
Towards Safe Distributed Application Development∗

Patrick Thomas Eugster1, Christian Heide Damm2, Rachid Guerraoui1

1Swiss Federal Institute of Technology in Lausanne, CH-1015 Lausanne, Switzerland
2Microsoft Business Solutions, DK-2950 Vedb, Denmark

Abstract

Distributed application development is overly tedious, as
the dynamic composition of distributed components is hard
to combine with static safety with respect to types (type
safety) and data (encapsulation). Achieving such safety
usually goes through requiring specific compilation to gen-
erate the glue between components, or making use of a sin-
gle programming language for all individual components
with a hardwired abstraction for the distributed interaction.

In this paper, we investigate general-purpose program-
ming language features for supporting third-party imple-
mentations of programming abstractions for distributed in-
teraction among components. We report from our experi-
ences in developing a stock market application based on
type-based publish/subscribe (TPS) implemented (1) as a li-
brary in standard Java as well as with (2) a homegrown ex-
tension of the Java language augmented with specific prim-
itives for TPS, motivated by the lacks of former implementa-
tion. We then revisit the library approach, investigating the
impact of genericity, reflective features, and the type sys-
tem, on the implementation of a satisfactory TPS library.
We then discuss the impact of these features also on other
distributed programming abstractions, and hence on the en-
gineering of distributed applications in general, pointing
out lacks of mainstream programming environments such as
Java as well as .NET.

1. Introduction

The engineering of industrial-scaledistributedapplica-
tions, is still overly tedious, and in particular, intrinsically
harder than that of applications targeted at a deployment on
a single host [11, 16]. The development of distributed ap-
plications not only leads to dealing with the the application
logic (e.g., data types, semantics) itself, but furthermore
with the remote interaction between distributed components
taking place at runtime.

∗Partially funded by Lombard Odier Darier Hentsch Co..

Since, at the exception of a rapidly decreasing propor-
tion, currently developed industrial-scale applications all
involve several physically distributed components, it is of
paramount importance to come up with solutions for con-
necting distributed components in a way providingsafety.
This includes safety in the sense of (1) the distributed in-
teraction (safety propertiesin the face of network node and
link failures) underlying distributed applications at execu-
tion, but also in the sense of (2) data types (type safety), and
(3) data state (encapsulation). While safety in the sense of
(1) depends on the abstraction provided by a middleware
system (e.g.,remote procedure call(RPC), tuple space,
publish/subscribe) and the distributed algorithms chosen to
implement the remote interaction underlying that abstrac-
tion in a given system model, safety in the sense of (2)
and (3) are more a consequence of how the chosen abstrac-
tion, and actually the middleware implementing it, are put
to work.

As pointed out in [21], there is a need for various abstrac-
tions, and thus potentially different middleware solutions,
also because achieving safety in the sense of (1) in a given
application context potentially requires a specific abstrac-
tion. Hence, a straightforward solution consisting in hard-
wiring an abstraction (or several ones) into a programming
language in order to achieve (2) and (3) is clearly inappro-
priate. A concept able of capturing different abstractions,
and hence various middlewares and architectural styles [10]
areconnectors. From an architectural perspective, connec-
tors make the composition of (physically distributed) com-
ponents easier, by playing the role of glue between the dif-
ferent components. It is then precisely at the interface to
these connectors that safety in the sense of (2) and (3) is
difficult to obtain.

The goal of this paper is to investigate programming lan-
guage support for the implementation of connectors as “li-
braries”.1 Of interest are solutions relying solely on pro-
gramming language features which areinherent(avoiding

1In the context of this paper, we use the denotation “library implemen-
tation” to refer to an implementation in the considered programming lan-
guage itself without any hooks into the runtime environment, i.e., imple-
mentable by a third party.

1

any specific compilation, e.g, generation of stubs/skeletons)
andgeneral. This precludes not only specific support for
connectors (e.g., [2]), but also for some particular (dis-
tributed) programming abstraction (e.g, [19]).

More precisely, we investigategenericity and reflec-
tion, through experience gathered by developing a stock
market application [23] withtype-based publish/subscribe
(TPS) [12], a variant of the publish/subscribe abstrac-
tion [5, 8]. We first present two of our TPS implementa-
tions, namely (1) based on a library developed in standard
Java (referred to as “Java-TPS”) and (2) based on JavaPS ,
which is a variant of Java we devised with specific prim-
itives for supporting the TPS interaction style (“JavaPS-
TPS”). The goal is to illustrate the gap between current
possibilities in a language such as Java, and an “optimal”
solution such as JavaPS . Then, we present a novel “en-
hanced” library implementation (“JavaG-TPS”), exploiting
recent and experimental features of Java such as Generic
Java (GJ) [4], an extension of Java providing genericity.

Making use of reflection in the context of connectors is
a common practice (e.g, [29]), and the benefits of gener-
icity have already been pointed out (though mostly in the
perspective of centralized applications, e.g., [24]). In this
paper, we go a step further, by pinpointing lacks of current
and future support of these features, but also of the type
system, in a mainstream language such as Java. As we
point out in this paper, TPS is demanding enough that its
requirements with respect to the investigated language fea-
tures cover those of many other abstractions for developing
distributed applications, and connectors in general.

Roadmap. The rest of the paper is organized as follows.
Section 2 briefly introduces the TPS paradigm, along with a
sample application that we will be using throughout the pa-
per. Section 3 presents overviews of Java-TPS and JavaPS-
TPS. Sections 4-6 then discusses general-purpose language
features investigated in the context of JavaG-TPS. Section
7 wraps issues such as performance considerations and al-
ternative features. Section 8 discusses related abstractions
for distributed programming, and Section 9 concludes the
paper.

2. Type-based publish/subscribe (TPS)

2.1. Overview

Type-based publish/subscribe [12] (TPS) is a recent
object-oriented instantiation of the publish/subscribe inter-
action style. In TPS, publishers publish instances of native
types, i.e.,event objects, and subscribers subscribe to partic-
ular types of such objects. A subscription can furthermore
have acontent filterassociated, which is basically a predi-
cate expressed on the public members of the type, includ-

ing fieldsas well asmethods (unlike related forms of typed
event programming, e.g., [14]). Since event objects are in-
stances of application-defined types, they are first-class cit-
izens.

TPS is general, in the sense that it can be used to im-
plement traditionalcontent-basedpublish/subscribe (e.g.,
[8, 5]), and hence alsosubject-basedpublish/subscribe
(e.g., [28, 7]). In a single-language setting, TPS can exploit
the type system of the language at hand. TPS can, however,
also be put to work in a heterogenous environment, pro-
vided a common code representation (“byte code”) is avail-
able [3].

2.2. A challenging abstraction

By enabling the expression of content-based queries
based on event methods, TPS offers new possibilities, but
also poses new challenges related to the native language
connection. Design issues include how to translate the ac-
tion of “subscribing to a type”, and how to express type-
safe content filters in the programming language itself, in a
way that does not violate encapsulation, yet allows for opti-
mizations when applying these filters. Clearly, TPS aims at
ensuring [12] (1)type-safetyand (2)encapsulationwith (3)
application-defined event types. Since TPS aims at large-
scale, decentralized applications, (4)open content filtersare
important to enable optimizations in the underlying filter-
ing and routing of events, i.e., the underlying communi-
cation infrastructure must be granted insight into subscrip-
tions. Last but not least, a form of (5)qualities of service
(QoS) expression is crucial in any distributed context where
partial failures are an issue and application requirements on
this issue change drastically.

2.3. Running example: a TPS application

We describe below a simplified version of an application
developed with TPS [23]. It is used throughout this paper
to examine how our different implementations handle the
challenges posed by TPS.

A stock market publishesstock quotes, and stock brokers
subscribe to these stock quotes. A stock quote is an offer to
buy a certain amount of stocks of a company at a certain
price, and it may be implemented as shown in Figure 1.

Figure 2 illustrates a situation, where participant p1
publishes a stock quote, i.e., an instance of the type
StockQuote . Participant p2 has subscribed to the
StockQuote type and thus receives the stock quote pub-
lished by p1. Participant p3 has subscribed to theEvent
type, which is the basic event type and a supertype of
StockQuote , and it thus receives all published events, in-
cluding the stock quote from p1.

2

In the examples given in the rest of this paper, we will be
interested in stocks from the Telco Group that cost less than
100$. Given a stock quoteq, this interest can be expressed
as follows:
q.getPrice() < 100 &&
q.getCompany().indexOf("Telco") != -1

I.e., we are interested in the stock quotes, whose company
has “Telco” as a substring, and whose price is less than
100$.

public class StockQuote implements Event {
private String company;
private float price;
private int amount;
public String getCompany() { return company; }
public float getPrice() { return price; }
public int getAmount() { return amount; }
public StockQuote(String company, float price,

int amount)
{

this.company = company; this.price = price;
this.amount = amount;

}
}

Figure 1. Simple stock quote events

p1 p2 p3

StockQuote events

Events

publishing a

StockQuote

subscribing

to StockQuote

events

receiving the

StockQuote

from p1

subscribing

to all

events

receiving the

StockQuote

from p1

Figure 2. Interaction in the stock application

3. Two ways of developing with TPS

3.1. Java-TPS

Most related systems are implemented with language
bindings to standard Java, promoting a first-class abstrac-
tion of a ubiquitous communication channel. Similarly,
our Java implementation described in this section is based
on ourDistributed Asynchronous Collections(DACs) [13].
DACs are abstractions of object containers (e.g., a DAC
can be queried with thecontains(Object) method),
which however differ from conventional collections by
being asynchronous and essentially distributed. A DAC
is thus not centralized on a single host, and operations

interface DAC extends java.util.Collection {
boolean add(Object event);
Object get();
boolean contains(Object event);
boolean contains(Subscriber subscriber,

Condition contentFilter);
...

}
interface Subscriber {

void notify(Object event, String subject);
}
interface Condition {

boolean conforms(Object event, String subject);
}

Figure 3. Core API for Java-TPS

may be invoked on it through local proxies from var-
ious nodes of a network. A DAC may also be used
in an asynchronous way. Instead of invoking the syn-
chronouscontains(Object) method, you can invoke
the contains(Subscriber,...) method passing a
callback object, which will be notified whenever a new
matching element is inserted into the DAC (cf. Figure 3).

Expressing ones interest in receiving notifications when-
ever an object is inserted into a DAC can be viewed as sub-
scribing to the objects, orevents, belonging to that DAC.
Similarly, inserting objects into a DAC can be viewed as
publishing those events, since all subscribers will be noti-
fied of the new event. In this sense, a DAC may represent
a subject, and publishing and subscribing to events corre-
sponds to inserting events and expressing interest in inserted
events, respectively. By mapping types to subjects, a DAC
can be used to implement TPS. A subscription to an event
type (and implicitly, its subtypes) is issued through a DAC
representing that type.

Figure 4 illustrates how a stock broker issues a subscrip-
tion through a DAC representing typeStockQuote (the
instantiated DAC classDASreflects reliable delivery [13]).
The awkward appearance of the filter is motivated by the
special requirements on content filters, such as their under-
going of deferred evaluation to enforce prior optimization.
More precisely, filters are transformed at runtime into in-
stantiations of first class abstract syntax trees. This makes
these filters “migratable” and transformable. As mentioned
in Section 2.2, this is done in order to offer the underlying
TPS middleware an insight into these filters, and make op-
timizations possible when remotely evaluating them, e.g.,
partial evaluation only.

The stock market publishes stock quotes also through the
DAC representing the typeStockQuote like this:
DAC stockQuotes = new DAS("StockQuote");
StockQuote q = new StockQuote("TelcoOps", 80, 10);
stockQuotes.add(q);

Besides type safety problems already known from central-

3

class StockQuoteSubscriber implements Subscriber {
public void notify(Object event, String subj) {

StockQuote q = (StockQuote)event;
System.out.println("Offer: " + q.getPrice());

}
}
Condition telcoCondition =

new Equals("getCompany.indexOf",
new Object[]{"Telco"},
new Integer(-1));

Condition priceCondition =
new Compare(".getPrice", new Object[]{100}, -1);

Condition contentFilter =
telcoCondition.not().and(priceCondition);

Subscriber subscriber = new StockQuoteSubscriber();
DAC stockQuotes = new DAS("StockQuote");
stockQuotes.contains(subscriber, contentFilter);

Figure 4. Subscribing in Java-TPS

ized collections in Java (manifesting here through possi-
ble mismatches in types when casting events or setting up
DACs), and those added by content filters (through the cum-
bersome explicit instantation of abstract syntax trees), also
the scheme for expressing QoS can lead to mismatches in
Java-TPS. A publisher can for instance produce events (e.g.,
stock quotes) with reliable semantics, while a subscriber
can register for these same stock quotes but indicate the tol-
erance to losses, i.e, expressing unreliable semantics.

3.2. JavaPS-TPS

Motivated by the lacks of Java-TPS, JavaPS [12] is a
dialect of Java designed specifically to support TPS. Hence,
JavaPS-TPS can be seen as a proposal for anoptimallysafe
TPS, which integrates TPS by adding two new primitives to
the original Java language:

publish Expression ;
subscribe (EventType Identifier) Block Block ;

The publish primitive publishes an event. The
subscribe primitive generates a subscription to an event
type, specifying a first block representing a content filter
referring to the actual event through an identifier, and a sec-
ond block representing an event handler which is executed
every time an event passes the filter, using the same iden-
tifier. Thesubscribe primitive returns an expression of
typeSubscription , representing a handle for that sub-
scription.

When developing with JavaPS-TPS, content filters are
truly expressed in the native language, relieving the burden
on developers already familiar with the language. More
precisely, filters are implemented by a form ofdeferred
code evaluation(similar, though not identical, in spirit to
MetaML [26]) to ensure that these can be type-checked at
compilation, yet without being compiled directly. There

are, however, restrictions on what variables can be accessed
inside content filters, to make these filters easily trans-
ferrable in a distributed environment (details can be found
in [12]).

Using these primitives, a stock quote can be published
like the following:

StockQuote q = new StockQuote("TelcoOps", 80, 10);
publish q;

Subscribing to stock quotes occurs as follows:

Subscription s = subscribe (StockQuote q)
{

return (q.getPrice() < 100 &&
q.getCompany().indexOf("Telco") != -1);

}
{

System.out.println("Offer: " + q.getPrice());
};

s.activate();

Note that the content filter has the same semantics as the
one expressed in Figure 4.

The obvious drawback of JavaPS-TPS is the proprietary
extension of the Java language and the resulting require-
ment for a specific compiler.

4. Genericity

4.1. JavaG-TPS — generic DACs

As with any collections in current Java, the DACs pro-
moted by Java-TPS mandate manual type casts of received
events, and furthermore, type checks of inserted (published)
events. Usinggenericity, these burdens can be avoided.
Clearly, the event handler and the content filter associated
with a subscription have to agree on the considered event
type, and this correspondance can be sealed at the instanti-
ation of the TPS abstraction by using genericity.

Since Java does not (currently) support genericity, the
exploratory implementation of TPS, JavaG-TPS, is based
on GJ [4]. With GJ, we obtaintypedDACs without gen-
erating type-specific code, and nevertheless avoid explicit
type casts. The resulting generic DACs (GDACs) and as-
sociated types are outlined in Figure 5. As a result of the
type parameterized subscriber, there is no longer a need for
a subject (i.e., type) name parameter in the callback method
of subscribers (GSubscriber).

4.2. Developing with JavaG-TPS

Using this generic version of DACs, stock quotes can be
published like this:

GDAC<StockQuote> stockQuotes =
new GDAS<StockQuote>(StockQuote.class);

StockQuote q = new StockQuote("TelcoOps", 80, 10);
stockQuotes.add(q);

4

interface GDAC<T> {
boolean add(T event);
T get();
boolean contains(T event);
T contains(GSubscriber<T> subscriber);
...

}
interface GSubscriber<T> {

void notify(T event);
}

Figure 5. Core API for Java G-TPS

Note that the parameter passed to the GDAC constructor
above is necessary, since the original implementation GJ
used does not provideruntime information on type pa-
rameters. Clearly, although a GDAC is instantiated for a
given typeStockQuote in the example in Section 4.2,
the constructor requires an explicit argument representing a
reification of that type precisely. With runtime support, this
somewhat redundant argument could be avoided. Luckily,
it appears that the current proposition for adding generics
to Java, now provides some information on type parame-
ters. The content filter expression used in Java-TPS will be
modified and illustrated in the next section.

4.3. Beyond TPS — statically type safe components

The benefits of genericity, roughly the ensuring of type
safety in interactions between library classes and instances
of (new) application-defined types, have already become
apparent in centralized contexts. Collections, in particu-
lar, have been widely used to demonstrate the usefulness
of genericity.

In applications with physically distributed components,
genericity becomes even more important. The increased
potential size of distributed applications, along with con-
straints such as24×7 requirements makes it even more un-
feasible to rewrite, regenerate, or recompile code in order to
enforce type safety. Genericity, as a mechanism enforcing
reuse of code, can fully develop its power in a distributed
setting where late binding is required.

Genericity is hence not only useful in the context of TPS.
A generic lookup service (“registry”) could also improve
type safety in RMI implementations, and help avoiding type
checks and casts. This is particularly valid in Java RMI,
since all remote interactions are statically typed, and hence
the type of an obtained remote object reference has to be
known anyhow (see Section 8.2).

Figure 6. Content filters in Java G-TPS

5. Reflection

5.1. Content filter expression

The main remaining flaw from Java-TPS is its clearly
unsatisfactory expression of content filters as pointed out in
Section 3.1.

An alternative mechanism for the type-safe expression
of content filters was anticipated with the integration ofbe-
havioral reflection with Java 1.3 through theProxy class:
while the introspection mechanisms provided in Java since
version 1.1 enable the reification of methods and the dy-
namic invocation of these, behavioral reflection allows the
interception of (also) statically typed method invocations,
and the performing of any action in the confines of these
invocations. Such a scheme could allow the developer to
express queries on event objects by making the correspond-
ing invocations on a proxy, which wouldrecord these (rei-
fied) invocations, such that they could bereplayedon the
effective events for filtering (see Figure 6). To that end, the
contains() method of the (G)DAC interface would be
changed, to return an instance of a proxy class bound to an
InvocationHandler , which would register the invoca-
tions performed on the proxy.

Using this, we could express interest in all stock quotes
from company “Telco” on a proxyq as follows:

class QuoteSubscriber
implements GSubscriber<StockQuote> {... }

GDAC<StockQuote> qs =
new GDAS<StockQuote>(StockQuote.class);

StockQuote q = qs.contains(new QuoteSubscriber());
q.getCompany().equals("Telco");

Although this approach can simplify content filter expres-
sion to some extent, it only supports relatively simple filters
(without conditionals and loops etc.). In addition, the above
example can not be made to work as such, since both the
StockQuote andString types are not interfaces. This
restriction is due to the current implementation of dynamic
proxies (discussed further in the next section). Further lim-
itations of Java account for the fact that the expressed con-
dition is stricter than the content filter used so far.

5

5.2. Behind the scene

Prior to its use in prototypical content filter expression,
reflection has already been applied in “hidden”, but never-
theless crucial points of our TPS implementation(s) (e.g.,
Section 3.1).

Given the nature of our distributed context, there must be
a way for distributed components, making use of the same
event types, to “connect”. This requires runtime type infor-
mation, e.g., the possibility of reifying types. Indeed, ver-
ifying how types are related, and performing runtime type
inclusion checks on objects ensures type safety at the com-
munication infrastructure level. Such mechanisms are com-
monly viewed as part ofintrospection, or more generally,
structural reflection . The runtime support for type param-
eters pointed as in Section 4.2, can be viewed as such re-
flection support for genericity.

Reflection is also crucial for the implementation and
handling of events. First,serialization, which in Java re-
lies on introspection, is a very convenient means of convert-
ing event objects to conveyable network messages. Second,
dynamic class loading and linkingis another useful fea-
ture of Java which is often considered as being of reflec-
tion. Even if remote components agree on the same types
of exchanged events, nothing should prevent them from in-
troducing new conformant event classes at runtime.

5.3. Beyond TPS — safe dynamic composition

As discussed in Section 4, genericity enables the im-
plementation of abstractions in a way providing type safe
API’s. In a entralized setting, this may suffice and even en-
sure type safety statically.

In a distributed context, however, it is very unlikely that
no runtime type checks have to be performed. Indeed, net-
work channels and hence layers “close” to the network and
corresponding libraries are inherently untyped. It appears
hence natural that any implementation of a library for dis-
tributed programming will require explicit type inclusion
checks performed dynamically (i.e., against types unknown
at compilation).

While genericity can be seen as supporting safe inter-
action with a library implementation of an abstraction for
distributed interaction, reflection can be seen as supporting
a safe implementation of such an abstraction.Both reifica-
tion of types(cf. structural reflection), but also reification of
computation(cf. behavioral reflection), though potentially
associated with performance penalties, appear to be the best
way to combine (1) statically safe interaction between indi-
vidual components and the abstractions for distributed in-
teraction they rely upon, and (2) dynamically established
connections and compositions of these components.

6. Types

6.1. Designing event types

When developing with JavaG-TPS, the design of event
types has to follow certain design guidelines, which are
mostly consequences of Java’s type system. More precisely,
filter expression requires event types to be defined as inter-
faces, and similarly their method signatures to declare re-
turn types which are interfaces. Furthermore, filters with a
complexity going beyond simple equality tests are hard to
express.

As already mentioned briefly in the previous section,
Java’sProxy class namely does not support class types.
Therefore, all event types — and in the case of nested in-
vocations also the types of any objects returned as results
of invocations — must be interface types. This precludes
the use of primitive types, and also corresponding wrapper
types (e.g.,String).

This can be circumvented in our case by introducing own
classes forString , Integer , etc. with corresponding
interfacesStringIntf , IntegerIntf , a workaround
which is however hardly appreciated by developers.

6.2. Filter expressiveness

Furthermore, the composition of filters such as in the fol-
lowing example, would require operators defined on prim-
itive types to be reflected by methods on corresponding
wrapper types:
String company = q.getCompany();
company.equals("Telco") || company.equals("Other");

This sometimes comes as part ofoperator overloading,
yet is not present in Java. In particular, when using dy-
namic proxies for content filter expression, methods return-
ing primitive types could not be used (exceptequals() ,
and that only in a limited sense, since it is used as conven-
tion to express that the condition must returntrue). The
following condition, though sound at compilation, could not
be “registered” by a proxy, asprice is of primitive type
(and the< operator hence not reflected as a method):
float price = quote.getPrice();
price < 100;

Even when merging the two lines into one, or attempting
to create an instance ofFloat from the value returned
by getPrice() and expressing the condition with the
compareTo() method rather than the< operator, the in-
terception chain is interrupted.

6.3. Beyond TPS — uniformity

As shown by TPS in Java, a complex type system poten-
tially leads to many complications when deployed at a dis-

6

tributed scale. While primitive types might indeed be use-
ful in certain strongly performance-sensitive applications,
and the distinction between interfaces and classes does def-
initely not appear to be harmful in itself, these “irregulari-
ties” lead to different semantics and hence require specific
handling and implementations. They tend to represent spe-
cial cases with respect to genericity and reflection, which
are difficult to take into account, just like the possibility of
directly manipulating fields (the main thorn in the side of
creating dynamic proxies for classes in addition to inter-
faces). Anon-hybrid object-oriented type systeminher-
ently enforcing type safety and encapsulation at compila-
tion, i.e., avoiding direct field accesses (possibly byauto-
matic field access method generation, has the advantage
of more easily supporting uniform interaction, also at a dis-
tributed scale.

If features such as primitive types are really required,
effort should be invested in specific support for genericity
and reflection, possibly by fitting (e.g., by translation) these
constructs into a more uniform underlying representation.

7. Discussion

7.1. Performance

We analyze the effectiveness of the three presented ap-
proaches, based on the same simple architecture character-
ized by aclass-baseddissemination, i.e., every event class
is mapped to an IP Multicast channel. The test application
involved three types;Event , its subtypeStockQuote ,
and a subtype of the latter type,StockRequest . Since
the filter evaluation is essentially the same in all three ap-
proaches, we have focused on type-based filtering.

The measurements presented here concentrate on thela-
tencyof publishing events, which refers to the average time
(ms) that is required to publish an event (perceived by the
publisher) onto the corresponding channel ([9] provides in-
formation on further measures).

Java-TPS and JavaG-TPS differ from JavaPS-TPS, in
that upon publishing an event, the precise channel for the
corresponding class has to be “found” first. In the case
of JavaPS , a simplepublish() method is automatically
added to every event class, which automatically pushes the
event onto the fitting channel [12].

This difference is visible in Figure 7, where we compare
JavaG-TPS (Java-TPS yielded similar results) with JavaPS-
TPS. One can see that the latency of publishing an event in
the case of JavaG-TPS is increased by runtime type checks
performed to obtain the appropriate channel. The latency
varies here with the number of events published subse-
quently (due to a “warm-up” effect observed with IP Mul-
ticast). As the figure conveys, the difference in latency re-
mains nearly the same with a varying number of published

events.

Figure 7. Java PS-TPS vs Java G-TPS

The performance of JavaG-TPS (and Java-TPS) is condi-
tioned by the number of different subtypes whose instances
are published through a given (G)DAC. The second set of
measurements focuses on JavaG-TPS, and intends to com-
pare the latencies obtained with the various event types pub-
lished through a GDAC for the uppermost type. Figure 8
conveys the very fact that the system performs best for the
uppermost type of the hierarchy (Event) and that the per-
formance degrades as we go down this hierarchy. This
was expected, since publishing aStockEvent through
a GDAC for typeEvent in our architecture involves a
lookup of the corresponding channel in an internal structure
(and possibly the creation of the channel). This lookup in
the case of theStockRequest type, requires even more
effort. (Of course, optimizations could be performed to re-
duce this overhead.)

Figure 8. Different event types in Java G-TPS

7

7.2. Alternative language features

In the history of programming languages, various ab-
stractions and concepts have been proposed as first class
constructs, and there are obviously no limits to what will
come. We focus here ondeferred code evaluation(see [9]
for more alternatives, e.g., to genericity), as some face of
behavioral reflection.

The closures used for content filter generation in JavaPS-
TPS undergo a deferredcompilation, as they are trans-
formed at compilation into instantiations of a form of first
class abstract syntax trees. This makes these closures
“migratable” and transformable, e.g., partially evaluatable.
Making these closures first class would lead to an admit-
tedly less general, but more lightweight solution to deferred
code evaluation than a reification of the entire program in
the form of parse tree such as in Smalltalk [22]. Such
closures could in a more general sense be interesting for
distributed abstractions. Pre-/postcoditions (design by con-
tract [20]) in a distributed heterogenous RMI environment,
or even queries on object-oriented databases [25], could be
implemented with such a feature. Clearly, the expression
of content filters reflects the need of future abstractions for
seemlessly integrating with application code, and in TPS
represents the most tedious part with no main-stream lan-
guages currently providing fully satisfying mechanisms.

7.3. .NET

Definitely inspired by the Java technology, Microsoft’s
.NET [27] platform lends itself well to a side-by-side com-
parison. Being of a more recent date, it is interesting to in-
vestigate whether .NET qualifies better for distribution than
Java, in particular in supporting demanding abstractions like
TPS.

From a general point of view, .NET does indeed provide
many mechanisms for distribution, with slightly more vari-
ants than Java. Alone for serializing objects, .NET provides
three mechanisms (binary, SOAP, custom). .NETremoting,
the .NET counterpart to Java RMI, provides many means of
customizing remote invocations.

Genericity has been investigated in the context of
.NET [18]. Like in the case of Java, genericity is how-
ever not currently integrated in .NET, but rather foreseen
for a future release. Similarly, .NET provides roughly the
same introspection features as Java, and furthermore also
provides dynamic proxies, however again restricted to in-
terface types. However, remotely invocable objects can in
.NET also be of class types, and direct field accesses are au-
tomatically transformed to access method invocations. Fur-
thermore, .NET also offers support for transformations be-
tween primitive types and wrapper types, referred to asbox-
ing andunboxingrespectively.

Hence, it appears that .NET has from the type system
point of view introduced certain interesting support mecha-
nisms. This is probably a consequence of the fact that .NET
has the declared goal of providing language interoperability
and hence has to be able to deal with various type systems.
When considering reflection and genericity from our per-
spective, .NET however still plays in the same league as
Java.

8. Alternative abstractions

8.1. Tuple spaces

We are only aware of one effort discussing different ways
of integrating publish/subscribe into a language, namely the
events + constraints + objects(ECO) model [17]. In that
context, however, the question of what language mecha-
nisms would help avoiding any extension is left aside. The
tuple space, which first appeared in the Linda program-
ming language [15] as coordination means between co-
operating processes, and is the spiritual ancestor of pub-
lish/subscribe, has been more thoroughly studied with that
respect. Through a tuple space, processes can exchange ar-
bitrary length tuples of values. Inserting a tuple into the
tuple space is done using theout primitive. Fetching a tu-
ple from the tuple space is done using a blocking primitive,
either in to subsequently remove the read tuple from the
tuple space, orread to enable the same tuple to be read by
several consumers. The tuple space has since been extended
with further primitives, e.g., non-blocking read primitives
and callbacks. Consider the following example expressed
in Linda:

out ("StockQuote", "Telco", 80, 10); // 1
int i = 80;
in ("StockQuote", "Telco", i, 10); // 2
in ("StockQuote", "Telco", var i, 10); // 3
in ("StockQuote", "Telco", j: integer, 10); // 4

In line 1, a tuple consisting of 4 values is put into the tuple
space. In line 3, a tuple with 4 values is requested. Since
the value ofi is 80, the tuple from line 1 matches the re-
quest, which means that this tuple may be extracted from the
space. Thevar keyword in line 4 causes thei to be treated
as a formal parameter. The tuple added in line 1 may be ex-
tracted by line 4, and the actual value ofi will then be 80.
In line 5, theinteger keyword simultaneously declares a
variablej and uses it as a formal parameter as in line 6.

Implementing tuple spaces in Java poses similar prob-
lems to those described for TPS. As an example, Jada [6]
instruments Java with a library that supports development of
distributed applications based on tuple spaces. In Jada, class
Tuple represents lists of JavaObject s, and has construc-
tors for up to 10 values. Clients thus have to cast these ob-
jects explicitly upon reception, thereby reducing type safety.

8

Formal parameters are represented by objects representing
the desired type (instances ofjava.lang.Class ; meta-
objects). The above Linda example can be expressed in Jada
as follows (Line 4 has no equivalent in Jada):

Integer k = new Integer(10); // for brevity
TupleSpace tupleSpace = new TupleSpace();
tupleSpace.out(new Tuple("StockQuote", "Telco",

new Integer(80), k)); // 1
int i = 80;
Tuple tuple1 = tupleSpace.in(new Tuple(

"StockQuote", "Telco", new Integer(i), k));// 2
Tuple tuple2 = tupleSpace.in(new Tuple(

"StockQuote", "Telco", Integer.class, k); // 3
i = ((Integer)tuple2.getItem(3)).intValue();

As illustrated by Jada, such a tuple space library provides
little safety, and is tedious to use.

Other approaches to tuple space interaction in object-
oriented programming languages apply a different model,
viewing tuples as single objects, whose fields reflect tuple
attributes. A representative of that approach is given in Java
by Sun’s own JavaSpaces [14]. As JavaSpaces can not make
use of genericity, type checks and type casts are necessary.
Furthermore, encapsulation of tuples is broken by forcing
fields to be declared as public and expressing and perform-
ing any content-based filtering through these fields.

Through the similarity between TPS and tuple spaces, it
is easy to see that a “clean” libraryà la JavaSpaces could be
implemented with similar features claimed for TPS.

8.2. RMI

The implementation of Java RMI can be viewed as an
intermediate solution between a language-integrated RPC
package and a standard library. Java RMI relies on the in-
herent Java type system, yet further constrains the use of
that type system in its own context: (1) static types of re-
mote references must be abstract types, i.e., interfaces, and
(2) any methods in such interfaces must imperatively de-
clare that they can throwRemoteException s. Java RMI
can also be considered as a language extension in the sense
that a specific compiler (rmic) is needed to generate type-
specific proxies. The absence of the corresponding proxies
is, however, only signalled at runtime.

A form of RMI can be implemented in Java as a pure li-
brary (without specific compilation) with the same dynamic
proxies used in Section 5, to defer the binding to a remote
object to runtime. This proxy mechanism seems to have
been devised with the requirements of RMI in mind, as only
interface types can benefit from this type of reflection. It is
however not clear whether this mechanism for behavioral
reflection will replace the generation of type-specific prox-
ies through thermic compiler. While a precompilation
step can help dealing with language interopabilitiy like in
CORBA, it can in the context of Java only more be moti-
vated by performance reasons.

In the case of TPS, where “nested” invocations, i.e., in-
vocations on the return types of invocations, have to be in-
tercepted, theproxy class is clearly insufficient, as illus-
trated in Section 5. This same limitation makes it currently
impossible to implement a form oflazyRMI, i.e., with asyn-
chronous replies, in Java.

9. Concluding remarks

In the face of today’s heterogenity across platforms, we
believe that designers of future programming languages
should foresee a more general support for component com-
position, and hence for distributed (and other) programming
abstractions. Although TPS is surely not the last paradigm
for distributed programming, the constraints imposed by
TPS should be kept in mind when conceiving such future
support. As shown in this paper by the difficulty in express-
ing content filters, TPS, as a paradigm emphasizing scal-
ability and performance, requires a strong interaction with
the programming language, and is hence a very demanding
abstraction. Most abstractions established for distributed in-
teraction, such as tuple spaces, or RMI, require only a sub-
set of the features mandated by TPS.

We argue that reflection and genericity, as faces ofex-
tensibility, are the key concepts for a general language sup-
port of distributed programming, and that a straightforward
type system can support the implementation of such fea-
tures. With inherent reflective capabilities and genericity,
we believe one could implement a powerful TPS library,
and, as pointed out in this paper, also alternative abstrac-
tions for connecting distributed components such as tuple
spaces, and RMI.

We insist on the fact that genericity needs to be provided
in a form that includes runtime support for type parameters,
and that reflection has to go beyond simple message reifica-
tion (considered sufficient in the context of RMI, e.g., [1]).
We pointed out that, from our perspective, the current sup-
port for genericity and reflection in a mainstream language
such as Java is clearly insufficient, and we illustrated how
primitive types as well as direct field accesses contribute to
these flaws. Last but not least, we also showed that .NET
seems to have inherited not only approved concepts, but
also weaknesses from Java with respect to reflection and
genericity.

Acknowledgements

We would like to express our deepest gratitude to Gi-
lad Bracha, Martin Odersky and Ole Lehrmann Madsen for
commenting on an earlier version of this paper.

9

References

[1] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and
A. Yonezawa. Abstracting Object Interactions Using Com-
position Filters. InProceedings of the 7th European Confer-
ence on Object-Oriented Programming (ECOOP ’93), pages
152–184, July 1993.

[2] J. Aldrich, V. Sazawal, C. Chambers, and D. Notkin. Lan-
guage Support for Connector Abstractions. InProceedings
of the 16th European Conference on Object-Oriented Pro-
gramming (ECOOP 2003), pages 74–102, July 2003.

[3] S. Baehni, P. Eugster, R. Guerraoui, and P.Altherr. Prag-
matic Type Interoperability. InProceedings of the 23rd
IEEE International Conference on Distributed Computing
Systems (ICDCS ’03), May 2003.

[4] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Mak-
ing the Future Safe for the Past: Adding Genericity to the
Java Programming Language. InProceedings of the 13th
ACM Conference on Object-Oriented Programming Sys-
tems, Languages and Applications (OOPSLA ’98), pages
183–200, Oct. 1998.

[5] A. Carzaniga, D. Rosenblum, and A. Wolf. Achieving Scal-
ability and Expressiveness in an Internet-Scale Event Noti-
fication Service. InProceedings of the 19th ACM Sympo-
sium on Principles of Distributed Computing (PODC 2000),
pages 219–227, July 2000.

[6] P. Ciancarini and D. Rossi. Jada - Coordination and Com-
munication for Java Agents. InMobile Object Systems: To-
wards the Programmable Internet, volume 1222 ofLNCS,
pages 213–228. Springer, Apr. 1997.

[7] T. Corporation.Everything You need to Know about Middle-
ware: Mission-Critical Interprocess Communication (White
Paper). http://www.talarian.com/, 1999.

[8] G. Cugola, E. D. Nitto, and A. Fuggetta. Exploiting an
Event-Based Infrastructure to Develop Complex Distributed
Systems. InProceedings of the 10th IEEE International
Conference on Software Engineering (ICSE ’98), pages
261–270, Apr. 1998.

[9] C. Damm, P. Eugster, and R. Guerraoui. Abstractions for
Distributed Interaction: Guests or Relatives? Technical Re-
port DSC/2001/052, Swiss Federal Institute of Technology
in Lausanne, June 2000.

[10] E. M. Dashofy, N. Medvidovic, and R. N. Taylor. Using
Off-the-Shelf Middleware to Implement Connectors in Dis-
tributed Software Architectures. InProceedings of the 21th
International Conference on Software Engineering (ICSE
’99), May 1999.

[11] W. Emmerich. Software Engineering and Middleware: A
Roadmap. InThe Future of Software Engineering - 22 nd
Int. Conf. on Software Engineering (ICSE 2000), pages 117–
129, May 2000.

[12] P. Eugster, R. Guerraoui, and C. Damm. On Objects and
Events. InProceedings of the 16th ACM Conference on
Object-Oriented Programming Systems, Languages and Ap-
plications (OOPSLA 2001), pages 131–146, Oct. 2001.

[13] P. Eugster, R. Guerraoui, and J. Sventek. Distributed Asyn-
chronous Collections: Abstractions for Publish/Subscribe

Interaction. InProceedings of the 14th European Con-
ference on Object-Oriented Programming (ECOOP 2000),
pages 252–276, June 2000.

[14] E. Freeman, S. Hupfer, and K. Arnold.JavaSpaces Princi-
ples, Patterns, and Practice. Addison-Wesley, June 1999.

[15] D. Gelernter. Generative Communication in Linda.ACM
Transactions on Programming Languages and Systems,
7(1):80–112, Jan. 1985.

[16] C. Ghezzi. Ubiquitous, Decentralized, and Evolving Soft-
ware: Challenges for Software Engineering. InFirst In-
ternational Conference on Graph Transformation (ICGT
2002), pages 1–5, Oct. 2002.

[17] M. Haahr, R. Meier, P. Nixon, V. Cahill, and E. Jul. Fil-
tering and Scalability in the ECO Distributed Event Model.
In Proceedings of the 5th IEEE International Symposium on
Software Engineering for Parallel and Distributed Systems
(PDSE 2000), pages 83–92, June 2000.

[18] A. Kennedy and D. Syme. Design and Implementation
of Generics for the .NET Common Language Runtime.
In Proceedings of the 2001 ACM SIGPLAN Conference
on Programming Language Design and Implementation
(PLDI’01), June 2001.

[19] B. Liskov and R. Sheifler. Guardians and Actions: Linguis-
tic Support for Robust, Distributed Programs. InConfer-
ence Record of the 9th ACM Symposium on Principles of
Programming Languages (POPL ’82), 1982.

[20] B. Meyer. Applying Design by Contract.IEEE Computer,
25(10):40–51, Oct. 1992.

[21] E. D. Nitto and D. Rosenblum. The Role of Style in Select-
ing Middleware and Underwear. InWorkshop on Engineer-
ing Distributed Objects ’99, ICSE ’99, pages 78–83, May
1999.

[22] F. Rivard. Smalltalk: A Reflective Language. InProceed-
ings of the 1st International Conference on Metalevel Archi-
tectures and Reflection (Reflection ’96), pages 21–38, Apr.
1996.

[23] M. Roserens. Stock Trading with Distributed Asynchronous
Collections. Master’s thesis, Swiss Federal Institute of Tech-
nology, in collaboration with Lombard Odier Darier Hentsch
Co., Mar. 2001.

[24] G. Steele. Growing a language. InAddendum to the Pro-
ceedings of the 13th ACM Conference on Object-Oriented
Programming Systems, Languages and Applications (OOP-
SLA ’98), Oct. 1998.

[25] D. Straube and M.̈Ozsu. Query Optimization and Execu-
tion Plan Generation in Object-Oriented Data Management
Systems.IEEE Transactions on Knowledge and Data Engi-
neering, 7(2), Apr. 1995.

[26] W. Taha and T. Sheard. Multi-Stage Programming. InPro-
ceedings of the ACM International Conference on Func-
tional Programming (ICFP ’97), pages 321–321, June 1997.

[27] H. L. Th. Thai. .NET Framework Essentials. O’Reilly and
Associates, Inc., June 2001.

[28] TIBCO. TIB/Rendezvous White Paper.
http://www.rv.tibco.com/, 1999.

[29] E. Wohlstadter, S. Jackson, and P. Devanbu. DADO: En-
hancing Middleware to Support Cross-Cutting Features in
Distributed, Heterogeneous Systems. InProceedings of
the 25th International Conference on Software Engineering
(ICSE ’03), May 2003.

10

