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Abstract. This paper studies implementations of concurrent objects
that exploit the absence of step contention. These implementations use
only reads and writes when a process is running solo. The other pro-
cesses might be busy with other objects, swapped-out, failed, or simply
delayed by a contention manager. We study in this paper two classes
of such implementations, according to how they handle the case of step
contention. The first kind, called obstruction-free implementations, are
not required to terminate in that case. The second kind, called solo-fast
implementations, terminate using powerful operations (e.g., C&S).
We present a generic obstruction-free object implementation that has
a linear contention-free step complexity (number of reads and writes
taken by a process running solo) and uses a linear number of read/write
objects. We show that these complexities are asymptotically optimal,
and hence generic obstruction-free implementations are inherently slow.
We also prove that obstruction-free implementations cannot be gracefully
degrading, namely, be nonblocking when the contention manager operates
correctly, and remain (at least) obstruction-free when the contention
manager misbehaves.
Finally, we show that any object has a solo-fast implementation, based
on a solo-fast implementation of consensus. The implementation has lin-
ear contention-free step complexity, and we conjecture solo-fast imple-
mentations must have non-constant step complexity, i.e., they are also
inherently slow.

1 Introduction

At the heart of many distributed systems are shared objects—data structures
that are concurrently accessed by many processes. Often, these objects are im-
plemented in software, out of more elementary base objects. Lock-free implemen-
tations of such objects do not rely on mutual exclusion or locking, and thereby
allow processes to overcome adverse operating systems affects. This includes both
wait-free algorithms, in which every process completes its operations in a finite
number of steps, and nonblocking algorithms, where some process completes an
operation in every sufficiently long execution [15]. The safety property typically
required from both nonblocking and wait-free implementations is linearizabil-
ity [15,18]; roughly, every operation on the object should appear instantaneous.



Although they provide very attractive guarantees, lock-free implementations
were claimed to have limited usability. This is because nonblocking implemen-
tations of many objects are often impossible, e.g., when only read/write objects
are available [10,12,23]. Even when the implementations are possible, which can
be achieved under specific timing assumptions (e.g., encapsulated within failure
detector abstractions), or using strong synchronization operations (like C&S),
these implementations are typically complex and expensive [7, 9, 20]. The com-
plexity and computability price paid by lock-free algorithms often originates in
situations in which there is step contention, i.e., steps of concurrent processes
are interleaved.

In this paper, we study implementations that exploit the fact that in practice,
step contention is rare, or at least can be made so through operating system
support. That is, only one process is typically performing visible (non local)
steps within any object operation, whereas the rest of the processes are busy
with other objects, swapped-out or failed. The absence of step contention does
not preclude common scenarios where other processes have pending operations
on the same implemented object but are not accessing the base objects. This is
fundamentally different from alternative contention metrics: point contention [5]
and interval contention [2]; both count also failed or swapped-out processes. (See
the scenario presented in Figure 1.)

We first study obstruction-free implementations that guarantee termination
only in the absence of step contention. This is formalized by the solo termination
property [11]: a process that takes sufficiently many steps on its own returns a
value. Clearly, obstruction-free implementations cannot rely on mutual exclu-
sion or locks, and hence, they are lock-free. On the other hand, implementations
that would guarantee termination only in the absence of interval (or point)
contention can be obtained using locks. Whereas all nonblocking implementa-
tions are obstruction-free, the converse is not necessarily true, however, since
obstruction-free implementations may incur scenarios (when there is step con-
tention) in which no process is able to complete its operation in a finite number
of steps.

An obstruction-free implementation has to provide a legal response if it re-
turns at all, but termination is required only under very restricted conditions.
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Fig. 1. An example illustrating types of contention: Operation [i, r] has interval con-
tention 5, point contention 4, and step contention 3; operation [i′, r′] has interval and
point contention 4, and step contention 1 ([i′, r′] is step contention-free). (Square brack-
ets denote invocations and responses, while solid intervals denote steps on base objects.)



One contribution of this paper is to disambiguate the behavior of an obstruction-
free implementation when an operation cannot return a legal response. In the
presence of step contention, an operation may return control to a higher-level en-
tity, which we call the client. Ideally, the obstruction-free implementation should
only be allowed to return a fail indication to the client, enabling it to choose
whether to re-invoke the same operation, or to invoke another operation. We
show however that there is inherent uncertainty as to whether the operation
could have had an effect on the object or not, by reduction to wait-free con-
sensus. This implies that the implementation must sometimes return a special
pause value, indicating that the client should re-invoke the same operation. We
extend the notion of linearizability so as to accommodate failed operations and
re-invocations of paused operations.

An obstruction-free implementation of any object is presented (Section 3.2),
which exemplifies how pause and fail values are returned when a legal response
is not possible. A natural way to evaluate obstruction-free implementations is
by considering the contention-free step complexity, namely, the number of steps
taken by a process running alone, until it returns a value. Our implementations
have linear contention-free step complexity and use a linear number of read/write
base objects. By reduction to the lower bound of Jayanti, Tan and Toueg [19],
we show that obstruction-free implementations of many long-lived objects from
historyless base objects must have Ω(n) contention-free step complexity and
must use Ω(n) historyless objects.

In practice, the burden of providing termination of obstruction-free imple-
mentations is shifted to a system-supported contention manager that relies on
low-level mechanisms such as timers, identifiers and interrupts [17,25]. The con-
tention manager instructs the clients if and when to invoke operations, trying to
ensure that only a single process eventually accesses the concurrent object. To
explore inherent characteristics of obstruction-free implementations, we consider
a specific contention manager that can turn any obstruction-free implementation
into a nonblocking one (none of those of [14,17,25,26] can do so). The contention
manager indicates the client whether to continue or not (a binary indication),
and should eventually indicate only to a single client to continue [8]. 3

We show (Section 3.5) that there are no gracefully degrading consensus im-
plementations, which are nonblocking when the contention manager operates
correctly, but remain (at least) obstruction-free when the contention manager is
unsuccessful.

We finally explore solo-fast implementations. These are wait-free linearizable
object implementations that use only read/write base objects when there is no
step contention, but may fall back on more powerful objects like compare&swap,
when contention occurs. Luchangco, Moir and Shavit [24] presented a generic
object implementation that uses only reads and writes when an operation runs in
3 This specification style is inspired by the way failure detectors [8, 9] abstract

away (partial) synchrony assumptions. It highlights the intriguing connection be-
tween obstruction-free implementations and Paxos-style algorithms for consensus
and state-machine replication [21].



the absence of contention. However, in their implementation this also means lack
of pending operations, namely, lack of point contention; moreover, a transient
increase in point contention will cause a subsequent operation (that has no point
contention) to invoke costly C&S operations. In light of this, it is challenging to
design truly solo-fast implementations that do not invoke C&S operations in the
more common case of no step contention.

Surprisingly, we show in this paper that any object has a solo-fast imple-
mentation by describing a solo-fast consensus implementation, and employing
it within Herlihy’s universal construction [15] (Section 4). The implementation
has linear contention-free step complexity. We conjecture that solo-fast ones are
inherently slow: they must have (at least) non-constant step complexity.

2 Model

A system contains a set Π of n > 1 processes p1, . . . , pn that communicate
through shared objects.

Every object has a type that is defined by a triple (O,R,∆), where O is a set
of invocations, R is a set of responses, and ∆ is a set of sequences of invocation-
response pairs. The set ∆, known as the sequential specification of the type,
contains all the sequences of invocations and responses allowed by the object.

For example, the compare&swap (C&S) object is accessed by a CS (r1, r2,
m) operation; the operation compares that value in memory location m with the
content of local variable r1, and if equal, writes the value of r2 to m. The opera-
tion returns the old value of m. The sequential specification of the compare&swap
type includes all sequences of CS operations that obey this rule.

Another important example is the consensus object, on which processes per-
form a propose operation with an argument in some set V . The sequential spec-
ification of consensus includes all sequences of propose operations that return
the argument of the first operation in every sequence.

To implement a (high-level) object from a collection of base objects, processes
follow an algorithm A, which is a collection of state machines A1, . . . An, one for
each process.

When receiving an invocation (to the high-level object), process pi takes steps
according to Ai. In each step, pi can either (a) invoke an operation on a base
object, or (b) receive the response of its previous base operation, or (c) perform
some local computation. After each step, pi changes its local state according to
Ai, and possibly returns a response on the pending high-level operation.

We investigate implementations that work when process speeds are highly-
variable, and at the extreme case, a process may stop taking steps.

An execution e of an algorithm A is a sequence of interleaved events. Every
execution induces a history that includes only the invocations and responses
of the high-level operations. Each invocation or response is associated with a
single process and a single object. A local history of process pj in H, H|j, is the
subsequence of H containing only events of pj . Similarly, H|x is the subsequence
of H of operations on an object x.



A response matches an invocation if they are associated with the same process
and the same object. A local history is well-formed if it is a sequence of matching
invocation-response pairs, except perhaps for the last invocation in a finite local
history. A history H is well-formed if every local history in H is well-formed.

A matching invocation-response pair [i, r] is called a complete operation, and
we say that i returns r. An invocation i without a matching response is called a
pending operation; a completion of a pending operation, that is, an invocation, is
the invocation together with an appropriate response. The fragment of H (or e,
its corresponding execution) between the invocation i and its matching response
r (if it exists) is the operation’s interval.

In an infinite execution, a process is correct if it takes an infinite number of
steps or it has no pending operation; otherwise, it is faulty.

A history H is sequential if every invocation is immediately followed by its
matching response. A sequential history H is legal if for every object x, H|x is
in the sequential specification of x.

Two different invocations i and i′ on the same object x are concurrent in a
history H, if i and i′ are both pending in some finite prefix of H. This implies
that their intervals overlap. We say that two operations [i, r] and [i′, r′] (or i′ if
i′ is pending) are non-concurrent if their intervals are non-overlapping: Either
r appears before i′ in H, in which case we say that [i, r] precedes [i′, r′], or r′

appears before i in H, in which case we say that [i, r] follows [i′, r′].
A well-formed history H satisfies extended linearizability [15] (see also [6,

Chapter 10]) if there is a permutation H ′ containing all the complete operations
and completions of a subset of the pending operations in H, such that (1) H ′ is
legal, and (2) H ′ respects the order of non-concurrent operations in H.

This paper explores the benefits induced by the scenarios in which contention
is rare. Formally, we define the step contention of a fragment in execution e to
be the number of processes that take steps in this fragment. An operation is
step contention-free in e if step contention of its interval in e is 1. An operation
is eventually step contention-free in e if its interval in e has a suffix with step
contention 1.

Alternative ways to measure contention during an operation’s interval were
previously defined [2, 5]: The interval contention during is the number of pro-
cesses whose operations are concurrent with an operation op in e. The point
contention of op is the maximum number of operations simultaneously concur-
rent with op in e. Note that interval contention is always equal to or higher
than step contention, but point contention is incomparable to step contention.
Note also when no operation overlaps op, then both the point contention and
the interval contention are 1.

3 Obstruction-Free Implementations

This section considers obstruction-free implementations [16,17], which guarantee
progress only in the absence of step contention.



3.1 Definitions

Originally [16,17], an implementation is called obstruction-free “if it guarantees
progress for every thread that eventually executes in isolation. Even though other
threads may be in the midst of executing operations, . . . ” [17, Page 522]. For
deterministic implementations, this requirement is equivalent to solo termina-
tion [11], and it echoes the liveness correctness conditions stated for Paxos-style
algorithms for state-machine replication [21].

Using our terminology, an implementation is obstruction-free if every opera-
tion that is eventually step contention-free eventually returns.

Obstruction-freedom is a very weak liveness condition, and it requires the
operation to return only under very restricted conditions. In all other circum-
stances, we only require that an operation’s response is legal, if it returns a
response at all.

If an operation cannot return a legal response, it is useful to return con-
trol to a higher-level entity, which we call the client. The client may consult
a system-specific mechanism called a contention manager, in order to expedite
termination.

There are two ways in which an obstruction-free implementation returns
control to the client, depending on whether the implementation is certain that
the operation did not have any effect on the object or not. If the implementation
is certain that the operation did not have an effect, a special fail value is returned,
indicating that the operation was not applied, and the client is free to invoke
any operation it wishes. Otherwise, a special pause value ⊥ is returned, and the
client must re-invoke the same operation until a non-⊥ response is received. (We
discuss the need for the two indications below.)

We add to R, the set of responses of an object, a special pause value ⊥ /∈ R
and a special fail value ∅ /∈ R. The definition of a well-formed local history is
extended to require that if an invocation i is followed by the response ⊥, then
the subsequent event, if exists, is i.

The definition of extended linearizability is further extended so that invoca-
tions returning fail are removed from the linearized history, while a sequence of
invocations returning pause are considered as one pending operation.

Formally, let H be any history, and H̄ be any well-formed local history of
H. Let i be an invocation in H̄ on an object x. A fragment of the form i, r
in H̄, where r ∈ R, is called an occurrence of i (returning r). Since an invo-
cation occurrence might return ⊥ and be re-invoked later, there might be a
number of occurrences of i in a history. Consider the longest fragment of the
form i or i,⊥, i, . . . ,⊥, i in H̄. If the fragment is followed by a matching re-
sponse r /∈ {⊥, ∅}, we call i, r or, resp., i,⊥, i . . . ,⊥, i, r a complete operation. If
the fragment is followed by a fail response ∅, we call i, ∅ or, resp., i,⊥, i . . . ,⊥, i, ∅
a failed operation. If the fragment is followed by no event or by ⊥, we call i or
i,⊥ or, resp., i,⊥, i, . . . ,⊥, i or i,⊥, i . . . ,⊥, i,⊥ a pending operation. Since H̄
is well-formed, a pending operation is a suffix of H̄ (⊥ cannot be followed by
an invocation other than i). The operation’s interval is the shortest fragment of



Shared variables: register X, initially ⊥, and “only-fail” OF consensus object C

Code for process p0:

upon propose(v0) do
d0 ← C.propose(v0)
if d0 = ∅ then

d0 ← X
return d0

Code for process p1:

upon propose(v1) do
X ← v1
repeat

d1 ← C.propose(v1)
until d1 6= ∅
return d1

Fig. 2. Wait-free consensus from “only-fail” obstruction-free consensus

H that includes all events of that operation. If the fragment i,⊥, i, . . . ,⊥, i is
followed by no event in H̄ then the operation’s interval is infinite.

As defined before, a well-formed history H is linearizable if there is a per-
mutation H ′ containing all the complete operations in H and completions of
a subset of the pending operations in H, such that H ′ is legal and it respects
the order of non-concurrent operations in H. When taken in the context of
the extended notions of complete and pending operations, this definition means
that we order all non-failed operations, with the interval of a paused operation
“spanned” across its re-invocations.

An implementation is live if every invocation occurrence return in a finite
number of its own steps (although a value in {⊥, ∅} can be returned). An imple-
mentation is valid if (1) an invocation occurrence returns ⊥ (that is, pause) only
when it is not step contention-free, and (2) an invocation occurrence i returns
∅ (that is, fail) only when the corresponding operation (the longest fragment of
the form i, ∅ or i,⊥, i, . . . ,⊥, i, ∅ in the local history) is not step contention-free.
It is immediate that any live and valid implementation is obstruction-free.

Ideally, an obstruction-free implementation should only be allowed to return
valid responses and, in the case of step contention, fail indications to the client,
enabling the client to either re-invoke the operation, or to invoke another opera-
tion. However, below we show that no obstruction-free consensus implementation
from registers can enjoy this property. Thus, it is sometimes unavoidable to re-
turn ⊥ in obstruction-free implementations.

Theorem 1. There is no obstruction-free consensus implementation from reg-
isters that never returns ⊥.

Proof. By contradiction, consider an implementation of obstruction-free consen-
sus that is allowed to return only ∅ in the case of step contention. Then it is
possible to implement wait-free consensus for two processes p0 and p1 using one
such consensus object, denoted C, and one register X, contradicting [10,23]. The
algorithm is presented in Figure 2.

Validity of the algorithm follows from the fact that ∅ is returned only in
case of step contention. If C returns ∅ at p0, then p1 can only decide its own
value. Thus, Agreement is satisfied. Since p1 eventually runs in the absence of
contention, it eventually decides. Thus, Termination is also satisfied. ut



3.2 Obstruction-Free Generic Object Implementation

This section gives an algorithm that obstruction-free implements any object of
type T , using only registers. Like previous universal implementations, it is built
from consensus objects. (A simple obstruction-free consensus algorithm, derived
from Paxos-style consensus algorithms, appears in the full version of the paper.)

The universal obstruction-free implementation relies on a sequential imple-
mentation of the object type T ; it is live, valid and linearizable. Herlihy’s uni-
versal nonblocking implementation [15] cannot be applied “off-the-shelf” since it
does not handle re-invocations and failing. Instead, the algorithm builds on sim-
ilar ideas, while making sure that pause or fail are returned only in the absence
of step contention.

An object of type T is represented as a linked list; an element of the list
represents an operation applied to the object. The list of operations clearly
determines the list of corresponding responses. A process makes an invocation
by appending a new element to the end of the list. The algorithm assumes a
function response(invs, inv) that returns the response matching the invocation
inv in a sequential execution of invocations from list invs (under the condition
that inv ∈ invs).

The algorithm (Figure 3) uses the following shared variables:

– n atomic single-writer, multi-reader registers L1, . . . , Ln. Process pi stores in
Li its last view of the object state in the form of a linked list of operations
that pi witnessed to be applied on the object.

– C[ ] is an unbounded array of obstruction-free consensus objects. The array
is used to agree on the order in which invocations are put into the linked list
of operations.

Roughly, the algorithm works as follows. When a process pi executes an invo-
cation inv, it identifies the longest list Lj (let k = |Lj |). If inv is already in Lj ,
the response associated with inv in Li is returned (line 5). This ensures that an
operation takes effect at most once, even if repeated several times. If it is not the
first instance of inv, and k > |Li| (i.e., inv was not decided in any OF Consensus
to which it was proposed), pi returns ∅ (line 9). Otherwise, pi proposes inv to
C[k + 1] (line 10). If C[k + 1] returns ⊥ (step contention is detected), then pi

returns ⊥ (line 13). If the propose operation fails, or returns a non-inv response
while it is not the first instance of inv, then pi returns ∅ (line 16). If C[k + 1]
returns inv, then pi returns the response associated with inv (line 20). Other-
wise, the procedure is repeated, now at position k + 2. Now if C[k + 2] returns a
non-{inv,⊥} response, then pi returns ∅ (line 29). The second consensus opera-
tion ensures validity of the implementation, namely, that ∅ is never returned in
line 29 if the corresponding operation is step contention-free.

This algorithm implies the next theorem (the correctness proof appears in
the full version of the paper).

Theorem 2. Every sequential type T has an obstruction-free linearizable imple-
mentation from registers.



Shared variables:
Register L1, . . . , Ln ← ∅, . . . , ∅
OF-Consensus C[ ]

1: upon Invoking inv do

2: invs← longest({L1, . . . , Ln}) { Select the longest invocation list }
3: if inv ∈ invs then
4: check← false

5: return response(invs, inv) { Return if inv is already completed }
6: k ← |invs|
7: if (k > |Li|) and check then
8: check← false

9: return ∅ { Fail the operation }
10: dec← C[k + 1].propose(inv) { The 1st consensus operation }
11: if dec = ⊥ then
12: check← true
13: return ⊥
14: if (dec = ∅) or (dec 6= inv and check) then
15: check← false

16: return ∅ { Fail the operation }
17: invs← invs · dec; Li ← invs { Update Li }
18: if dec = inv then
19: check← false

20: return response(invs, inv) { Return if inv is decided }
21: dec← C[k + 2].propose(inv) { The 2nd consensus operation }
22: if dec = ⊥ then
23: check← true
24: return ⊥
25: if dec 6= ∅ then invs← invs · dec; Li ← invs
26: if dec = inv then
27: check← false

28: return response(invs, inv) { Return if inv is decided }
29: return ∅ { Fail if inv is ignored twice }

Fig. 3. An obstruction-free implementation of T : code for process pi

Remark. Our algorithm satisfies one additional property. In any execution, every
operation takes effect (if it does) before it stops taking steps in that execution.
In other words, the implementation stays linearizable even if we restrict an op-
eration’s interval to the shortest fragment of the execution which contains all
steps of that operation. As a result, an operation invoked by a faulty process
takes effect (if it does) before the process fails, which makes our implementations
strictly linearizable [3].

A simpler proof of Theorem 2 can be obtained by presenting an algorithm
that returns only ⊥ indications in the case of step contention. However, our
algorithm is better in the sense that it carefully detects the scenarios in which
an applied operation did not take effect, and thus ∅ can be returned, which
makes our algorithm more convenient to use.

3.3 Obstruction-Free Implementations are Slow

The universal construction presented in Figure 3 is not very efficient: finding
the longest list of invocations requires to collect information from all processes.
The next theorem shows that this is inherent in obstruction-free universal im-



plementations from read/write base objects, by proving a lower bound of Ω(n)
on the number of steps and on the number of registers for implementing a com-
pare&swap object.

Theorem 3. Let A be any obstruction-free implementation of n-valued com-
pare&swap from registers, then A has an execution in which a step contention-
free operation takes n − 1 or more steps and accesses n − 1 or more different
objects.

Proof. Follows directly from the result of Jayanti, Tan and Toueg [19]. They
show that any implementation of n-valued compare&swap that satisfies the solo
termination property has an execution in which a solo operation (i.e., an opera-
tion that does not observe step contention) takes n−1 or more steps and accesses
at n−1 or more different objects. Since any obstruction-free implementation en-
sures the solo termination property, we immediately have the theorem. ut

3.4 Leveraging Obstruction-Free Objects

The next two subsections discuss how obstruction-free implementations can be
turned into nonblocking or wait-free ones using a contention manager. The con-
tention manager we consider provides the client with a binary indication whether
to continue or not. The contention manager works well when it indicates only to
a single client to continue. Formally, in response to the client’s query, the con-
tention manager returns either 0 or 1, telling the client to abort or to continue
(respectively); in the latter case, we say that the client is a leader. The eventual
contention manager, denoted Ω, guarantees that eventually exactly one correct
client with a pending operation (if such a client exists) is a leader; it is delib-
erately similar to the “sloppy leader” failure detector and can be implemented
using partial synchrony assumptions [8].

A single obstruction-free consensus object and Ω can implement nonblocking
consensus using the following simple algorithm: A process queries the contention
manager and, if it is a leader, the process makes a propose invocation on the
underlying obstruction-free consensus object. If the response is neither ⊥ nor ∅,
it is returned; otherwise, the process repeats. This implies the following result:

Theorem 4. Consensus has a nonblocking implementation from (only)
obstruction-free consensus and Ω.

3.5 Graceful Degradation of Obstruction-Free Implementations

Obstruction-free consensus can be implemented from registers only [4]. On the
other hand, wait-free consensus can be implemented from registers using Ω [22].
However, these two liveness properties cannot be combined in the same imple-
mentation, namely, there is no wait-free consensus implementation using regis-
ters and Ω which becomes (at least) obstruction-free when the contention man-
ager fails to eventually elect a single correct leader. In fact, we prove the claim
even for nonblocking consensus implementations.



Theorem 5. There is no nonblocking consensus implementation using registers
and Ω that ensures obstruction-freedom when the contention manager fails to
eventually elect a single correct leader.

Proof. Suppose, by contradiction, that an algorithm A provides such an im-
plementation. We show that it is then possible to devise an algorithm A′ that
implements nonblocking consensus for two processes, p1 and p2 with registers
only — a contradiction with [10,23].

In A′, processes take steps like in A, except that, instead of using Ω, processes
assume that Ω always indicates p1 as the only leader. In doing so, processes
cyclically invoke propose operations until a non-{⊥, ∅} value is returned. Note
that A′ cannot violate safety properties of consensus, since every finite execution
of A′ is also an execution of A. To establish a contradiction, it is thus sufficient
to show that at least one correct process eventually terminates in A′, i.e., obtains
a non-{⊥, ∅} value from the underlying algorithm A.

Every execution of A′ belongs to one of the following classes:
(1) Executions in which p1 is correct, i.e., the assumed output of the contention
manager complies with the specification of Ω. Such an execution is indistinguish-
able to p1 and p2 from executions of A in which processes p3, . . . , pn are initially
faulty, and p1 is the only correct leader. Since A implements a nonblocking con-
sensus using Ω, some correct process (p1 or p2) eventually obtains a non-{⊥, ∅}
value from A and decides.
(2) Executions in which p1 is faulty, i.e., the assumed output of the contention
manager does not comply with the specification of Ω. Assume that p2 is correct
in such an execution (if both p1 and p2 are faulty, consensus is trivially solved).
Any finite prefix of our execution is indistinguishable to p2 from an execution of
A in which processes p3, . . . , pn are initially faulty, and the contention manager
malfunctions. Since p2 is eventually running in the absence of step contention,
and A ensures obstruction-freedom even when the contention manager is incor-
rect, p2 eventually obtains a non-{⊥, ∅} value from A and decides.

In other words, A′ guarantees that whenever there is at least one correct
process, some correct process eventually decides — a contradiction. ut

4 Solo-Fast Implementations

We say that a wait-free linearizable implementation of a sequential type T from
registers and other objects (e.g., compare&swap) is solo-fast if only read and
write operations are invoked by any step contention-free operation on it.

4.1 Solo-Fast Generic Object Implementation

Figure 4 presents a solo-fast consensus implementation. The algorithm proceeds
in rounds (lines 13–25). Starting the algorithm, every process first computes in
line 3 the smallest round k in which a value can be fixed, i.e., returned in line 19
(we say that pi joins in round k). The algorithm guarantees that if any process



Shared variables:
Registers {Aj}, {Bj}, j ∈ {1, 2, . . . , n}, initially ⊥
C&S C1, . . . Cn−1, initially ⊥

1: upon propose(inputi) do

2: V ← collect A { ⊥’s are ignored in each collect }
3: ki ← min{k ≥ 1 |∀(k′, v′) ∈ V : k′ ≤ k ∧ ∀(k, v′), (k, v′′) ∈ V : v′ = v′′}
4: if ∃(k, v) ∈ V then
5: vi ← v
6: else
7: V ′ ← collect B
8: if V ′ 6= ∅ then
9: vi ← the highest timestamped value in V ′

10: else
11: vi ← inputi
12: while (true) do
13: Ai ← (ki, vi)
14: V ← collect A
15: if ∀(k′, v′) ∈ V : k′ < ki ∨ (k′ = ki ∧ v′ = vi) then
16: Bi ← (ki, vi)
17: V ← collect A
18: if ∀(k′, v′) ∈ V : k′ < ki ∨ (k′ = ki ∧ v′ = vi) then
19: return vi

20: V ′ ← collect B
21: if V ′ 6= ∅ then
22: vi ← the highest timestamped value in V ′

23: v′ ← Cki
.CS(⊥, vi)

24: if v′ 6= ⊥ then vi ← v′

25: ki ← ki + 1

Fig. 4. An n-process solo-fast consensus: code for process pi

fixes a value, then no process can ever fix a different value. In every round,
starting from round k, pi tries to fix its current estimate. It is ensured that if no
other process tries to fix concurrently a different value in the current or higher
round, then the estimate must be fixed. If pi is not able to fix the estimate in
the current round (we say that pi aborts in that round), which can only happen
when there is step contention, it updates the estimate using a C&S operation
and goes to the next round. The algorithm guarantees that whenever process pi

aborts in round k, and no process joins in round k + 1, then pi fixes its estimate
in round k + 1 (C&S ensures that no two processes that abort in round k try to
fix different values in round k +1). We show that no process can join in round n
or later, and thus pi fixes its estimate in round k ≤ n. The algorithm is solo-fast,
since no process can abort in a round (and thus use a C&S operation) in the
absence of step contention.

This algorithm implies the next theorem (the correctness proof appears in
the full version of the paper).

Theorem 6. There is a solo-fast consensus implementation from registers and
C&S objects, that takes O(n) steps in the solo path.

From Theorem 6 and Herlihy’s universal construction [15], we immediately ob-
tain:

Corollary 1. Every sequential type T has a solo-fast implementation from reg-
isters and C&S objects.



4.2 Lower Bounds and Reductions

Our implementation has linear space and contention-free step complexity. Prov-
ing that it is asymptotically optimal is not straightforward. Unlike obstruction-
free implementations (see the proof of Theorem 3), the lower bound of [19]
cannot be applied to solo-fast implementations, since processes can access non-
historyless objects such as C&S, which is not allowed in [19]. Nevertheless, if we
assume that the C&S objects are non-readable, then a simple variation of [19]
implies that the step and space complexity for solo-fast is at least linear. (This
matches the complexity of our implementation.)

The apparent similarity between obstruction-free and solo-fast implementa-
tions tempts to think that a linear lower bound on space and step complexity of
a solo-fast implementation can be obtained by a reduction from an obstruction-
free one (applying Theorem 3). However, despite of the similarity, such a reduc-
tion seems difficult to achieve. For instance, a seemingly straightforward trans-
formation from a solo-fast implementation to an obstruction-free one in which
hardware C&S objects are recursively substituted with their solo-fast implemen-
tations does not guarantee solo termination if the underlying C&S objects are
readable. Indeed, even on a solo path, any read operation on a C&S object would
recursively call a solo-fast version of it, and so on.

5 Discussion

This paper studies the notion of step contention, which inherently does not
charge for processes stalled, e.g., due to failures or swap-outs, and is, in this
sense, fundamentally different from point or interval contention. We show that
registers are powerful enough to ensure liveness in the absence of step contention
(which leads to a wider set of executions than when looking at other forms of
contention). However, we suggest that building such implementations using only
registers in the absence of step contention is inherently expensive and of limited
benefit.

There are several interesting avenues for further research:

Complexity of obstruction-free consensus. We have shown tight bounds on the
cost of generic obstruction-free implementations. However, there might be more
efficient obstruction-free solutions for specific problems. For obstruction-free con-
sensus, for example, an Ω(

√
n) lower bound on the number of registers (or his-

toryless objects) can be derived from the lower bound of Fich, Herlihy and
Shavit [11]. This bound is not tight (the upper bound is O(n)) and moreover, it
does not bound the contention-free step complexity of obstruction-free consen-
sus.

Complexity of solo-fast implementations. Our solo-fast implementation performs
O(n) read and write steps, even in the absence of step contention; by employing
adaptive collect [1, 5], the step complexity can be made to depend only on the



point contention; by employing adaptive collect for unbounded concurrency [13],
it can be made independent of the number of processes.

We conjecture that a non-constant lower bound on the contention-free step
complexity of any generic solo-fast implementation holds even if underlying com-
pare&swap objects are readable, making solo-fast implementations rather inef-
ficient. On the other hand, it is possible that the step and space complexities of
solo-fast consensus can be made constant if objects slightly more powerful than
read/write registers, e.g., counters or queues, are used on a solo path.

Contention management. The contention manager we considered is fundamen-
tally different from those considered in [14,17,25,26]. It is easy to see that none
of those can transform any obstruction-free implementation into a nonblocking
one. Those contention managers do not provide any worst case nonblocking de-
terministic guarantees (with the exception of [14] in the absence of failures),
and were actually rather designed to provide a high throughput in the average
case. Devising a contention manager that would provide deterministic worst case
guarantees with acceptable average case throughput is an interesting research
direction.
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