1980.

V. J. Marathe, W. N. Scherer, III, and M. L. Scott.
Design tradeoffs in modern software transactional
memory systems. In 7th Workshop on Languages,
Compilers, and Run-time Support for Scalable
Systems, October 2004.

José F. Martinez and Josep Torrellas. Speculative
synchronization: applying thread-level speculation to
explicitly parallel applications. In Proceedings of the
tenth international conference on architectural support
for programming languages and operating systems,
pages 18-29. ACM Press, 2002.

David McWherter, Bianca Schroeder, Natassa
Ailamaki, and Mor Harchol-Balter. Priority
mechanisms for OLTP and transactional web
applications. In Proceedings of the twentieth
International Conference on Data Engineering, April
2004.

(18]

(19]

20]

23]

24]

Mark Moir. Practical implementations of non-blocking
synchronization primitives. In Proceedings of the
sizteenth annual ACM symposium on Principles of
distributed computing, pages 219-228. ACM Press,
1997.

Jeffrey Oplinger and Monica S. Lam. Enhancing
software reliability with speculative threads. In
Proceedings of the tenth international conference on
architectural support for programming languages and
operating systems, pages 184-196. ACM Press, 2002.
Ravi Rajwar and James R. Goodman. Transactional
lock-free execution of lock-based programs. In
Proceedings of the tenth international conference on
architectural support for programming languages and
operating systems, pages 5-17. ACM Press, 2002.
Microsoft Research. C# software transactional
memory. Available at:

http://research.microsoft.com /research/
downloads/default. aspz.

Daniel J. Rosenkrantz, Richard E. Stearns, and
Philip M. Lewis. System level concurrency control for
distributed database systems. ACM Transactions on
Database Systems, 3(2):178-198, June 1978.

W. Scherer, IIT and M. Scott. Contention management
in dynamic software transactional memory. In PODC
Workshop on Concurrency and Synchronization in
Java Programs, July 2004.

W. Scherer, IIT and M. Scott. Advanced contention
management for dynamic software transactional
memory. In Proceedings of the twenty-fourth annual
ACM symposium on Principles of distributed
computing, July 2005.

Nir Shavit and Dan Touitou. Software transactional
memory. In Proceedings of the fourteenth annual ACM
symposium on Principles of distributed computing,
pages 204—213. ACM Press, 1995.

Janice M. Stone, Harold S. Stone, Phil Heidelberger,
and John Turek. Multiple reservations and the
Oklahoma update. IEEE Parallel and Distributed
Technology, 1(4):58-71, November 1993.

