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Abstract

This paper addresses the problem of broadcasting messages in a reliable and totally
ordered manner when processes and channels may crash and recover, or crash and never
recover. We present a suite of specifications of reliable and total order broadcast primitives
and we describe algorithms that implement those specifications. Our approach is modular
and incremental. It is modular in the sense that the properties of broadcast primitives are
first given separately and then composed: this provides a comprehensive design space for
broadcast semantics. It is incremental in the sense that a broadcast algorithm implementing
a given specification is obtained by transforming an algorithm that implements a weaker
specification: this gives an automatic way to improve the resilience of broadcast primitives.
We derive specific reliable and total order broadcast algorithms and we discuss their perfor-
mance and optimality.

Contact author: Romain Boichat.1

Keywords: reliable broadcast, total order broadcast, modularity, transformation, optimisation,

crash-recovery model.

1 Introduction

Broadcasts primitives facilitate the development of distributed applications. We consider in this

paper two of the most important of such primitives: reliable broadcast and total order broadcast.

Both allow processes to broadcast messages with some reliability guarantees. Roughly speaking,

reliable broadcast ensures that all processes agree on the set of messages they deliver, while

total order broadcast ensures that all processes agree on the sequence of messages they deliver.

In short, a total order broadcast is a reliable broadcast where processes deliver messages in the

same order. This paper addresses the problem of devising algorithms2 that implement reliable
∗Some material in sections 3, 4.2 and 5 appeared in [6].
1DSC LPD, EPFL, CH-1015 Lausanne, Switzerland, e-mail: Romain.Boichat@epfl.ch, Phone/Fax: +41 21 693

6702/7570
2We focus here on deterministic algorithms, unlike [4] for instance which considers randomised algorithms that

offer probabilistic guarantees.
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and total order broadcast primitives assuming a practical asynchronous crash-recovery model:

processes and channels may crash and recover or crash and never recover.

Motivation. Given their wide applicability, broadcast primitives have been extensively studied

for over a decade. In particular, many papers have been published on algorithms that implement

reliable and total order broadcast primitives in a crash-stop system model [10, 14, 3, 13, 5, 7].

According to this model, channels are reliable and processes execute the algorithm assigned

to them, unless they crash, in which case they simply halt their activities. Processes that do

not crash are called correct processes. The simplicity of this model was a key to studying and

comparing many broadcast algorithms, and also devising rigorous proofs for their correctness.

The practicality of the crash-stop system model is however questionable. The assumption

that some processes never crash, and that those that crash never recover, is indeed simple but is

quite unrealistic. In practice, processes that crash eventually recover and resume their activities.

In the meantime, i.e., between the crash and the recovery events, the messages sent to a crashed

process are lost. After a crash, a process typically loses the content of its volatile memory and

only preserves the content of its stable storage. Devising algorithms for the crash-recovery model

is more tricky than for the crash-stop model, precisely because of the need of careful use of stable

storage. Processes should log in stable storage crucial information that will help them recover

in a consistent state, but performing a forced log3 is expensive and should be avoided as much

as possible.

In summary, there is a significant literature about crash-stop resilient broadcast algorithms,

but these do not fit a more realistic crash-recovery model which introduces a non-trivial com-

plexity through the use of stable storage. The motivation of our work is precisely to devise

crash-recovery resilient broadcast primitives.

Specifications and implementations. The specification of a reliable broadcast primitive is

composed of three kinds of properties [15]: a validity property (V) that ensures the liveness of

the broadcast, an agreement property (A) which ensures consensus on message delivery, and an

integrity property (I) that prevents the absence of spurious messages and multiple deliveries.

The specification of a total order broadcast primitive contains an additional total order (TO)

type of property [15].

Devising crash-recovery resilient broadcast primitives goes first through providing meaningful

variants of those properties in a crash-recovery model. Indeed, the possibility for the processes
3A synchronous write on disk.
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to crash and recover impacts the actual definition of the very notion of process correctness, and

consequently requires to revisit the specifications of broadcast primitives, e.g., in comparison

with the specifications initially defined for a crash-stop model [15]. As we show in this paper,

several meaningful specifications are possible for every property of a crash-recovery resilient

broadcast. In fact, in the context of a crash-recovery model, every property of a given kind

(validity, agreement, integrity and total order) might come in different flavours, according to

whether:

1. We only restrict the behaviour of the processes that do not crash: we end up with the

weakest properties, denoted by V.1, A.1, I.1, and TO.1. For instance, agreement here

(A.1) would not preclude the situation where a process pi delivers a message before crashing

and no other process ever delivers that message, even if pi recovers and never crashes again.

2. We also restrict the behaviour of the processes that recover - and remain up for sufficiently

long: we end up with stronger properties, denoted by V.2, A.2, I.2, and TO.2. Typically,

agreement here (A.2) would prevent the situation above, but would not preclude the

situation where a process pi delivers a message before permanently crashing and no other

process ever delivers that message.

3. We restrict the behaviour of all processes: we end up with the strongest properties, denoted

by V.3, A.3, I.3, and TO.3. Agreement here (A.3) would ensure that if any process pi

delivers a message, every correct would deliver the message, even if pi crashes just after

delivering the message and never recovers.

This paper defines these properties in a precise manner and describes how they can be com-

bined in various ways to obtain meaningful specifications of crash-recovery resilient broadcast

primitives (reliable and total order broadcast). We first point out some interesting relationships

between the specifications and we propose transformer algorithms that build upon a broadcast

primitive that satisfies a given specification (e.g., V.1, A.1, I.1, and TO.1 ) to implement a

broadcast primitive that satisfies a stronger specification (e.g., V.2, A.2, I.2, and TO.2 ). Our

unit of broadcast transformation is the individual specification. Transformers for reliable broad-

cast, together with transformers for total order broadcast, are instances of the same generic

algorithm. This genericity enables us to factor out some fundamental differences between re-

liable and total order broadcast in a crash-recovery model, while capturing their similarities.

This promotes algorithm layering, e.g., along the lines of [16].
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We give algorithms that implement our different specifications in an incremental manner.

We start by considering crash-stop resilient broadcast algorithms, namely the reliable broadcast

algorithm of [15] and the total order broadcast algorithm of [7]. We show how to slightly improve

these algorithms to satisfy the weakest of our crash-recovery resilient specifications (V.1, A.1, I.1,

TO.1). We then discuss the algorithms that result from applying our transformers to implement

stronger specifications. We point out simple techniques to optimise these algorithms and we give

corresponding lower bounds (in terms of forced logs). Practical performance measures are given

to depict the actual differences between algorithms that implement different specifications.

Contributions. This paper aims at giving a comprehensive study of crash-recovery resilient

broadcast specifications and possible implementations.

• We draw a sharp line between the specifications and the implementations of broadcast

primitives. In particular, we define various forms of specifications for reliable broadcast and

total order broadcast. To our knowledge, this is the first time such a suite of specifications

is given in a crash-recovery model.

• We present a systematic way of strengthening the resilience of crash-recovery resilient
broadcast primitives. We do so using generic transformer algorithms that do not make

any assumptions on the underlying broadcast algorithms (as long as they implement their

specifications).

• We give specific crash-recovery resilient broadcast algorithms that we obtain from trans-

forming crash-stop resilient broadcast algorithms, namely the algorithms of [15] and [7].

Interestingly, our resulting algorithms have the same number of communication steps than

the original crash-stop algorithms in nice runs, i.e., runs where processes are up and mes-

sages are not lost: these are the most frequent runs in practice. In other words, we point

out the very fact that the price to pay for moving to a crash-recovery model is in terms of

forced logs.

• We discuss simple techniques to optimise our algorithms in terms of forced logs, and
we give some general lower bound results that match our algorithms. Our experimental

study helps quantify the performance difference between algorithms implementing different

specifications.

Roadmap. The rest of the paper is organised as follows. Section 2 describes our crash-recovery

model. Section 3 defines the specifications of our crash-recovery resilient broadcast primitives.
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Section 4 presents our transformer algorithms. Section 5 focuses on specific algorithms and

discuss their performance from an analytical as well as an experimental point of view. Section 6

discusses related work and draws some concluding remarks. Due to a lack of space and given that

they are close to those of reliable broadcast, the correctness proofs of our total order broadcast

transformers and algorithms are given in optional Appendix A.

2 Model

2.1 Processes

We consider a set of processes Π = {p1, p2, ..., pn}. At any given time, a process is either up or

down. When it is up, a process progresses at its own speed behaving according to its specification

(i.e., it correctly executes its program). Note that we do not make here any assumption on the

relative speed of processes. While being up, a process can fail by crashing; it then stops executing

its program and becomes down. A process that is down can later recover; it then becomes up

again and restarts by executing a recovery procedure. The occurrence of a crash (resp. recovery)

event makes a process transit from up to down (resp. from down to up). We say that a process

pi is unstable if it crashes and recovers infinitely many times. We define an always-up process

as a process that never crashes. We say that a process pi is correct if there is a time after which

the process is permanently up.4 A process is faulty if it is not correct, i.e., either eventually

always-down or unstable. We assume that once pi recovers, pi is reset to the state initialised.

A process is equipped with two local memories: a volatile memory and a stable storage. The

primitives store and retrieve allow a process that is up to access its stable storage. When

it crashes, a process loses the content of its volatile memory; the content of its stable storage

is however not affected by the crash and can be retrieved by the process upon recovery. We

assume the presence of a discrete global clock whose range ticks τ is the set of natural numbers.

This clock is used to simplify presentation and not to introduce time synchrony, since processes

cannot access the global clock.
4In practice, a correct process is required to stay up long enough for the computation to terminate. In

asynchronous systems however, characterising the notion of “long enough” is impossible.
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2.2 Link Properties

Processes exchange information and synchronise by sending and receiving messages through

fair-lossy channels. We assume the existence of a bidirectional channel between every pair of

processes. We assume that every message m includes the following fields: the identity of its

sender, denoted sender(m), and a local identification number, denoted id(m). These fields make

every message unique. Channels can lose or drop messages and there is no upper bound on

message transmission delays. We assume the same channel definition given in [1], which ensures

the following properties between every pair of processes pi and pj:

No creation: If pj receives a message m from pi at time t, then pi sent m to pj before

time t.

Finite duplication: If pi sends a message m to pj only a finite number of times, then pj

receives m only a finite number of times.

Fair loss: If pi sends a message m to pj an infinite number of times and pj is correct, then

pj receives m from pi an infinite number of times.

The last two properties are sometimes called, respectively, finite duplication and weak loss, e.g.,

in [19]. They reflect the usefulness of the communication channel. Without these properties, any

interesting distributed problem would be trivially impossible to solve. By introducing the notion

of correct process into the fair loss property, we define the conditions under which a message

is delivered to its recipient process. Indeed, the delivery of a message requires the recipient

process to be running at the time the channel attempts to deliver it, and therefore depends on

the failure pattern occurring in the execution. The fair loss property indicates that a message

can be lost, either because the channel may not attempt to deliver the message or because the

recipient process may be down when the channel attempts to deliver the message to it. In both

cases, the channel is said to commit an omission failure.

2.3 Retransmission Module

We introduce here a retransmission module that encapsulates retransmissions issues to deal

with temporary crashes of communication channels. This module is a basic block underlying

our algorithms (see Section 5). The primitives of the retransmission module (s-send and s-

receive) preserve the no creation and finite duplication properties of the underlying channels,

and ensures the following validity property:
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Validity: Let pi be any process that s-sends a message m to a process pj, and then pi does

not crash. If pj is correct, then pj eventually s-receives m.

Figure 1 gives the algorithm of the retransmission module. All messages that need to be retrans-

mitted are put in the variable xmitmsg with their destination in the set dst (line 5). Messages

in xmitmsg are erased once all recipients have acknowledged m, otherwise they are always re-

transmitted (lines 18-21).

1: for each process pi:
2: procedure initialisation:
3: xmitmsg [], dst [] ← ⊥; start task{retransmit}
4: procedure s-send(m) {to s-send m to pj}
5: if m �∈ xmitmsg then xmitmsg ← xmitmsg ∪ m
6: if pj �∈ dst [m] then dst [m] ← dst [m] ∪ pj

7: for all pj ∈ dst [m] do
8: if pj �= pi then
9: send m to pj

10: else
11: simulate receive m from pi

12: upon receive(m) from pj do
13: if m = ACK then
14: dst [m] ← dst [m] \pj

15: if dst [m] = ⊥ then xmitmsg ← xmitmsg \m
16: else
17: s-receive(m); send ACK(m) to pj

18: task retransmit {retransmit all messages}
19: while true do
20: for all m ∈ xmitmsg do
21: s-send(m)

Figure 1: Retransmission module

Proposition 1. Validity: Let pi be any process that s-sends a message m to a process pj, and

then pi does not crash. If pj is correct, then pj eventually s-receives m.

Proof. Suppose that pi s-sends a message m to a process pj and then pi does not crash. Assume

by contradiction that pj is correct, yet pj does not s-receive m. There are two cases to consider:

(a) pj does not crash, or (b) pj crashes, eventually recovers and remains always-up. For case (a),

by the fair loss properties of the channels, pj receives and then s-receives m: a contradiction.

For case (b), since process pi keeps on sending m to pj, there is a time after which pi sends m to

pj and none of them crash afterwards. As for case (a), by the fair loss property of the channels,

pj eventually receives m, then s-receives m: a contradiction. ✷
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3 Broadcast Specifications

Informally, a reliable broadcast primitive ensures three properties [15]: (validity) every message

broadcast by a correct process is delivered by the process; (agreement) processes agree on the set

of messages they deliver; and (integrity) messages are not delivered more than once and cannot

be delivered out of thin air. Roughly speaking, a total order broadcast is a reliable broadcast

which also ensures the following property: (total order) processes deliver messages in the same

order.

3.1 Reliable Broadcast

In a traditional crash-stop model [15], reliable broadcast was more precisely defined through two

distinct primitives broadcast and deliver that satisfy the following properties:

Validity: If a correct process broadcasts a message m, then it eventually delivers m.

Agreement: If a correct process delivers a message m, then every correct process eventually

delivers m.

Integrity: For any message m, every correct process delivers m at most once, and only if

m was previously broadcast by sender(m).

Transposing these properties in a crash-recovery model can be done in various ways. Indeed,

one could obtain several meaningful properties according to whether or not we consider the

behaviour of processes that crash (and possibly recover), and whether or not we consider the

behaviour of faulty processes - those which crash and do not recover, or keep crashing and

recovering. In the following, we consider each property of reliable broadcast separately, and we

give three meaningful variants of these properties in a crash-recovery model.5 We first present

three variants of these properties:

V.1. Validity : If a process pi broadcasts a message m and then does not crash, pi eventually

delivers m.

V.2. Uniform Validity : If a correct process pi broadcasts a message m, then pi eventually

delivers m.

V.3. Strongly Uniform Validity : If a process pi broadcasts a message m, then pi eventually

delivers m.6

5We have considered properties that we believe are meaningful. We do not aim at being exhaustive here.
6It is easy to see that property V.3 is impossible to implement. In fact, V.3 would be impossible to implement
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A.1. Agreement : If a process pi delivers a message m and then does not crash, then any

process that does not crash after pi delivers m eventually delivers m.

A.2. Uniform Agreement : If a correct process pi delivers a message m, then every correct

process eventually delivers m.

A.3. Strongly Uniform Agreement : If a process delivers a message m, then every correct

process eventually delivers m.

I.1. Integrity : For any message m, every process pi that delivers m and then does not crash,

delivers m at most once, and only if m was previously broadcast by sender(m).

I.2. Uniform Integrity : For any message m, every correct process pi delivers m at most

once, and only if m was previously broadcast by sender(m).

I.3. Strongly Uniform Integrity : For any message m, every process pi delivers m at most

once, and only if m was previously broadcast by sender(m).

Combination. By combining one variant of each of these three kinds of properties, we obtain a

specific form of reliable broadcast specification in a crash-recovery model. The reliable broadcast

primitive defined with properties V.1, A.1, and I.1 is the weakest among those specifications.

We define the uniform reliable broadcast primitive with properties V.2, A.2, and I.2, and the

strongly uniform reliable broadcast with properties V.2, A.3, and I.3. It makes also some sense to

combine properties of different kinds. For instance, one could define the weakly uniform reliable

broadcast by combining properties V.1, A.2, and I.2. This specification can be interesting in the

context of replication. If the client crashes, then it is not necessary for the replicas to deliver

the request and send back a reply, unless the client recovers and broadcasts again its request.

3.2 Total Order Broadcast

Total order broadcast is a primitive that requires processes to deliver the messages in the same

order. This guarantee ensures that every correct process has the same view of the system. More

precisely, a total order broadcast primitive ensures validity, agreement and integrity, plus the

following property:

Total order: Let m and m′ be any two messages. Let pi and pj be any two processes that

deliver m. If pi delivers m′ before m then pj also delivers m′ before m.

As for reliable broadcast, defining a total order property in a crash-recovery model can be done

even if we weaken it to: If a process pi broadcasts a message m, then some correct process eventually delivers m.
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in various ways. In the following, we give three meaningful variants of the total order property

in a crash-recovery model:

TO.1. Total Order : Let pi and pj be any two processes that deliver some message m. If pi

delivers some message m′ before m and then does not crash, then if pj also delivers m′ and then

does not crash, pj delivers m′ before m.

TO.2. Uniform Total Order : Let m and m′ be any two messages. Let pi and pj be any two

correct processes that deliver m. If pi delivers m′ before m then pj also delivers m′ before m.

TO.3. Strongly Uniform Total Order : Let m and m′ be any two messages. Let pi and pj be

any two processes that deliver m. If pi delivers m′ before m then pj also delivers m′ before m.

We combine these three properties with the precedent reliable broadcast properties and obtain

different forms of total order broadcast. A total order broadcast primitive is defined with prop-

erties V.1, A.1, I.1 and TO.1, which is our weakest specification of total order broadcast for

the crash-recovery model. Uniform total order broadcast is defined with properties V.2, A.2,

I.2 and TO.2. Strongly uniform reliable broadcast is defined with properties V.2, A.3, I.3 and

TO.3, while weakly uniform total order broadcast is defined with properties V.1, A.2, I.2 and

TO.2.

3.3 Relationships

Before discussing the implementability of these specifications, we point out some preliminary

results and relationships among our properties. We show that properties I.2 and I.3 are actually

similar, and so are properties TO.2 and TO.3.

Proposition 2. No algorithm can satisfy I.2 without satisfying I.3.

Proof (sketch). Suppose by contradiction that an algorithm has a run r that satisfies I.2 but

not I.3. This means that there is a process pi and a time t at which either pi delivers a message

m that was never broadcast or pi delivers m twice. One can obviously build a run r′ similar to

r until time t, and after time t, pi recovers and never crashes again: contradicting I.2. ✷

Proposition 3. No algorithm can satisfy TO.2 without satisfying TO.3.

Proof (sketch). Suppose by contradiction that an algorithm has a run r that satisfies TO.2

but not TO.3. This means that there are two processes pi and pj , and a time t at which pi

delivers m before m′ and pj delivers m′ without delivering m. One can obviously build a run r′

similar to r until time t, and after time t, pi and pj recover and never crash again: contradicting
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TO.2. ✷

4 Broadcast Transformations

This section first gives an overview of our notion of transformer algorithm, and then focuses

on specific reliable broadcast and total order broadcast transformers. Correctness proofs of our

total order broadcast transformers can be found in optional Appendix A (these are very similar

to the correctness proofs of our reliable broadcast transformers).

4.1 Overview

Network

Receive Send

Algorithm’  (A’)

Deliver Broadcast

Algorithm  (A) Retransmit

Receive Send

S-Receive S-Send

Deliver’ Broadcast’

Application

T
r
a
n
s
f
o
r
m
a
t
i
o
nBroadcast’                                

Processing  

Broadcast

Deliver’                                     Deliver

Recovery

(1)

(2)

(3) (4)

Figure 2: Transformation architecture

Let S and S′ be any two broadcast specifications in the set {RB, WURB, URB, SURB, TOB,

WUTOB, UTOB, SUTOB}, i.e., Reliable Broadcast, Weakly Uniform Reliable Broadcast, Uni-

form Reliable Broadcast, Strongly Uniform Reliable Broadcast, Total Order Broadcast, Weakly

Uniform Total Order Broadcast, Uniform Total Order Broadcast, Strongly Uniform Total Order

Broadcast. Assume S and S′ are specifications of the same sort (i.e., reliable or total order)

and assume S′ is a stronger specification than S, e.g., if S is RB, then S′ is WURB, URB or

SURB.

A transformer TS→S′ is an algorithm that transforms any broadcast algorithm that imple-

ments S into a broadcast algorithm that implements S′. We denote by A the initial broadcast

algorithm that implements S (associated with primitives Broadcast and Deliver), and A′ the

broadcast algorithm that implements S′, resulting from the transformation (associated with
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primitives Broadcast’ and Deliver’ ). Figure 2 describes the architecture and the interaction

between the layers that we consider in a transformer TS→S′. As described in the left part of

Figure 2, a transformer is made up of four parts:

1. A Broadcast’ primitive (R’-Broadcast, resp. TO’-Broadcast) based on the original Broad-

cast primitive (R-Broadcast, resp. TO-Broadcast)

2. A Deliver’ primitive (R’-Deliver, resp. TO’-Deliver) based on the original Deliver primitive

(R-Deliver, resp. TO-Deliver)

3. A processing procedure that is invoked when a process Delivers a message and before it

Delivers’ the message.

4. A recovery procedure that is invoked when a process recovers from a crash. Each trans-

former has in addition an initialisation procedure that initialises its variables.

A transformer for reliable broadcast is similar to the corresponding transformer for total or-

der broadcast except that specific processing and recovery procedures are plugged in. We

present in the following subsections the transformers: TRB→URB , TURB→SURB , TTOB→UTOB

and TUTOB→SUTOB.7

4.2 Reliable Broadcast

We describe here the transformers TRB→URB and TURB→SURB , and we state and prove their

correctness. We say that a process pi R’-Broadcasts a message m once pi returns from the

invocation of R’-Broadcast. As in [1], we say that a process pi R’-Delivers a message m when pi

stores m into an adequate stable storage location. The primitive R-Deliver is implemented as

a callback and we make the assumption that when R-Delivering a message m, the algorithm A

stores m into an adequate stable storage location.

Transformer TRB→URB . The algorithm TRB→URB is presented in Figure 4, it works as follows

for a given process pi. First, to ensure property V.2, pi stores all messages that it R-Broadcast,

in case pi crashes and recovers. Process pi ensures property I.2 by storing the messages that

are R’-Delivered into stable storage (in order not to R’-Deliver them twice). To satisfy property

A.2, pi s-sends to all processes the messages that are R-Delivered. To illustrate the need for this

forwarding phase, consider the case depicted in Figure 3: process p1 R’-Broadcastsm, R’-Delivers
7Due to a lack of space, we do not present TRB→WURB , TWURB→URB , TTOB→WUTOB and TWUTOB→UTOB.
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R’-Broadcast m

R-Deliver m R’-Deliver m

R-Deliver m R’-Deliver m

R-Deliver m R’-Deliver m

R-Deliver m R’-Deliver m

p4 cannot R’-Deliver

m since p4 will not

R-Deliver m anymore !

p1

p2

p4

p3

p5

Figure 3: Uniform agreement is violated

m and then does not crash, while process p4 does not R-Deliver m, then crashes and recovers.

Process p4 will never R’-Deliver m since p4 will never R-Deliver m (with the specification of

reliable broadcast, once a process crashes, it does not have to R-Deliver m). Therefore, some

process, e.g., p1, has to s-send m to every process. Finally, the recovery procedure is invoked

when pi recovers from a crash. The recovery procedure is composed of the following three phases:

(i) pi R-Broadcasts again the messages that were R’-Broadcast in order to ensure property V.2,

(ii) pi R’-Delivers all messages that were R-Delivered but not R’-Delivered, and (iii) pi s-sends

to every process the messages that were R’-Delivered to ensure property A.2. Phase (ii) occurs

when pi R-Delivers some message m and then crashes before R’-Delivering m. Since pi stores

the messages that it R-Delivered into stable storage, pi can retrieve theses messages when it

recovers. Note that for the sake of modularity, the code that a process executes before R’-

Delivering has been factored out in the processing primitive: we will see in the next subsections

that this factorisation helps having generic transformers.

Lemma 4. The algorithm of Figure 4 transforms the property V.1 of A into the property V.2

of A′: If a correct process pi R’-Broadcasts a message m, then pi eventually R’-Delivers m.

Proof. Let pi be a correct process that R’-Broadcasts m and assume by contradiction that pi

never R’-Delivers m (i.e., pi violates property V.2). There are two cases to consider: (i) pi does

not crash, and (ii) pi crashes, recovers and remains always-up. For case (i), since pi does not

crash, then by the property V.1 of A, pi eventually R-Delivers m (line 13), then R’-Delivers m:

a contradiction. For case (ii), if pi crashes and recovers, there is a time after which pi stops

crashing and remains always-up. When pi recovers, pi retrieves either (a) the messages it R-

Delivered and never R’-Delivered, or (b) the messages it R’-Broadcast (including m) at line 18.

For case (a), pi R’-Delivers m at lines 20-21: a contradiction. For case (b), pi R-Broadcasts these

recovered messages (including m) at line 19. We are certain that pi has stored m into stable

storage at line 11 since a process has R’-Broadcast m only when it returns from the invocation
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1: for each process pi:
2: procedure initialisation:
3: msgSent [] ← ⊥; r’ delivered [] ← ⊥
4: procedure processing(m)
5: if m �∈ r’ delivered then
6: r’ delivered ← r’ delivered ∪ m
7: store{r’ delivered} {R’-Deliver(m)}
8: procedure R’-Broadcast(m)
9: if m �∈ msgSent then
10: msgSent ← msgSent ∪ m
11: store msgSent
12: R-Broadcast(m)
13: upon R-Deliver(m) do
14: s-send(m) to all; processing(m)
15: upon s-receive m from pj do
16: processing(m)
17: upon recovery do
18: initialisation; retrieve{msgSent, r’ delivered, r delivered}
19: R-Broadcast(msgSent)
20: for all m′ ∈ r delivered do
21: processing(m′);
22: s-send(r’ delivered) to all

Figure 4: TRB→URB

of R’-Broadcast. By line 11 of the algorithm, we ensure that the forced log will be executed

before returning from the invocation of R’-Broadcast. Since pi never R-Delivered m, then by

the property V.1 of A, pi R-Delivers m at line 13 and then R’-Delivers m: a contradiction. ✷

Lemma 5. The algorithm of Figure 4 transforms the property A.1 of A into the property

A.2 of A′: If a correct process R’-Delivers a message m, then every correct process eventually

R’-Delivers m.

Proof. Let pi be a correct process that R’-Delivers m and assume by contradiction that there is

a correct process pj that does not R’-Deliver m. There are four cases to consider: (a) pi and pj

do not crash, or (b) pi crashes, recovers and remains always-up, and pj does not crash, or (c) pi

does not crash, and pj crashes, recovers and remains always-up, and finally (d) both processes

pi and pj crash, recover and remain always-up. For case (a), since both processes do not crash,

by the property A.1 of A, pj R-Delivers m, therefore pj R’-Delivers m: a contradiction. For

case (b), since pi is correct, there is a time after which pi stops crashing and remains always-up.

After recovering, pi retrieves the messages that it R’-Delivered before, and s-sends them to every

process at line 22. By the validity property of the retransmission module, pj eventually s-receives

m and R’-Delivers m at line 7: a contradiction. For case (c), since pj is correct, there is a time

after which pj stops crashing and remains always-up. Before R’-Delivering m, pi s-sends m to pj

at line 14. As for case (b), pj then eventually s-receives m and R’-Delivers m: a contradiction.

Finally, case (d) is a mix of case (b) and (c); there is a time after which both processes pi and
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pj stop crashing and remain always-up. As for case (b) and (c), pi s-sends m to pj at line 14 or

22, pj then eventually s-receives m and R’-Delivers m: a contradiction. ✷

Lemma 6. The algorithm of Figure 4 transforms the property I.1 of A into the property I.2 of

A′: For any message m, every correct process pi R’-Delivers m at most once, and only if m was

previously R’-Broadcast by sender(m).

Proof. For the first part of the property, suppose by contradiction that a correct process

pi R’-Delivers m more than once. We have two cases to consider: (i) pi does not crash, or

(ii) pi crashes, recovers and remains always-up. For case (i), this is clearly impossible, since

before R’-Delivering m, pi appends m to the set r’ delivered at line 6, and checks for m in the

set r’ delivered at guard line 5: a contradiction. For case (ii), there is a time after which pi

stops crashing and remains always-up. Remember that when R’-Delivering m, pi stores the

set r’ delivered into stable storage at line 7. When pi recovers, it retrieves the set r’ delivered

and therefore cannot go through guard line 5 twice since m will be in the set r’ delivered : a

contradiction. The second part follows from the no creation property of the channels. This

property prevents the case of s-receiving (resp. R-Delivering) messages that were not s-sent

(resp. R-Broadcast). ✷

Proposition 7. The algorithm of Figure 4 transforms a reliable broadcast into a uniform reliable

broadcast.

Proof. Follows directly from lemmata 4, 5, and 6. ✷

Transformer TURB→SURB. For the rest of this section, we assume that there is a majority of

correct processes in the system. Figure 5 presents transformer TURB→SURB that assumes a uni-

form reliable broadcast as the lower building block (which could be implemented by transformer

TRB→URB on top of reliable broadcast). The algorithm works as follows for a given process pi.

Once a process pi R-Delivers a message m, pi s-sends an acknowledgement of m (ACK(m)) to

every process. Every process waits to s-receive a majority of ACK(m) before R’-Delivering m.

As for TRB→URB , when pi recovers, pi R-Broadcasts again all messages it R’-Broadcast previ-

ously in case pi was not able to invoke the R-Broadcast primitive before crashing; this allows

every correct process to R-Deliver and to acknowledge every message. In the recovery procedure,

pi s-sends acknowledgements of all R-Delivered messages to all processes in case a process would

wait for an acknowledgement of m before R’-Delivering m. In contrast to TRB→URB , when pi

recovers, pi cannot directly R’-Deliver the messages that it R-Delivered but did not R’-Deliver,
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this would violate property A.3. Thanks to our modular approach, the very same processing

procedure than in TRB→URB can be reused here.

1: for each process pi:
2: procedure initialisation:
3: ackReceived [] ← ⊥; r’ delivered [] ← ⊥
4: procedure processing(m)
5: if m �∈ r’ delivered then
6: r’ delivered ← r’ delivered ∪ m
7: store{r’ delivered} {R’-Deliver(m)}
8: procedure R’-Broadcast(m)
9: R-Broadcast(m)
10: upon R-Deliver(m) do
11: s-send(ACK(m)) to all
12: upon s-receive ACK(m) from pj do
13: if pj �∈ ackReceived [m] then
14: ackReceived [m] ← ackReceived [m] ∪ pj

15: if ackReceived [m].size() > �n+1
2
� and m �∈ r’ delivered then

16: processing(m)
17: upon recovery do
18: initialisation; retrieve{r delivered, r’ delivered}
19: for all m′ ∈ r delivered do
20: s-send(ACK(m′)) to all

Figure 5: TURB→SURB

Lemma 8. The algorithm of Figure 5 preserves the property V.2 of A into A′: If a correct

process pi R’-Broadcasts a message m, then pi eventually R’-Delivers m.

Proof. Let pi be any correct process that R’-Broadcasts m and assume by contradiction that

pi never R’-Delivers m (i.e., pi violates property V.2). There are two cases to consider: (i) pi

does not crash, or (ii) pi crashes, recovers and remains always-up. For case (i), since (a) pi R-

Broadcasts m and waits for a majority of ACK(m), (b) there is a majority of correct processes,

(c) there is a time after which those correct processes stop crashing and remain always-up,

and (d) by the property A.2 of A, eventually every correct process R-Delivers m and then

acknowledges m by s-sending ACK(m). By the validity property of the retransmission module,

pi then s-receives a majority of ACK(m) and R’-Delivers m: a contradiction. For case (ii),

there is a time after which pi stops crashing and remains always-up, then (a) pi retrieves and

s-sends, when recovering, the messages it R-Delivered but did not R’-Deliver, and (b) for the

same reasons invoked for case (i), pi eventually s-receives a majority of ACK(m) and therefore

R’-Delivers m: a contradiction. ✷

Lemma 9. The algorithm of Figure 5 transforms the property A.2 of A into the property A.3

of A′: If a process R’-Delivers a message m, then every correct process eventually R’-Delivers

m.

Proof. Let pi be any process that R’-Delivers a message m and assume by contradiction that a
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correct process pj does not R’-Deliver m. When pi R’-Delivers m, pi has to s-receive a majority

of ACK(m) at line 15. Since we assume a majority of correct processes, there is at least one

correct process pj that has R-Delivered m since ACK(m) messages are only s-sent when a process

has R-Delivered m (line 11). There is a time after which every correct process stops crashing

and remains always-up. Since pj R-Delivered m, by the property A.2 of A, every correct process

R-Delivers m and then acknowledges m when recovering. Hence, pj s-receives a majority of

ACK(m) and R’-Delivers m: a contradiction. ✷

Lemma 10. The algorithm of Figure 5 preserves the property I.2 of A into A′: For any

message m, every correct process pi R’-Delivers m at most once, and only if m was previously

R’-Broadcast by sender(m).

Proof. Identical to the proof of lemma 6. ✷

Proposition 11. The algorithm of Figure 5 transforms a uniform reliable broadcast into a

strongly uniform reliable broadcast.

Proof. Follows directly from lemmata 8, 9 and 10. ✷

4.3 Total Order Broadcast

We present here total order broadcast transformers TTOB→UTOB and TUTOB→SUTOB. As shown

in Figure 6, the structure of the total order transformers presented in this subsection is identical

to those of reliable broadcast. The only differences are (i) the underlying primitive invoked, (ii)

the modified processing and recovery procedures, and (iii) variable renaming, e.g., the r’ delivered

variable is replaced by the kth batch of messages to’ delivered. Otherwise, the transformer

algorithms remain exactly the same. We say that a process pi TO’-Broadcasts a message m

once pi returns from the invocation of TO’-Broadcast. We say that pi TO’-Delivers m when pi

performs a forced log of m into an adequate stable storage location.8 We assume that there is a

deterministic rule by which pi TO-Delivers or TO’-Delivers a batch of messages. As for reliable

broadcast, the primitive TO-Deliver is implemented as a callback and we assume that when

TO-Delivering, the algorithm A stores the batch of messages into an adequate stable storage

location.

Transformer TTOB→UTOB. The structure of the transformer TTOB→UTOB presented in Fig-

ure 7 is the same as the one of TRB→URB . The processing procedure ensures the total order
8Message m is part of the kth batch of messages to’ delivered
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Figure 6: Differences (in shade) between transformers

property: when a process pi TO-Delivers or s-receives the kth batch of messages, pi either (a)

discards the batch of messages if k is lower than the one expected (nextBatch) [k < nextBatch],

or (b) puts the batch of messages into the set awaitingToBeDelivered if k is greater than the

one expected (lines 5-6) [k > nextBatch], or finally (c) if the batch of messages received is the

one that was expected [k = nextBatch], pi TO’-Delivers it (line 10), and increments the value of

the next batch of messages that is expected (line 11). Process pi then verifies if there are other

batches of messages that can be TO’-Delivered (lines 12-15).

1: for each process pi:
2: procedure initialisation:
3: to’ delivered [] ← ⊥; awaitingToBeDelivered [] ← ⊥; msgSet [] ← ⊥; nextBatch ← 1; msgSent [] ← ⊥
4: procedure processing(l, msgSet)
5: if l > nextBatch then
6: awaitingToBeDelivered [l] = msgSet
7: else if l = nextBatch and to’ delivered[nextBatch] = ⊥ then
8: to’ delivered [nextBatch] ← msgSet - to’ delivered
9: atomically deliver all messages in to’ delivered(nextBatch) in some deterministic order
10: store{to’ delivered,nextBatch} {TO’-Deliver}
11: nextBatch ← nextBatch+1
12: while awaitingToBeDelivered [nextBatch] �= ⊥ do
13: to’ delivered [nextBatch] ← awaitingToBeDelivered [nextBatch] - to’ delivered
14: atomically deliver all messages in to’ delivered(nextBatch) in some deterministic order
15: store{to’ delivered,nextBatch}; nextBatch ← nextBatch+1 {TO’-Deliver}
16: procedure TO’-Broadcast(m)
17: if m �∈ msgSent then
18: msgSent ← msgSent ∪ m
19: store msgSent
20: TO-Broadcast(m)
21: upon TO-Deliver(k,to delivered [k]) do
22: s-send(k,to delivered [k]) to all; processing(k,to delivered [k])
23: upon s-receive (k,to delivered [k]) from pj do
24: processing(k,to delivered [k])
25: upon recovery do
26: initialisation; retrieve{msgSent,to delivered,to’ delivered,nextBatch}
27: nextBatch ← nextBatch+1
28: TO-Broadcast(msgSent)
29: for all l ∈ to delivered do
30: processing(l,to delivered [l])
31: for all l′ ∈ to’ delivered do
32: s-send(l′,to’ delivered [l′]) to all

Figure 7: TTOB→UTOB

Transformer TUTOB→SUTOB. The structure of transformer TUTOB→SUTOB presented in Fig-

ure 8 is similar to the one of TURB→SURB . Once a process pi TO-Delivers a message m, pi
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s-sends an acknowledgement for the kth batch that contains m to every process (ACK(k)). Ev-

ery process waits for a majority of ACK(k) before TO’-Delivering a message. The processing

procedure ensures property TO.3 and is identical to the one of TTOB→UTOB. The recovery

procedure is a mix of the ones of TURB→SURB and TTOB→UTOB. When recovering, pi retrieves

the messages it TO-Delivered and TO’-Delivered, and updates the value of the next expected

batch. Process pi then s-sends ACK(k) for all TO-Delivered messages to all processes.

1: for each process pi:
2: procedure initialisation:
3: to’ delivered [] ← ⊥; nextBatch ← 1; awaitingToBeDelivered [] ← ⊥; ackReceived [] ← ⊥
4: procedure processing(l, msgSet)
5: if l > nextBatch then
6: awaitingToBeDelivered [l] = msgSet
7: else if l = nextBatch and to’ delivered[nextBatch] = ⊥ then
8: to’ delivered [nextBatch] ← msgSet - to’ delivered
9: atomically deliver all messages in to’ delivered(nextBatch) in some deterministic order
10: store{to’ delivered,nextBatch} {TO’-Deliver}
11: nextBatch ← nextBatch+1
12: while awaitingToBeDelivered [nextBatch] �= ⊥ do
13: to’ delivered [nextBatch] ← awaitingToBeDelivered [nextBatch] - to’ delivered
14: atomically deliver all messages in to’ delivered(nextBatch) in some deterministic order
15: store{to’ delivered,nextBatch}; nextBatch ← nextBatch+1 {TO’-Deliver}
16: procedure TO’-Broadcast(m)
17: TO-Broadcast(m)
18: upon TO-Deliver(k,to delivered [k]) do
19: s-send(ACK(k))) to all
20: upon s-receive ACK(k) from pj do
21: if pj �∈ ackReceived [k] then
22: ackReceived [k] ← ackReceived [k] ∪ pj

23: if ackReceived [k].size() > �n+1
2
� then

24: processing(k,to delivered [k])
25: upon recovery do
26: initialisation; retrieve{to delivered, to’ delivered, nextBatch}
27: nextBatch ← nextBatch+1
28: for all l ∈ to delivered do
29: s-send(ACK(l)) to all

Figure 8: TUTOB→SUTOB

5 Algorithms: Optimisations and Lower Bounds

In the previous section, we did not consider specific algorithms but we have shown how to

transform any given algorithm that satisfies a given specification into an algorithm that sat-

isfies a stronger specification. We focus here on specific algorithms. We show how we build

crash-recovery resilient broadcast algorithms based on actual algorithms from the crash-stop

model (namely, the algorithms of [15] and [7]) and our transformers. We then show how to

optimise these algorithms in terms of forced logs and messages using a systematic approach.

We then describe for each type of algorithm its analytical performance in terms of forced logs

and communication steps, and then we give some interesting lower bounds. Finally, we give
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some experimental performance results of the implementation of those algorithms in a local area

network.

5.1 Reliable Broadcast

We first show that the crash-stop reliable broadcast algorithm from [15], when adapted to fair

lossy channels, satisfies the properties V.1, A.1, I.1 of reliable broadcast. This algorithm can

hence be used as a building block to devise stronger reliable broadcast algorithms, e.g., a crash-

recovery uniform reliable broadcast algorithm. Figure 9 presents the reliable broadcast algorithm

of [15] adapted to fair lossy channels, i.e, we basically replace the send (resp. receive) primitive

by the s-send (resp. s-receive) primitive of the retransmission module.

1: for each process pi:
2: procedure initialisation:
3: r delivered [] ← ⊥
4: procedure processing(m)
5: if m �∈ r delivered then
6: s-send m to all \pi

7: r delivered ← r delivered ∪ m {R-Deliver(m)}
8: procedure R-Broadcast(m)
9: s-send(m) to pi

10: upon s-receive m from pj do
11: processing(m)
12: upon recovery do
13: initialisation

Figure 9: Adaptation of the reliable broadcast of [15]

Lemma 12. The algorithm of Figure 9 satisfies the property V.1 of reliable broadcast: If a

process pi R-Broadcasts a message m and then does not crash, pi eventually R-Delivers m.

Proof. Suppose by contradiction that pi R-Broadcasts a message m, then does not crash and

never R-Delivers m. By the algorithm of Figure 9 and the validity property of the retransmission

module, pi s-sends m, s-receives m and then R-Delivers m: a contradiction. ✷

Lemma 13. The algorithm of Figure 9 satisfies the property A.1 of reliable broadcast: If a

process pi R-Delivers a message m and then does not crash, then any process that does not crash

after pi R-Delivers m eventually R-Delivers m.

Proof. Let pi be a process that R-Delivers m and then does not crash, let pj be a process that

does not crash after pi R-Delivers m, and assume by contradiction that pj never R-Delivers m.

When pi R-Delivers m, pi s-sends m to every process except itself, by the validity property of

the retransmission module, pj s-receives m and then R-Delivers m: a contradiction. ✷
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Lemma 14. The algorithm of Figure 9 satisfies the property I.1 of reliable broadcast: For any

message m, every process pi that R-Delivers m and then does not crash, R-Delivers m at most

once, and only if m was previously R-Broadcast by sender(m).

Proof. Assume that a process pi R-Delivers a message m and then does not crash. By the no

creation property of the channels, pi cannot s-receive a message out of thin air, and since pi does

not crash after R-Delivering m, the guard line 5 prevents pi from R-Delivering m twice. ✷

Proposition 15: The algorithm of Figure 9 satisfies the properties V.1, A.1, and I.1 of reliable

broadcast.

Proof. Follows directly from lemmata 12, 13 and 14. ✷

URB

T
r
a
n
s
f
o
r
m
a
t
i
o
n

Retransmit

SURB

T
r
a
n
s
f
o
r
m
a
t
i
o
n

Retransmit

SURB

T
r
a
n
s
f
o
r
m
a
t
i
o
n

URB

T
r
a
n
s
f
o
r
m
a
t
i
o
n

RB

optimisation
pattern

w

w

w

w

w

(a) Merging layers

R-Broadcast’                                       

Processing

R-Broadcast

R-Deliver’                                           R-Deliver

Recovery

R-Broadcast                                       

Processing

s-send

R-Deliver                                           s-receive

Recovery

optimisation
pattern

(b) Replacing primitives

Figure 10: Optimisation pattern for reliable broadcast

Uniform Reliable Broadcast. When applying transformer TRB→URB to the reliable broad-

cast of Figure 9, we obtain a uniform reliable broadcast algorithm (V.2, A.2, I.2). Our transfor-

mation introduces however, (i) some redundant forced logs, and (ii) additional messages. Indeed,

in TRB→URB (see Figure 4), the variable r’ delivered is redundant with the variable r delivered.

One of these forced logs is actually useless and can be eliminated if both layers (A and A′) are

merged. In fact, when merging all layers into one, (i) numerous forced logs can be removed, and

(ii) numerous messages can be saved: both using a systematic approach. Intuitively, as shown

in Figure 10, the optimisation pattern is the following:

• The middle layer (e.g., layer A) is removed.
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• The R-Broadcast (resp. R-Deliver) primitive is replaced by the s-send (resp. s-receive)
primitive.

• Thanks to our modular approach, the processing and recovery procedures from the trans-

formers of Section 4.2 can be reused for these algorithms.

Figure 11 gives an optimised algorithm for uniform reliable broadcast. A close look at the

code in Figure 11 shows that it is exactly the same as the one from Figure 4, except that the

optimisation pattern has been applied, e.g., (a) the R-Broadcast primitive of Figure 4 is replaced

with the s-send primitive in Figure 11, (b) the R’-Broadcast primitive of Figure 4 is replaced

with the R-Broadcast primitive in Figure 11, and (c) the R-Deliver primitive disappears, since

it now makes double usage with the s-receive primitive. Due to a lack of space and since the

correctness proofs for this algorithm are similar to those of Figure 4, we omit them here.

1: for each process pi:
2: procedure initialisation:
3: msgSent [] ← ⊥; ur delivered [] ← ⊥
4: procedure processing(m)
5: if m �∈ ur delivered then
6: ur delivered ← ur delivered ∪ m
7: store{ur delivered} {UR-Deliver(m)}
8: procedure UR-Broadcast(m)
9: if m �∈ msgSent then
10: msgSent ← msgSent ∪ m
11: store{msgSent}
12: s-send(m) to all
13: upon s-receive m from pj do
14: processing(m)
15: upon recovery do
16: initialisation; retrieve{msgSent, ur delivered}
17: s-send(ur delivered); s-send(msgSent)

Figure 11: Optimised uniform reliable broadcast (V.2, A.2, I.2)

Strongly Uniform Reliable Broadcast. Applying transformer TURB→SURB on the precedent

uniform reliable broadcast enables us to obtain a strongly uniform reliable broadcast (V.2, A.3,

I.3). However the resulting algorithm contains some redundant forced logs. We use the same

optimisation pattern applied to TURB→SURB and we obtain the optimised algorithm of Figure 12.

Note that TRB→URB adds some messages, while TURB→SURB does not. However, there is an

added forced log compared to transformer TURB→SURB : once a message m has been s-received,

m is stored on stable storage. This forced log is mandatory since the optimised algorithm

cannot rely anymore on the properties of uniform reliable broadcast but only on those of the

retransmission module. If this forced log was not performed, the optimised algorithm would

violate property A.3. Due to a lack of space and since the correctness proofs are similar to those
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of TURB→SURB , we omit them here.

1: for each process pi:
2: procedure initialisation:
3: msgReceived [] ← ⊥; msgSent [] ← ⊥; sur delivered [] ← ⊥; ackReceived [] ← ⊥
4: procedure processing(m)
5: if m �∈ sur delivered then
6: sur delivered ← sur delivered ∪ m
7: store{sur delivered} {SUR-Deliver(m)}
8: procedure SUR-Broadcast(m)
9: if m �∈ msgSent then
10: msgSent ← msgSent ∪ m
11: store{msgSent}
12: s-send(m)
13: upon s-receive m from pj do
14: if m = ACK(m) and pj �∈ ackReceived [m] then
15: ackReceived [m] ← ackReceived [m] ∪ pj

16: if ackReceived [m].size() > �n+1
2
� and m �∈ sur delivered then

17: processing(m)
18: else if m �= ACK(m) and m �∈ msgReceived then
19: msgReceived ← msgReceived ∪ m; store{msgReceived}
20: s-send(ACK(m)); s-send(m)
21: upon recovery do
22: initialisation; retrieve{msgSent, msgReceived sur delivered}
23: s-send(msgSent); s-send(msgReceived); s-send(sur delivered)
24: for all m′ ∈ msgReceived do
25: s-send(ACK(m′))

Figure 12: Optimised strongly uniform reliable broadcast (V.2, A.3, I.3)

Analytical Performance and Lower Bounds. Figure 13 depicts the communication and

stable storage pattern of several reliable broadcast algorithms: (a) the reliable broadcast of [15],

(b) the uniform reliable broadcast of Figure 11, and (c) the strongly uniform reliable broadcast

of Figure 12. Figure 13 considers nice runs, i.e., no process or link crashes. Figure 13(a) shows

that the reliable broadcast algorithm does not perform any forced logs. However, the uniform

reliable broadcast algorithm performs one forced log when UR-Broadcasting a message m, and

one forced log when UR-Delivering m. Finally, Figure 13(c) shows that strongly uniform reliable

broadcast has an additional forced log per process compared to uniform reliable broadcast, i.e.,

it performs a forced log when a process s-receives a message m for the first time. To ease

reading, we did not draw all acknowledgements on the diagram; actually each process s-sends

acknowledgements to every other process. Figure 13(c) presents a scenario where the first two

processes s-receive only two acknowledgements, and therefore cannot SUR-Deliver a message m.

On the opposite, the last three processes s-receive a majority of acknowledgements and indeed

SUR-Deliver m.

One can trivially verify that, in nice runs and for any given message m reliable broadcast

and uniform reliable broadcast require one communication step (resp. nc messages, where nc

is the number of correct processes in the system) before m is delivered; while strongly uniform
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Figure 13: Communication and stable storage pattern for reliable broadcast

reliable broadcast needs two communication steps (resp. n2
c + nc messages) to deliver m. These

bounds are clearly minimal. We show now that our reliable broadcast algorithms are minimal

in the number of logs they perform. We state for uniform reliable broadcast that if a process pi

UR-Delivers a message m, then (i) pi has performed at least one forced log, and (ii) at least two

forced logs have been performed in the system. Intuitively, as depicted in Figure 13(b), when

pi UR-Delivers m, pi must perform one forced log. However, the process that UR-Broadcasts

must also perform another forced log; thus, at least two forced logs have been performed in the

system.

Lemma 16. Consider any uniform reliable broadcast algorithm A, A cannot satisfy the proper-

ties of uniform reliable broadcast if A does not perform at least one forced log.

Proof. Assume by contradiction that there is a uniform reliable broadcast algorithm A that

does not use stable storage. Let R(m,Gfaulty , Gau) be the set of runs of A such that (1) the

only message broadcast is m; (2) processes in Gfaulty crash at the beginning and never recover;

(3) processes in Gau never crash; and (4) processes not in Gau ∪Gfaulty crash at the beginning,

recover afterwards and never crash again. We show now that there exists disjoint subsets of

processes G and G′ such that in some run r ∈ R(m,G,G′) some correct process UR-Delivers m

more than once (which violates property A.2). In R(m,G,G′), we have faulty, always-up and

eventually always-up processes. Let pi be any correct process. Consider two runs r0 and r1,

both belonging to R(m,G,G′). Since r0 ∈ R(m,G,G′) and A solves uniform reliable broadcast,

we can suppose that in r0, pi UR-Delivers m and then crashes. When pi recovers, pi begins with

all its values initialised as it would initially at time 0; we say that pi is in state initialised. Now

consider run r1 where pi does not UR-Deliver m and crashes. When pi recovers, it is also in the
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same state initialised. However, for run r0 and r1 to satisfy the properties A.2 and I.2, pi must

behave differently in both runs. In order not to violate property I.2, pi must not UR-Deliver

m in r0; in order not to violate property A.2, pi must UR-Deliver m in r1: a contradiction.

The action of UR-Deliver is local, and pi in each run has the same state initialised. We have

then two cases to consider for each run: (i) pi UR-Delivers m, or (ii) pi does not UR-Deliver

m. A is deterministic and therefore if A UR-Delivers m in r0, so will it in r1 (and vice-versa).

Cases (i) and (ii) are trivial, both violate some property, either I.2 is violated in run r0 (since

pi UR-Delivers m twice), or A.2 is violated in run r1 (since pi does not UR-Deliver m at all).✷

Lemma 17. Consider any uniform reliable broadcast algorithm A, let pi be any process, if pi

UR-Delivers a message then pi has performed at least one forced log.

Proof. Assume that UR-Deliver is a local event which is triggered once the message m has

been logged into stable storage. Assume moreover that there is a uniform reliable broadcast

algorithm A that uses stable storage. As for the proof of lemma 16, consider R(m,Gfaulty , Gau)

to be the set of runs of A. Let pi be any correct process. Consider two runs r0 and r1. Since

r′0 ∈ R(m,Gfaulty , Gau) and A solves uniform reliable broadcast, we can suppose that in r0,

pi stores m (therefore UR-Delivers m) and then pi crashes. When pi recovers, pi retrieves m

and is in state retrieved (not initialised). Now consider run r1 where pi does not UR-Deliver

m and crashes. When pi recovers, it cannot retrieve any message from stable storage and thus

is in state initialised. For run r0 and r1 to satisfy the properties A.2 and I.2, pi has to behave

differently in both runs. In order not to violate property I.2, pi must not UR-Deliver m in

r0; and in order not to violate property A.2, pi must UR-Deliver m in r1. In contrary to the

scenario of lemma 16, pi is in a different state in r0 and r1. A is deterministic but since pi has

a different state in both runs, both processes do not need to execute the same steps. Consider

run r0, pi will not UR-Deliver m since A is deterministic and solves uniform reliable broadcast;

pi must only UR-Deliver m at most once, otherwise it violates property I.2. Now consider run

r1, since A solves uniform reliable broadcast, pi must UR-Deliver m otherwise it violates the

uniform agreement property. Now if pi crashes and recovers in both runs, pi will have the

same state retrieved. We have proved that a process has to perform at least one forced log per

message and per correct process. Since we are not able to distinguish between always-up, faulty

or eventually always-up processes, all processes need to perform at least one forced log even if

they are always-up processes. ✷

Lemma 18. Consider any uniform reliable broadcast algorithm A, let pi be any process, if pi

UR-Delivers a message, then at least two forced logs have been performed in the system.

25



Proof. With lemma 17, a correct process requires at least one forced log to UR-Deliver a message

m. We first to show that one forced log is necessary before returning from the UR-Broadcast

primitive and then show that this forced log is not the one accounted for lemma 17. Let pi be

any correct process. Consider four runs r0, r1, r2 and r3, all belonging to R(m,Gfaulty , Gau).

Consider r0 where pi UR-Broadcasts a message m and then crashes. Suppose moreover that no

process (including pi) receives m. When pi recovers, pi is in state initialised and no process has

some knowledge of m; m will be lost forever. This behaviour violates property V.2. To overcome

this case, we need to store m in stable storage before UR-Broadcasting m. Now, consider run

r1: pi stores m in stable storage, UR-Broadcasts m and then crashes. When pi recovers, it can

retrieve message m and thus is not in state initialised but retrieved. Process pi could keep on

retransmitting m and therefore UR-Deliver m. This shows that one forced log is required before

returning from the UR-Broadcast primitive, we show now that this forced log is not the one

from lemma 17 and that a second forced log is necessary.

Consider run r2 where pi stores m, UR-Broadcasts m. Since r2 ∈ R(m,Gfaulty , Gau) and

A solves uniform reliable broadcast, we can suppose that in r2, pi UR-Delivers m and then

crashes. When pi recovers, pi retrieves m and is in state retrieved. Consider run r3 where pi

stores m, UR-Broadcasts m, does not UR-Deliver m and then crashes. When pi recovers, pi

retrieves also m and is in state retrieved. However, for run r2 and r3 to satisfy the properties A.2

and I.2, pi must behave differently in both runs. In order not to violate property I.2, pi must

not UR-Deliver m in r2; and in order not to violate the property A.2, pi must UR-Deliver

m in r3: a contradiction. The action of UR-Deliver is local, and pi in each run has the same

state retrieved. We have then two cases for both runs: (i) pi UR-Delivers m, or (ii) pi does not

UR-Deliver m. A is deterministic and therefore if pi UR-delivers m in r2, so will pi in r3 (and

vice-versa). Cases (i) and (ii) are trivial, both violate some property (i) I.2 is violated in run r2

(since pi UR-Delivers m twice), and (ii) A.2 is violated in run r3 (since pi does not UR-Deliver

m at all). However, in run r3, pi knows that it UR-Delivered some message m, therefore at least

two forced logs are mandatory to UR-Deliver a message m. ✷

Proposition 19. In a system with nc correct processes, if each correct process pi UR-Delivers

a message, then each pi performs at least one forced log and at least nc+1 forced logs have been

performed in the system.

Proof. Follows directly from lemmata 17 and 18. ✷

Proposition 20. Consider any strongly uniform reliable broadcast algorithm A; let pi be any
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process, if pi SUR-Delivers a message m, then at least n-nc+2 forced logs have been performed

in the system (where n-nc is the number of faulty processes in the system).

Proof. With lemma 18, if a correct process pi UR-Delivers a message m, then two forced

logs have been performed in the system; this is also clearly the case when pi SUR-Delivers

m. However, it is not sufficient, consider the following case. Process pi SUTO-Broadcasts m,

SUTO-Delivers m, all processes crash and pi never recovers. To satisfy property A.3, every

correct process should SUTO-Deliver m. However, this is impossible since no process that is up

has kept track of m, therefore more than two forced logs in the system are required. In fact,

n-nc+1 forced logs are mandatory (one per process), since we want to ensure that at least one

correct process keeps track of m in case all processes crash. From lemma 17, we know that at

least one forced log is mandatory before returning from UTO-Broadcast, it is also trivially the

case for the primitive SUTO-Broadcast. The number of required forced logs performed in the

system when a process SUTO-Delivers a message is therefore at least, n-nc+1+1 = n-nc+2. ✷

5.2 Total Order Broadcast

First, we describe in Figure 14 a simple adaptation to fair lossy channels of the total order broad-

cast algorithm of [7]. The adapted algorithm satisfies the weakest of our total order broadcast

specification (V.1, A.1, I.1, TO.1). The algorithm uses a series of consecutive consensus in-

stances: each consensus instance being used to agree on a batch of messages. Each process

differentiates consecutive instances by maintaining a local counter (k): each value of the counter

corresponds to a specific consensus instance. We describe first the main data structure of the

algorithm. A local set Received keeps track of all messages that needs to be decided, and another

set TO Delivered keeps track of all TO-Delivered messages. Intuitively, the algorithm works as

follows for a given process pi. When there are still messages to be TO-Delivered, i.e., Received-

TO Delivered is not empty, process pi launches a consensus instance and waits for the decision

value of consensus. Once pi s-receives the decision, pi removes all TO-Delivered messages from

the batch and atomically deliver all the messages. Note that, once pi TO-Delivers m, then pi

R-Broadcasts the delivered messages to every process in order to satisfy property A.1 of total

order broadcast. We assume for the rest of the section that there is a majority of correct pro-

cesses in the system.9 Due to a lack of space, we give the correctness proofs of the algorithm of

Figure 14 in optional Appendix A.
9Due to a lack of space, we omit to show that the consensus implementation of [7] adapted to fair lossy

channels, i.e., use of retransmission module and added recovery procedure, satisfies the properties of consensus in
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1: For each process pi:
2: procedure initialisation:
3: Received [] ← ⊥; k ← 0; TO Delivered [] ← ⊥
4: upon TO-Broadcast(m) do
5: R-Broadcast(m)
6: upon R-Deliver(m) do
7: Received ← Received ∪ m
8: TO-Deliver(k) occurs as follows:
9: while Received - TO Delivered �= ⊥ do
10: k ← k + 1; propose(k, Received-TO Delivered)
11: wait until[receive(decide(k, msgSetk))]
12: TO Deliveredk ← msgSetk - TO Delivered
13: atomically deliver all messages in TO Deliveredk in some deterministic order {TO-Deliver m}
14: TO Delivered ← TO Delivered ∪ TO Deliveredk

15: R-Broadcast(msgSetk) {Added from [7]}
16: upon recovery do
17: initialisation

Figure 14: Adaptation of the total order broadcast of [7]

Uniform Total Order Broadcast. For total order broadcast algorithms, the optimisation

pattern used for reliable broadcast is not sufficient and cannot be applied. Consider the following

case depicted in Figure 15. Process p1 UTO-Broadcasts m but only process p2 UTO-Delivers

m; p2 then UTO-Broadcasts m′ and UTO-Delivers m′, therefore all processes should UTO-

Deliver m and then m′. If p2 simply s-sends m′, p1 can first UTO-Deliver m′ and then m, which

violates property TO.2. This example explains why the retransmission module is not sufficient

to implement total order broadcast: an agreement phase is mandatory.

UTO-
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Deliver m

p1

p2

p4

p3

p5

UTO-Broadcast m
p1 (resp. p2) cannot

s-send m (resp. m’)
since the order 
must be respected

UTO-
Deliver m’

UTO-
Deliver m’

UTO-
Deliver m’

UTO-
Deliver m’

Figure 15: Retransmission module is not sufficient

We give here the intuition underlying the total order algorithms obtained after our transforma-

tions and optimisations. As shown by the example of Figure 15, the optimisation pattern for

reliable broadcast is different from the optimisation pattern for total order broadcast such that

the following steps are imposed:

• An agreement phase is added to the retransmission module that replaces the middle layer
our system model. Moreover, we assume here the reliable broadcast algorithm of [15] of Figure 9.
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(A).

• The process that coordinates the agreement phase saves one forced log by coupling the
forced log of the agreement together with the forced log of the TO-Delivery.

Figure 16 presents the optimisation pattern for total order broadcast. As described in Fig-

ure 16(c), the agreement phase can be improved since performing one forced log for the agree-

ment and one forced log for the TO-Delivery for every process is not mandatory. Instead, the

coordinator process waits for �n
2 � process replies (other than itself), executes some steps, and

then performs one forced log that couples the forced log required for the agreement and the

forced log of the TO-Delivery. Every other process executes the usual scheme, one forced log

for the agreement and one forced log for the TO-Delivery.
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Figure 16: Optimisation pattern for total order broadcast

Strongly Uniform Total Order Broadcast. Our strongly uniform total order broadcast algo-

rithm is the result of the total order optimisation pattern applied to transformer TUTO→SUTOB.

The only difference with the uniform total order algorithm is in the way a process pi TO-

Delivers messages, since pi needs to wait for a majority of processes to acknowledge a batch

before TO-Delivering it.

Analytical Performance and Lower Bounds. Figure 17 depicts the communication and sta-

ble storage pattern, in nice runs, of several total order algorithms: (a) the total order broadcast

of [7], (b) the uniform total order broadcast and (c) the strongly uniform total order broadcast.

For presentation clarity, for both uniform broadcasts, Figures 17(b) and 17(c) depict only the

agreement phase of process p1 (in dots), and, in addition, Figure 17(c) depicts the necessary

acknowledgements for p1 to SUTO-Deliver a message. Figure 17(a) shows that the total order

broadcast algorithm does not perform any forced log. Figure 17 depicts, for uniform total order
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broadcast, that a process pi performs one forced log when UTO-Broadcasting a message m, and

one forced log when UTO-Delivering m. Moreover, every process (except the coordinator of the

agreement phase) performs an additional forced log for the agreement part. Strongly uniform

total order broadcast has the same forced log pattern than uniform total order broadcast but

performs the forced log of the TO-Delivery once a majority of processes has acknowledged the

message. We state for uniform total order broadcast that, if a process pi UTO-Delivers a batch

of messages, then (i) �n
2 � processes (including pi) have performed one forced log, and (ii) �n

2 �+1
forced logs have been performed in the system.
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Figure 17: Communication and stable storage pattern for total order broadcast

Lemma 21. Consider any uniform total order broadcast algorithm A; let pi be any process, If

pi UTO-Delivers a batch of messages then at least �n
2 � (including pi) processes have performed

one forced log and at least �n
2 �+1 forced logs have been performed in the system.

Proof. As shown in lemma 17, the process that UTO-Broadcasts must perform one forced log

before returning from UTO-Broadcast. Assume that A solves uniform total order broadcast

with �n
2 �-1 forced logs (one forced log per process). Suppose now that only the faulty (�n

2 �-1)
processes UTO-Deliver batch k, i.e., store batch k, crash and never recover. A correct process

pi can then decide another value for batch k, i.e., the property TO.2 of A is violated. Therefore,

if �n
2 � forced logs are performed (one forced log per process), at least one correct process has

stored batch k since there at most n
2 faulty processes in the system. Indeed, at least �n

2 �+1
forced logs have been performed in the system. ✷

Proposition 22. In a system with nc correct processes, if each correct process pi UTO-Delivers

a batch of messages, then at least 2nc forced logs have been performed in the system.

Proof. Follows directly from lemma 21 and the fact that (a) one forced log is mandatory

before returning from the primitive UTO-Broadcast, and (b) one forced log is mandatory for
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the coordinator of the agreement phase to UTO-Deliver a message. The minimal number of

forced logs is performed if both previous forced logs are performed on the same correct process.

Then every other correct process (nc-1) performs two forced logs to UTO-Deliver m, we have

then 2(nc-1)+1+1 = 2nc. ✷

5.3 Experimental Measures

We give some practical performance measurements of the algorithms that result from our trans-

formations and optimisations. Our measurements reflect the impact of uniformity on the ac-

tual performance. These measurements were made on a LAN interconnected by Fast Ethernet

(10MB/s) on a normal working day. The LAN consisted of 60 UltraSUN 10 (256Mb RAM, 9

Gb Harddisk) machines. All stations were running Solaris 2.7, and our implementation was run-

ning Solaris JVM (JDK 1.2.1, native threads, JIT). The effective message size was of 1Kb and

the performance tests consider only cases where as many broadcasts as possible are executed.

When the number of processes increases, not only the number of recipients increases but also

the number of broadcasting processes. These tests consider nice runs: no process or link crashes

or is suspected to have crashed; these runs are the most frequent in practice, and are those for

which algorithms are usually optimised. Figure 18(a) summarises the results of the throughput

measurements for each type of broadcast. Not surprisingly, our comparison depicts the fact that

the more forced logs a broadcast contains (stronger specification), the worst the throughput is.

We give a more detailed view of the results in Figure 18(b).
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Figure 18: Performance comparison

To measure the overhead of uniformity, we have performed simple message sends between
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processes (until we reach the network capacity). This performance test measures the overhead

of the retransmission module. We can also figure out that the existing reliable (resp. total

order) broadcasts for the crash-stop model should have a performance that lies between the

two top (resp. top and third) curves of Figure 18(a) since we assume that known crash-stop

implementations must be as efficient as our implementation. As conveyed by the measurement

results, the performance of the reliable and total order broadcasts are by far better than the

ones requiring stable storage (i.e., uniformity). Figure 18(b) is a bit misleading since it gives

the impression that, for ten processes, the performance varies very little for broadcasts requiring

forced logs. In fact, the scale is really large and the difference is quite noticeable; the measures are

given in Figure 19. Note that for both type of broadcast (reliable and total order), the uniform

and strongly uniform versions are limited by the overhead time that it takes to store messages

on stable storage. On our workstations, a forced log of the size of 1Kb took in average around 60

milliseconds.10 On the other hand, the performance of the weakest broadcasts (without forced

log) are limited by the overall performance of the network, which is conveyed by the quickly

decreasing throughput. Again, due to the overhead of the stable storage, we notice that (i)

reliable and total order broadcasts of the same type have performance close to each other, and

(ii) the communication overhead is almost negligible. These results confirm that forced logs are

a major overhead compared to communication steps and should be avoided as much as possible.

A solution to reduce the number of forced logs is to (reliable or total order) broadcast using

batch of messages, i.e., only one forced log is performed for numerous messages. Note that it

takes about half a second to perform a forced log of the size of 100 Kb which is equivalent to

a rate of around 200 msg/sec. When fine-tuning our total order broadcast algorithms, we also

found out that starting too many concurrent instances of consensus had a dramatic impact on

the throughput. The best performance presented here are obtained with consecutive consensus

instances at a rate of 1 or 2 consensus instance per second.

6 Concluding Remarks

We position here our specifications and algorithms with respect to related work.

Pragmatic approaches. Considerable work has been devoted to the implementation of broad-

cast primitives in practical system models where processes and channels may crash and recover,
10Note that it is a synchronous forced log, e.g., in Java this requires more than just writing on a disk since this

operation only writes data to the cache memory. Instead, we had to force the log by using C code that directly
accesses the disk.
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e.g., MTP [2], RMP [23], RBP [8], TRAM [9], RMTP [18], and TMTP [24]. These broadcast

algorithms do not aim at ensuring agreement in all possible situations [4]: if the sender of a

message crashes, some processes might deliver the message whereas others might not. In fact,

agreement is ensured on a best effort basis. The motivation of our work was precisely to figure

out what it takes to always ensure agreement and total order in a practical crash-recovery system

model.

Group communication systems like Isis [5, 21], Transis [11], or Totem [20] indirectly address

the crash-recovery issue through a group membership abstraction. A process that crashes is

excluded from the group and, when it recovers, it rejoins the group. Message delivery is syn-

chronised with view changes through the notion of view synchrony and, roughly speaking, a

process that leaves the group is exempted from delivering a message. In some sense, the guar-

antees offered by these systems are weaker than those corresponding to our specifications. For

instance, we require that any correct process (even if it crashes and recovers) eventually delivers

every message delivered by a correct process. On the other hand, view synchrony provides a

notion of process exemption and a process that crashes is excluded from the group; hence, this

process is not required to deliver every message.11 One can circumvent the issue by assuming

that a process that recovers changes its identity, but the problem is then postponed to the

application level.

In short, many practitioners considered the problem of broadcasting messages in a crash-

recovery system model. The algorithms proposed obviously ensure weaker guarantees than

the specifications of our primitives, and finding out the actual specifications of the primitives

implemented by those algorithms is an interesting issue. A complementary interesting question

is how to devise crash-recovery broadcast algorithms that satisfy the specifications we defined

in this paper, in a probabilistic manner, e.g., along the lines of [4, 12].
11In practice, if the process recovers and rejoins the group, a state transfer mechanism is performed to update

the state of the newcomer. However, it is not clear to capture the actual guarantee offered by the state transfer
mechanism.
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Traditional specifications. The only comprehensive study of fault-tolerant broadcast speci-

fications we are aware of is [15]. In [15], the authors consider different kinds of process failures:

roughly speaking, crash failures model the definite halting of activities, omission failures model

the skipping of messages, and Byzantine failures model arbitrary behaviour.

• One might draw an interesting analogy between the omission failure model and the crash-
recovery model. Indeed, just like in an omission failure model, a process pi can be up at a

given time, yet pi could have lost all messages sent to it before t: just like if pi had crashed

and recovered by t. However, in a crash-recovery model, pi would have lost not only the

messages it received, but also its volatile state. Hence, the analogy would be accurate if

we assume that processes store every state change to stable storage (i.e., exclusively use

stable storage vs volatile memory), but this would be a very expensive analogy. One of our

objectives when designing algorithms in a crash-recovery model is precisely to minimise

the access to stable storage. Hence, omissions capture only one aspect of the actual failure

that a process might commit in a crash-recovery model.

• The Byzantine failure model could be viewed as more general that the crash-recovery model
and one would wonder whether the specifications and algorithms devised in the Byzantine

model could be used in a crash-recovery model. Indeed, a process that crashes and recovers

can obviously be viewed as a Byzantine process. However, in our crash-recovery resilient

broadcast specifications, processes that crash and recover several times, yet that eventually

remain up, are considered correct and are supposed to behave in a consistent manner, e.g.,

they are required to deliver messages that have been broadcast by correct processes. One

cannot make any such requirement on any arbitrary Byzantine process. As a consequence,

specifications of Byzantine resilient broadcast primitives simply do not fit a crash-recovery

model.

Crash-recovery resilient total order broadcasts. We know of two broadcast algorithms

that ensure strong reliability in a practical crash-recovery system model: the algorithm of [22]

and the algorithm of [17]. Both ensure total order delivery of messages. In fact, these two

algorithms ensure our strongly uniform total order broadcast specification (i.e., properties V.2,

A.3, I.3 and TO.3). The algorithm of [22] is modular in the sense that it relies on an underlying

consensus abstraction. The algorithm of [17] opens that abstraction for performance reasons.

In fact, the strongest of our total order algorithms that we obtain from our transformations and

optimisations corresponds exactly to the algorithm of [17].
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A Optional Appendix: Total Order Broadcast Proofs

This appendix presents the correctness proofs for transformers TTOB→UTOB and TUTOB→SUTOB,

and for the total order broadcast of [7] adapted to fair-lossy channels.

A.1 Transformer TTOB→UTOB

Lemma 23. The algorithm of Figure 7 transforms the property V.1 of A into the property V.2

of A′: If a correct process pi TO’-Broadcasts a message m, then pi eventually TO’-Delivers m.

Proof. Suppose that a correct process pi TO’-Broadcasts m and assume by contradiction that

pi never TO’-Delivers m (i.e., pi violates property V.2). There are two cases to consider: (i)

pi does not crash, and (ii) pi crashes, recovers and remains always-up. For case (i), since pi

does not crash, then by the property V.1 of A, pi eventually TO-Delivers m (line 21). Process

pi then either TO’-Delivers m at line 10 if it is the next batch that pi is waiting for, or TO’-

Delivers m later in a next batch of messages at line 14: a contradiction. For case (ii), there is a

time after which pi stops crashing and remains always-up. When pi recovers, pi retrieves either

(a) the batches of messages that it TO-Delivered but never TO’-Delivered, or (b) the batches

of messages that it TO’-Broadcasts at line 26 (msgSent). For case (a), pi then TO’-Delivers

these batches of messages (one containing m) if they are the next batches of messages that pi is

waiting for, or TO’-Delivers them later: a contradiction. For case (b), pi then TO-Broadcasts

these batches at line 28. We are certain that pi has stored m into stable storage at line 19 since

a process has TO’-Broadcast m only when it returns from the invocation of TO’-Broadcast. By

line 19 of the algorithm, we ensure that the forced log will be executed before returning from

the invocation of TO’-Broadcast. Since pi has never TO-Delivered m, then by the property V.1

of A, pi TO-Delivers m at line 21 and then TO’-Delivers m if it is part of the next batch of

messages that pi is waiting for, or TO’-Delivers m later: a contradiction. ✷

Lemma 24. The algorithm of Figure 7 transforms the property A.1 of A into the property

A.2 of A′: If a correct process TO’-Delivers a message m, then every correct process eventually

TO’-Delivers m.

Proof. Suppose that pi is a correct process that TO’-Delivers m and assume by contradiction

that pj is a correct process that does not TO’-Deliver m. There are four cases to consider: (a)

pi and pj do not crash, or (b) pi crashes, recovers and remains always-up, and pj does not crash,

or (c) pi does not crash, and pj crashes, recovers and remains always-up, and finally (d) both
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processes pi and pj crash, recover and remain eventually always-up. For case (a), since both

processes do not crash, by the property A.1 of A, pj TO-Delivers m, therefore pj TO’-Delivers

m if it is part of the next batch of messages that pi is waiting for, or TO’-Delivers m later:

a contradiction. For case (b), since pi is correct, there is a time after pi stops crashing and

remains always-up. After recovering, pi retrieves the messages that it TO’-Delivered at line 26,

and s-sends them to every process at lines 31-32. By the validity property of the retransmission

module, pj eventually s-receives the TO’-Delivered from pi at line 23, and then TO’-Delivers

m if it is part of the next batch of messages that pi is waiting for, or TO’-Delivers m later:

a contradiction. For case (c), since pj is correct, there is a time after which pj stops crashing

and remains always-up. Before TO’-Delivering m, pi s-sends the batch of messages containing

m to pj at line 22. As for case (b), pj then eventually s-receives m, and then TO’-Delivers m

if it is part of the next batch of messages that pi is waiting for, or TO’-Delivers m later: a

contradiction. Finally, case (d) is a mix of case (b) and (c); there is a time after which both

processes pi and pj stop crashing and remain always-up. As for case (b) and (c), pi s-sends a

batch of messages containing m to pj, pj then eventually s-receives it and then TO’-Delivers

m if it is part of the next batch of messages that pi is waiting for, or TO’-Delivers m later: a

contradiction. ✷

Lemma 25. The algorithm of Figure 7 transforms the property I.1 of A into the property I.2

of A′: For any message m, every correct process pi TO’-Delivers m at most once, and only if

m was previously TO’-Broadcast by sender(m).

Proof. For the first part of the property, suppose by contradiction that a correct process pi

TO’-Delivers m more than once. We have two cases to consider: (i) pi does not crash, or (ii)

pi crashes, recovers and remains always-up. Case (i) is clearly impossible since before TO’-

Delivering m, pi appends the batch of messages (containing m) to the set to’ delivered at line 8,

and checks for the batch of messages in the set to’ delivered at guard line 7: a contradiction. For

case (ii), there is a time after which pi stops crashing and remains always-up. Remember that

pi stores the set to’ delivered and the variable nextBatch into stable storage at line 10. When

pi crashes and recovers, pi retrieves the set to’ delivered and the variable nextBatch. Therefore,

pi cannot go through guard line 7 twice since pi checks that (a) the set to’ delivered [nextBatch]

is empty, and (b) the kth batch of messages that is TO’-Delivered is equal to nextBatch: a

contradiction. The second part follows from the no creation property of the channels. This

property prevents the case of s-receiving (resp. TO-Delivering) messages that were not s-sent

(resp. TO-Broadcast). ✷
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Lemma 26. The algorithm of Figure 7 transforms the property TO.1 of A into the property

TO.2 of A′: If correct processes pi and pj both TO’-Deliver m and m′, then pi TO’-Delivers m

before m′ if and only if pj TO’-Delivers m before m′.

Proof. Suppose that a correct process pi TO’-Delivers m beforem′ and assume by contradiction

that another correct process pj TO’-Delivers m′ before m. Since we assume that there is a

deterministic rule for TO’-Delivering a batch of messages, we know that if this situation occurs,

m and m′ have to be in two different batches of messages. Assume that m is in the kth batch of

messages and m′ in the k+1th batch of messages. There are now two cases to consider: (i) pi and

pj do not crash, or (ii) one of them (pi and pj) crashes, recovers and remains always-up. For case

(i), by the algorithm of Figure 7, if pi TO’-Delivers m before m′, then pj cannot TO’-Deliver m′

before m since guard line 7 forbids pj to TO’-Deliver batches of messages out of order. Process

pj could s-receive the k+1th batch of messages before TO-Delivering the kth batch of messages,

however guard line 7 prevents pj from TO’-Delivering the k+1th batch of messages before the

kth batch of messages: a contradiction. For case (ii), there is a time after which pi or pj stops

crashing and remains always-up. Remember that a process stores the kth batch of messages

into stable storage (line 10) before TO’-Delivering it. When a process recovers, it retrieves and

s-sends the messages that it TO’-Delivered along with the value of the next expected batch

of messages. This precludes a correct process to wait for a batch of messages that it already

TO’-Delivered; and for the same reasons described for case (i), a process cannot TO’-Deliver

batches out of order: a contradiction. ✷

Proposition 27. The algorithm of Figure 7 transforms a total order broadcast into a uniform

total order broadcast.

Proof. Follows directly from lemmata 23, 24, 25 and 26. ✷

A.2 Transformer TUTOB→SUTOB

Lemma 28. The algorithm of Figure 8 preserves the property V.2 of A into A′: If a correct

process pi TO’-Broadcasts a message m, then pi eventually TO’-Delivers m.

Proof. Suppose by contradiction that a correct process pi TO’-Broadcasts m and never TO’-

Delivers m (i.e., pi violates property V.2). There are two cases to consider: (i) pi does not crash,

or (ii) pi crashes, recovers and remains always-up. For case (i), since (a) pi TO-Broadcasts m

and waits for a majority of ACK(k) where k is the batch of messages containing m, (b) there

is a majority of correct processes in the system, (c) there is a time after which those correct
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processes stop crashing and remain always-up, and (d) by the property A.2 of A, eventually

every correct process TO-Delivers m, and then acknowledges it by s-sending an ACK(k). By

the validity property of the retransmission module, pi then s-receives a majority of ACK(k) and

TO’-Delivers m if it is part of the next batch of messages that pi is waiting for, or TO’-Delivers

m later: a contradiction. For case (ii), there is a time after which pi stops crashing and remains

always-up, then (a) pi retrieves and s-sends, when recovering, the messages it TO-Delivers but

did not TO’-Deliver, and (b) for the same reasons invoked for case (i), pi eventually s-receives

a majority of ACK(k) and therefore TO’-Delivers this batch of messages if it is the next batch

of messages that pi is waiting for, or TO’-Delivers it later: a contradiction. ✷

Lemma 29. The algorithm of Figure 8 transforms the property A.2 of A into the property A.3

of A′: If a process TO’-Delivers a message m, then every correct process eventually TO’-Delivers

m.

Proof. Let pi be a process that TO’-Delivers a batch of messages containing m and assume

by contradiction that a correct process pj does not TO’-Deliver m. When pi TO’-Delivers m,

pi has to s-receive a majority of ACK(k) at line 23. Since we assume a majority of correct

processes, there is at least one correct process pj that has TO-Delivered the batch of messages

k that contains m since ACK(k) messages are only s-sent when a process has TO-Delivered

batch k (line 19). There is a time after which every correct process stops crashing and remains

always-up. Since pj TO-Delivered batch k, by the property A.2 of A, every correct process

TO-Delivers batch k and then acknowledges k when recovering. Hence, pj s-receives a majority

of ACK(k) and TO’-Delivers k which includes m: a contradiction. ✷

Lemma 30. The algorithm of Figure 8 preserves the property I.2 of A into A′: For any message

m, every correct process pi TO’-Delivers m at most once, and only if m was previously TO’-

Broadcast by sender(m).

Proof. Identical to the proof of lemma 25. ✷

Lemma 31. The algorithm in Figure 8 preserves the property TO.2 of A into A′: If correct

processes pi and pj both TO’-Deliver m and m′, then pi TO’-Delivers m before m′ if and only

if pj TO’-Delivers m before m′.

Proof. Identical to the proof of lemma 26. ✷

Proposition 32. The algorithm of Figure 5 transforms a uniform total order broadcast into a

strongly uniform total order broadcast.
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Proof. Follows directly from lemmata 29, 30, 31 and 32. ✷

A.3 Total Order Algorithm

Lemma 33. The algorithm of Figure 14 satisfies the property V.1 of total order broadcast: If a

process pi TO-Broadcasts a message m and then does not crash, pi eventually TO-Delivers m.

Proof. Suppose by contradiction that pi TO-Broadcasts a message m, then does not crash

and never TO-Delivers m. Since we assume a majority of correct processes, there is a time

after which a majority of correct processes stops from crashing and remains always-up. By the

algorithm of Figure 14, since once pi TO-Broadcasts m, pi does not crash, then pi R-Broadcasts

m, R-Delivers m and then proposes m in a batch. Eventually, pi receives the decision and then

TO-Delivers m: a contradiction. ✷

Lemma 34. The algorithm of Figure 14 satisfies the property A.1 of total order broadcast: If

a process pi TO-Delivers a message m and then does not crash, then any process that does not

crash after pi TO-Delivers m eventually TO-Delivers m.

Proof. Let pi be a process pi that TO-Delivers m and does not crash afterwards, let pj be a

process that does not crash after pi TO-Delivers m and assume by contradiction that pj never

TO-Delivers m. When pi TO-Delivers m, there is a modified step compared to [7] since pi

R-Broadcasts again m to ensure that all correct processes that do not crash after pi TO-Delivers

m, eventually TO-Deliver m. By the property A.1 of reliable broadcast, all processes that do not

crash after pi TO-Deliver m, R-Deliver m, then eventually propose m, decide m and TO-Deliver

m: a contradiction. ✷

Lemma 35. The algorithm of Figure 14 satisfies the property I.1 of total order broadcast: For

any message m, every process pi that TO-Delivers m and then does not crash, TO-Delivers m

at most once, and only if m was previously TO-Broadcast by sender(m).

Proof. Assume by contradiction that a process pi TO-Delivers a message m and then does not

crash. By the no creation property of the channels, pi cannot TO-Deliver a message out of thin

air, and since pi does not crash after TO-Delivering m, line 12 prevents pi from TO-Delivering

m twice: a contradiction. ✷

Lemma 36. The algorithm of Figure 14 satisfies the property TO.1 of total order broadcast:

Let pi and pj be any two processes that TO-Deliver some message m. If pi TO-Delivers some

message m′ before m and then does not crash, then if pj also TO-Delivers m′ and then does not
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crash, pj TO-Delivers m′ before m.

Proof. Assume that processes pi and pj TO-Deliver a message m′ and then do not crash.

Assume by contradiction that pi TO-Delivers m after m′ and pj never TO-Delivers m. When

pi TO-Delivers m, pi R-Broadcasts m, then by the property A.1 of reliable broadcast and the

algorithm of Figure 14, pj TO-Delivers m after m′: a contradiction. ✷

Proposition 37: The algorithm of Figure 14 satisfies the properties V.1, A.1, I.1 and TO.1 of

total order broadcast.

Proof. Follows directly from lemmata 33, 34, 35 and 36. ✷
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