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Abstract


The Paxos part-time parliament protocol of Lamport provides a very practical way to implement a fault-tolerant


deterministic service by replicating it over a distributed message passing system. The contribution of this paper is


a faithful deconstruction of Paxos that preserves its efficiency in terms of forced logs, messages and communication


steps. The key to our faithful deconstruction is the factorisation of the fundamental algorithmic principles of Paxos


within two abstractions: weak leader election and round-based consensus, itself based on a round-based register


abstraction. Using those abstractions, we show how to reconstruct, in a modular manner, known and new variants of


Paxos. In particular, we show how to (1) alleviate the need for forced logs if some processes remain up for sufficiently


long, (2) augment the resilience of the algorithm against unstable processes, (3) enable single process decision with


shared commodity disks, and (4) reduce the number of communication steps during stable periods of the system.
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∗The Island of Paxos used to host a great civilisation, which was unfortunately destroyed by a foreign invasion. A famous archaeologist reported


on interesting parts of the history of Paxons and particularly described their sophisticated part-time parliament [11]. Paxos legislators maintained


consistent copies of the parliamentary records, despite their frequent forays from the chamber and the forgetfulness of their messengers. Although


recent studies explored the use of powerful tools to reason about the correctness of the parliament protocol [12, 16], our desire to better understand


the Paxon civilisation motivated us to revisit the Island and spend some time deciphering the ancient manuscripts of the legislative system. We


discovered that Paxons had precisely codified various aspects of their parliament protocol which enabled them easily adapt the protocol to specific


functioning modes throughout the seasons. In particular, during winter, the parliament was heated and some legislators did never leave the chamber:


their guaranteed presence helped alleviate the need for expensive writing of decrees on ledgers. This was easy to obtain precisely because the


subprotocol used to “store and lock” decrees was precisely codified. In spring, and with the blooming days coming, some legislators could not stop


leaving and entering the parliament and their indiscipline prevented progress in the protocol. However, because the election subprotocol used to


choose the parliament president was factored out and precisely codified, the protocol could easily be adapted to cope with indisciplined legislators.


During summer, very few legislators were in the parliament and it was hardly possible to pass any decree because of the lack of the necessary


majority. Fortunately, it was easy to modify the subprotocol used to store and lock decrees and devise a powerful technique where a single legislator


could pass decrees by directly accessing the ledgers of other legislators. Fall was a protest period and citizens wanted a faster procedure to pass


decrees. Paxons noticed that, in most periods, messengers did not loose messages and legislators replied in time. They could devise a variant of the


protocol that reduced the number of communication steps needed to pass decrees during those periods. This powerful optimisation was obtained


through a simple refinement of the subprotocol used to propose new decrees.
†This work was partially supported by the Swiss National Fund grant No. 510 207.
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1 Introduction


The Paxos Algorithm


The Paxos part-time parliament algorithm of Lamport [11] provides a very powerful way to implement a highly-


available deterministic service by replicating it over a system of non-malicious processes communicating through


message passing. Replicas follow thestate-machine pattern (also calledactive replication) [19]. Each correct replica


computes every request and returns the result to the corresponding client which selects the first returned result. Paxos


maintains replica consistency by ensuring total order delivery of requests. It does so even during unstable periods of


the system, e.g., even if messages are delayed or lost and processes crash and recover. During stable periods, Paxos


rapidly achieves progress.1 As pointed out in [12, 16] however, Paxos is rather tricky and it is difficult to factor out


the abstractions that comprise the algorithm. Deconstructing the algorithm and identifying those abstractions is an


appealing objective towards specific reconstructions and practical implementations of it.


In [12, 16], Lampson, De Prisco and Lynch focused on the key issue in the Paxos algorithm used to agree on a total


order for delivering client requests to the replicas. This agreement aspect, factored out within a consensus abstraction,


is deconstructed into a storage and a register part. As pointed out in [12, 16], one can indeed obtain a pedagogically


appealing state machine replication algorithm as a straightforward sequence of consensus instances, but faithfully


preserving the efficiency of the original Paxos algorithm goes through opening the consensus box and combining


some of its underlying algorithmic principles with non-trivial techniques such as log piggy-backing and leasing. The


aim of our paper is to describe a faithful deconstruction top to bottom, of the entire Paxos replication algorithm. Our


deconstruction is faithful in the sense that it relies on abstractions that do no need to be opened in order to preserve


the efficiency of the original Paxos replication scheme.


The Faithful Deconstruction


A key to our faithful deconstruction is the identification of the new notion ofround-based consensus, which is in a


sense, finer-grained than consensus.2 This new abstraction is precisely what allows us to preserve efficiency without


sacrificing modularity. Our deconstruction of theoverall Paxos state machine replication algorithm is modular, and


yet it preserves the efficiency of the original algorithm in terms of forced logs, messages and communication steps.


We use round-based consensus in conjunction with a leader election abstraction, both as first class citizens at the level


of the replication algorithm. Round-based consensus allows us to expose the notion of round up to the replication


scheme, as in the original Paxos replication algorithm (but in a more modular manner) and merge all forced logs of the


round at the lowest level of abstraction. Round-based consensus also allows a process to propose more than once (e.g.,


after a crash and a recovery) without implying a forced log. Having the notion of leader as a first class abstraction at
1In fact, the liveness of the algorithm relies on partial synchrony assumptions whereas safety does not: Paxos is “indulgent” in the sense of [6].


In a stable period where the leader communicates in a timely manner with a majority of the processes (most frequent periods in practice), two
communication steps (four if the client process is not leader) and one forced log at a majority of the processes are enough to perform a request and
return a reply.


2The round-based consensus is actually strictly weaker than consensus: it can be implemented with a majority of correct processes and does
not fall within the FLP impossibility, yet it has a meaningful liveness property. Roughly speaking, round-based consensus is the abstraction that we
obtain after extracting the leader election from consensus.
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the level of the replication algorithm (and not hidden by a consensus box) enables the client to send its request directly


to the leader, which can process several requests in a row.


Effective Reconstructions


Not only do our abstractions of leader election and round-based consensus help faithfully deconstruct the original


Paxos replication algorithm, they also enable us to straightforwardly reconstruct known and new variants of it by only


modifying the implementation of one of our abstractions. For example, we show how to easily obtain a modularisation


of the so-called Disk Paxos replication algorithm [5], where progress is ensured with a single correct process and a


majority of correct disks, by simply modifying a component in round-based consensus (its round-based register).3 We


also show how to cleanly obtain the “Fast” Paxos variant by integrating the “lease-based” tricky optimisation, sketched


in [11] and pointed out in [12]. This optimisation makes it possible in stable periods of the system (where “enough”


processes communicate in a timely manner) for any leader to determine the order for a request in a single round-trip


communication step.


We also construct two new variants of Paxos. The first one is more resilient than the original one in the sense that


it copes with unstable processes, i.e., processes that keep on crashing and recovering forever. (The original Paxos


replication algorithm might not achieve progress in the presence of such processes.) Our second variant alleviates


the need for stable storage and relies instead on some processes being always up. This variant is more efficient


than the original one (stable storage is usually considered a major source of overhead) and intuitively reflects the


practical assumption that only part of the total system can be down at any point in time, or indirectly, that the system


configuration has a “large” number of replicas.4 We point out that further variants can be obtained by mixing the


variants we present in the paper, e.g., a Fast Disk Paxos algorithm or a Fast Paxos algorithm than handles unstable


processes.


Thanks to our modular approach, we could implement Paxos and its variants as a framework. We give here practical


implementation measures of the various replication algorithms in this framework.


Roadmap


The rest of the paper is organised as follows. Section 2 describes the model and the problem specification. Section 3


gives the specification of our abstractions. We show how to implement these specifications in a crash-stop model in


Section 4, and how to transpose the implementation in a more general crash–recovery model in Section 5. Section 6


describes four interesting variants of the algorithm. Section 7 discusses related work. Appendix A gives some perfor-


mance measurements of our framework implementation. Appendix B gives an implementation of the failure detector


Ω in a crash-recovery model with partial asynchrony assumptions.
3This typically makes sense if we have shared hard disks (some parallel database systems use this approach for fail-over when they mount each


others disks) or if we have some notion of network-attached storage.
4Note that such a configuration does not preclude the possibility of process crash-recovery. There is here a trade-off that reflects the real-world


setting: fewer processes + forced logs vs more processes without forced logs.
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2 Model


2.1 Processes


We consider a set of processesΠ = {p1, p2, ..., pn}. At any given time, a process is eitherup or down. When it is


up, a process progresses at its own speed behaving according to its specification (i.e., it correctly executes its program).


Note that we do not make here any assumption on the relative speed of processes. While being up, a process can fail


by crashing; it then stops executing its program and becomesdown. A process that is down can later recover; it then


becomes up again and restarts by executing a recovery procedure. The occurrence of acrash (resp. recovery) event


makes a process transit from up to down (resp. from down to up). A processp i is unstable if it crashes and recovers


infinitely many times. We define analways-up process as a process that never crashes. We say that a processp i is


correct if there is a time after which the process is permanently up.5 A process isfaulty if it is not correct, i.e., either


eventually always-down or unstable.


A process is equipped with two local memories: a volatile memory and a stable storage. The primitivesstore and


retrieve allow a process that is up to access its stable storage. When it crashes, a process loses the content of its


volatile memory; the content of its stable storage is however not affected by the crash and can be retrieved by the


process upon recovery.


2.2 Link Properties


Processes exchange information and synchronise bysending andreceiving messages through channels. We assume


the existence of a bidirectional channel between every pair of processes. We assume that every messagem includes


the following fields: the identity of its sender, denotedsender(m), and a local identification number, denotedid(m).


These fields make every message unique throughout the whole life of the process, i.e., a message cannot have the


same id even after the crash and recovery of a process. Channels can lose or drop messages and there is no upper


bound on message transmission delays. We assume channels that ensure the following properties between every pair


of processespi andpj:


No creation: If pj receives a messagem from pi at timet, thenpi sentm to pj before timet.


Fair loss: If pi sends a messagem to pj an infinite number of times andpj is correct, thenpj receivesm from pi


an infinite number of times.


These properties characterise the links between processes and are independent of the process failure pattern occurring


in the execution. The last property is sometimes calledweak loss, e.g., in [14]. It reflects the usefulness of the com-


munication channel. Without the weak loss property, any interesting distributed problem would be trivially impossible


to solve. By introducing the notion of correct process into thefair loss property, we define the conditions under which


a message is delivered to its recipient process. Indeed, the delivery of a message requires the recipient process to be


running at the time the channel attempts to deliver it, and therefore depends on the failure pattern occurring in the


execution. Thefair loss property indicates that a message can be lost, either because the channel may not attempt to
5In practice, a process is required to stay up long enough for the computation to terminate. In asynchronous systems however, characterising the


notion of “long enough” is impossible.
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deliver the message or because the recipient process may be down when the channel attempts to deliver the message


to it. In both cases, the channel is said to commit anomission failure.


We assume the presence of a discrete global clock whose range ticksτ is the set of natural numbers. This clock


is used to simplify presentation and not to introduce time synchrony, since processes cannot access the global clock.


We will indeed introduce some partial synchrony assumptions (otherwise, fault-tolerant agreement and total order are


impossible [4]), but these assumptions will be encapsulated inside ourweak leader election abstraction and used only


to ensure progress (liveness). We give the implementation (with some details on the partial synchrony model) of the


failure detector on which is based our weak leader election in Appendix B. Finally, we define astable period when (i)


the weak leader election returns the same processp l at all processes, (ii) there is a majority of processes that remains


up, and (iii) no process or link crashes or recovers. Otherwise, we say that the system is in anunstable period.


3 Abstractions: Specifications


Our deconstruction of Paxos is based on two main abstractions: aweak leader election and around-based consen-


sus, itself based on around-based register (sub)abstraction. These “shared memory” abstractions export operations


that are invoked by the processes implementing the replicated service. As in [10], we say that an operation invocation


inv2 follows (is subsequent to) an operation invocationinv1, if inv2 was called afterinv1 has returned. Otherwise,


the invocations areconcurrent.


Roughly speaking, Paxos ensures that all processes deliver messages in the same order. The round-based consensus


encapsulates the subprotocol used to “agree” on the order; the round-based register encapsulates the subprotocol


used (within round-based consensus) to “store” and “lock” the agreement value (i.e., the order); and the weak leader


election encapsulates the subprotocol used to eventually choose a unique leader that succeeds in storing and locking a


final decision value in the register. We give here the specifications of these abstractions, together with the specification


of the problem we solve using these abstractions, i.e., total order delivery. (Implementations are given in the next


sections.) The specifications rely on the notion of process correctness: we assume that processes fail only by crashing,


and a process is correct if there is a time after which the process is always-up (i.e., not crashed).6


3.1 Round-Based Register


Like a standard register, around-based register is a shared register that has two operations:read(k) andwrite(k, v).


These operations are invoked by the processes in the system. Unlike a standard register, the operation invocations of a


round-based register (1) take as a parameter an integerk (i.e., a round number), and (2) may commit or abort. Note that


the notion of round is the same for round-based register and round-based consensus: it corresponds to the notion of


ballots in the original Paxos. The commit/abort outcome reflects the success or the failure of the operation. More pre-


cisely, theread(k) operation takes as input an integerk. It returns a pair(status, v) wherestatus ∈ {commit, abort}
andv ∈ V represents the set of possible values for the register;⊥∈ V is the initial value of the register. Ifread(k)


returns(commit, v) (resp.(abort, v)), we say thatread(k) commits (resp.aborts) with v. Thewrite(k, v) operation
6Note that the validity period of this definition is the duration of a protocol execution, i.e., in practice, a process is correct if it eventually remains


up long enough for the protocol to terminate.
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takes as input an integerk and a valuev ∈ V . It returnsstatus ∈ {commit, abort}. If write(k, v) returnscommit


(resp.abort), we say thatwrite(k, v) commits (resp.aborts).7 Intuitively, when aread() invocation aborts, it gives


information about what the process itself has done in the past (e.g., before it crashed and recovered), whereas when


a write() invocation aborts, it gives to the process information about what other processes are doing. A round-based


register satisfies the following properties:


• Read-abort: If read(k) aborts, then some operationread(k ′) or write(k′, ∗) was invoked withk′ ≥ k.


• Write-abort: If write(k, ∗) aborts, then some operationread(k ′) or write(k′, ∗) was invoked withk′ > k.


• Read-write-commit: If read(k) orwrite(k, ∗) commits, then no subsequentread(k ′) can commit withk′ ≤ k


and no subsequentwrite(k ′′, ∗) can commit withk′′ < k.8


• Read-commit: If read(k) commits withv andv 
=⊥, then some operationwrite(k ′, v) was invoked with


k′ < k.


• Write-commit: If write(k, v) commits and no subsequentwrite(k ′, v′) is invoked withk′ ≥ k andv′ 
= v,


then anyread(k′′) that commits, commits withv if k ′′ > k.


These properties define the conditions under which the operationscan abort or commit. Indirectly, these conditions


relate the values read and written on the register. We first describe the condition under which an invocationcan abort.


Roughly speaking, an operation invocation aborts only if there is aconflicting invocation. Like in [11], the notion of


“conflict” is defined here in terms of round numbers associated with the operations. Intuitively, aread() that commits


returns the value written by a “previous”write(), or the initial value⊥ if no write() has been invoked. Awrite()


that commits forces a subsequentread() to return the value written, unless this value has been overwritten.


The read-abort and write-abort conditions capture the intuition that aread(k) (resp. awrite(k, v)) conflicts with


any other operation (read(k ′) or write(k′, v)) made withk′ ≥ k (resp.k′ > k). The read-write commit condition


expresses the fact that, to commit an operation, a process must use a round number that is higher than any round


number of an already committed invocation. The read-commit condition captures the intuition that no value can be


read unless it has been “previously” written. If there has not been any such write, then the initial value⊥ is returned.


The write-commit condition captures the intuition that, if a value is (successfully) written, then, unless there is a


subsequent write, every subsequent successfully read must return that value. Informally, the two conditions (read-


commit, write-commit) ensure that the value read is the “last” value written.


To illustrate the behaviour of a round-based register, consider the example of Figure 1. Three processesp 1, p2 and


p3 access the same round-based register. Processp1 invokeswrite(1, X) before any process invokes any operation


on the register: operationwrite(1, X) commits and the value of the register isX : p 1 getscommit as a return value.


Later,p2 invokesread(2) on the register: the operation commits andp2 gets(commit, X) as a return value. Ifp3


later invokeswrite(1, Y ), then the operation aborts: the return value isabort (becausep 2 has invokedread(2)). The


register value remainsX . If p3 later invokeswrite(3, Y ), the operation commits: the new register value is thenY .
7Note that even if awrite() aborts, its value might be subsequently read, i.e., thewrite() operation is notatomic.
8Note that we deliberately do not restrict the case where different processes perform invocations with the same round number. Paxos indeed


assumes round number uniqueness as we will see in Section 4.
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p1


p2


p3


write(1,X)


commit


 read(2)


commit,X


write(1,Y)


abort


write(3,Y)


commit


Figure 1. Round-based register example


3.2 Round-Based Consensus


We introduce below our round-based consensus abstraction. This abstraction captures the subprotocol used in


Paxos to agree on a total order. Our consensus notion corresponds to a single instance of total order, i.e., one batch of


messages. To differentiate between consensus instances, i.e., batch of messages, we index the consensus instances with


an integer (L). We represent our consensus notion in the form of a shared object with one operation:propose(k, v) [9].


This operation takes as input an integerk (i.e., a round number which is the same one used in the round-based register)


and an initial valuev in a domainV (i.e., a proposition for the consensus). It returns astatus in {commit, abort} and


a value inV . We say that a processpi proposes a valueiniti for roundk whenpi invokes functionpropose(k, initi).


We say thatpi decides v in roundk (or commits roundk) whenp i returns from the functionpropose(k, initi) with


commit andv. If the invocation ofpropose(k, v) returnsabort at p i, we say thatpi aborts roundk. Round-based


consensus has the following properties:


• Validity: If a process decides a valuev, thenv was proposed by some process.


• Agreement: No two processes decide differently.


• Termination: If a propose(k, ∗) aborts, then some operationpropose(k ′, ∗) was invoked withk′ ≥ k; if


propose(k, ∗) commits, then no operationpropose(k ′, ∗) can subsequently commit with roundk ′ ≤ k.


The agreement and validity properties of our round-based consensus abstraction are similar to those of the traditional


consensus abstraction [9]. Our termination property is however strictly weaker. If processes keep concurrently propos-


ing values with increasing round numbers, then no process might be able to decide any value. In a sense, our notion


of consensus has a conditional termination property. In comparison to [12], the author presents a consensus that does


not ensure any liveness property. As stated by Lampson, the reason for not giving any liveness property is to avoid the


applicability of the impossibility result of [4]. Our round-based consensus specification is weaker than consensus and


does not fall into the impossibility result of [4], but nevertheless includes a liveness property. In the rest of the paper,


when no ambiguity is possible, we shall simply use the term consensus instead of round-based consensus.


In Figure 2, processp2 commits consensus with value Y for round 2. Processp1 then triggers consensus by invoking


propose(1, X) but aborts because processp2 proposed with a higher round number and preventsp 1 from committing.


Processp1 then proposes with value X for round 4, and this timep 1 commits. Processp3 aborts when it proposes with


value Z for round 3.
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p1


p2


p3


propose(1,X)


 abort


propose(2,Y)


commit


propose(4,X)


commit


propose(3,Z)


abort


Figure 2. Round-based consensus example


3.3 Weak Leader Election


Intuitively, a weak leader election abstraction is a shared object that elects a leader among a set of processes. It


encapsulates the subprotocol used in Paxos to choose a process that decides on the ordering of messages. The weak


leader election object has one operation, namedleader(), which returns a process identifier, denoting the current


leader. When the operation returnspj at timet and processpi, we say thatpj is leader forpi at timet (or pi elects


pj at timet). We say that a processpi is aneventual perpetual leader if (1) pi is correct, and (2) eventually every


invocation ofleader() returnspi. Weak leader election satisfies the following property:Some process is an eventual


perpetual leader.


It is important to notice that the property above does not prevent the case where, for an arbitrary period of time,


various processes are simultaneously leaders.9 However, there must be a time after which the processes agree on


some unique correct leader. Figure 3 depicts a scenario where every process elects processp 1, and thenp1 crashes;


eventually every process elects then processp2.


p1


p2


p3
 leader()


 p3


 leader()


 p1


 leader()


 p2


 leader()


 p1


 leader()


 p1


 leader()


 p1


 leader()


 p2


 leader()


 p2


 leader()


 p1


 leader()


 p2


crash


Figure 3. Weak leader election example


3.4 Total Order Delivery


The main problem solved by the actual Paxos protocol is to ensure total order delivery of messages (i.e., requests


broadcast to replicas).10 Total order broadcast is defined by two primitives:TO-Broadcast andTO-Deliver. We say


that a process TO-Broadcasts a messagem when it invokesTO-Broadcast with m as an input parameter. We say that


a process TO-Delivers a messagem when it returns from the invocation ofTO-Deliver with m as an output parameter.


Our total order broadcast protocol has the following properties:


• Termination: If a processpi TO-Broadcasts a messagem and thenpi does not crash, thenpi eventually TO-


Deliversm.
9In this sense our weak leader election specification is strictly weaker then the notion of leader election introduced in [18].


10In fact, Paxos also deals with causal order delivery of messages, but we do not consider that issue here.
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• Agreement: If a process TO-Delivers a messagem, then every correct process eventually TO-Deliversm.


• Validity: For any messagem, (i) every processp i that TO-Deliversm, TO-Deliversm only if m was previously


TO-Broadcast by some process, and (ii) every processp i TO-Deliversm at most once.


• Total order: Let pi andpj be any two processes that TO-Deliver some messagem. If p i TO-Delivers some


messagem′ beforem, thenpj also TO-Deliversm′ beforem.


It is important to notice that the total order property we consider here is slightly stronger from the one introduced in [8].


In [8], it is stated that if any processespi andpj both TO-Deliver messages m and m′, thenpi TO-Deliversm before


m′ if and only if pj TO-Deliversm beforem′. With this property, nothing prevents a processp i from TO-Delivering


the sequence of messagesm1; m2; m3 whereas another (faulty) process TO-Deliversm1; m3 without ever delivering


m2. Our specification clearly excludes that scenario and more faithfully captures the (uniform) guarantee offered by


Paxos [11].


4 Abstractions: Implementations


In the following, we give wait-free [9] implementations of our three abstractions and show how they can be used to


implement a simple variant of the Paxos protocol in the particular case of a crash-stop model (following the architecture


of Figure 4). We will show how to step to a crash-recovery model in the next section.


Weak Leader 
Election Round-Based


Register


 Round-Based
Consensus


Communication


Paxos


Figure 4. Architecture


We simply assume here that messages are not lost or duplicated and processes that crash halt their activities and


never recover. We also assume that a majority of the processes never crash and, for the implementation of our weak


leader election abstraction, we assume the failure detectorΩ introduced in [2].


4.1 Round-Based Register


The algorithm of Figure 5 implements the abstraction of a round-based register. The algorithm works intuitively


as follows. Every processpi has a copy of the register value, denoted byv i, and initialised to⊥. A process reads or


writes a value by accessing a majority of the copies with a round number. According to the actual round number, a


processpi might “accept” or not the access to its local copyvi. Every processpi has a variablereadi that represents


the highest round number of aread() “accepted” byp i, and a variablewritei that represents the highest round number


of awrite() “accepted” bypi. The algorithm is made up of two procedures (read() andwrite()) and two tasks that


handleREAD andWRITE messages. Each task is executed in one atomic step to avoid mutual exclusion problems for
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1: procedure register() {Constructor, for each process pi}
2: readi ← 0 {Highest read() round number accepted by pi}
3: writei ← 0 {Highest write() round number accepted by pi}
4: vi ← ⊥ {pi’s estimate of the register value}
5: procedure read(k)
6: send [READ,k] to all processes
7: wait until received [ackREAD,k,*,*] or [nackREAD,k] from �n+1


2 � processes
8: if received at least one [nackREAD,k] then
9: return(abort, v) {read() is aborted}
10: else
11: select the [ackREAD,k, k′, v] with the highestk′


12: return(commit, v) {read() is committed}
13: procedure write(k, v)
14: send [WRITE,k, v] to all processes
15: wait until received [ackWRITE,k] or [nackWRITE,k] from �n+1


2 � processes
16: if received at least one [nackWRITE,k] then
17: return(abort) {write() is aborted}
18: else
19: return(commit) {write() is committed}
20: task wait until receive [READ,k] from pj


21: if writei ≥ k or readi ≥ k then
22: send [nackREAD,k] to pj


23: else
24: readi ← k
25: send [ackREAD,k, writei, vi] to pj


26: task wait until receive [WRITE,k, v] from pj


27: if writei > k or readi > k then
28: send [nackWRITE,k] to pj


29: else
30: writei ← k
31: vi ← v {A new value is “adopted”}
32: send [ackWRITE,k] to pj


Figure 5. A wait-free round-based register in a crash-stop model


the common variables. We assume here that a task is implemented as a thread in JavaTM.


Lemma 1. Read-abort: If read(k) aborts, then some operation read(k ′) or write(k′, ∗) was invoked with k′ ≥ k.


Proof. Assume that some processpj invokes aread(k) that returnsabort (i.e., aborts). By the algorithm of Figure 5,


this can only happen if some processpi has a valuereadi ≥ k or writei ≥ k, which means that some process has


invokedread(k′) or write(k′) with k′ ≥ k. ✷


Lemma 2. Write-abort: If write(k, ∗) aborts, then some operation read(k ′) or write(k′, ∗) was invoked with k′ > k.


Proof. Assume that some processpj invokes awrite(k) that returnsabort (i.e., aborts). By the algorithm of Figure 5,


this can only happen if some processpi has a valuereadi > k or writei > k, which means that some process has


invokedread(k′) or write(k′) with k′ > k. ✷


Lemma 3. Read-write-commit: If read(k) or write(k, ∗) commits, then no subsequent read(k ′) can commit with


k′ ≤ k and no subsequent write(k ′′, ∗) can commit with k′′ < k.


Proof. Let processpi be any process that commitsread(k) (resp. write(k, ∗)). This means that a majority of the


processes have “accepted”read(k) (resp. write(k, ∗)). For a processpj to commitread(k′) with k′ ≤ k (resp.


write(k′′) with k′′ < k), a majority of the processes must “accept”read(k ′) (resp.write(k′′, ∗)). Hence, at least one


process must “accept”read(k) (resp.write(k, ∗)) and thenread(k ′) with k′ ≤ k (resp.write(k′′, ∗) with k′ < k)


which is impossible by the algorithm of Figure 5: a contradiction. ✷
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Lemma 4. Read-commit: If read(k) commits with v and v 
=⊥, then some operation write(k ′, v) was invoked with


k′ < k.


Proof. By the algorithm of Figure 5, if some processp j commitsread(k) with v 
=⊥, then (i) some processpi must


have sent topj a message [ackREAD,k, writej, v] and (ii) some processpm must have invokedwrite(k ′, v) with


k′ < k. Otherwisepi would have sent [nackREAD,k] or [ackREAD,k, 0,⊥] ✷ to p j .


Lemma 5. Write-commit: If write(k, v) commits and no subsequent write(k ′, v′) is invoked with k′ ≥ k and v′ 
= v,


then any read(k′′) that commits, commits with v if k′′ > k.


Proof. Assume that some processpi commitswrite(k, v), and assume that no subsequentwrite(k ′, v′) has been


invoked withk′ ≥ k andv′ 
= v, and that for somek ′′ > k some processpj commitsread(k′′) with v′. Assume by


contradiction thatv 
= v ′. Sinceread(k′′) commits withv′, by the read-commit property, somewrite(k ′′, v′) was


invoked before roundk ′′. However, this is impossible since we assumed that nowrite(k ′, v′) operation withk′ ≥ k


andv′ 
= v has been invoked, i.e.,vi remains unchanged tov: a contradiction. ✷


Proposition 6. The algorithm of Figure 5 implements a round-based register.


Proof. Directly from lemmata 1, 2, 3, 4 and 5. ✷


Proposition 7. With a majority of correct processes, the implementation of Figure 5 is wait-free.


Proof. The only wait statements of the protocol are the guard lines that depicts the waiting for a majority of replies.


These are non-blocking since we assume a majority of correct processes. Indeed, a majority of correct processes


always send a message to the requesting process either of type [ackREAD, nackREAD], or of type [ackWRITE, nack-


WRITE]. ✷


4.2 Round-Based Consensus


The algorithm of Figure 6 implements a round-based consensus object that relies on a wait-free round-based regis-


ter. The basic idea of the algorithm is the following. For a processp i to propose a value for a roundk, p i first reads


the value of the register withk, and if theread(k) operation commits,p i invokes awrite(k, v) (or pi’s initial value


instead ofv if no value has been written). If thewrite(k, v) operation commits, then the process decides the value


written (i.e., returns this value). Otherwise,pi aborts and returnsabort (line 7).


Lemma 8. Validity: If a process decides a value v, then v was proposed by some process.


Proof. Letpi be a process that decides some valuev. By the algorithm of Figure 6, either (a)v is the value proposed by


pi, in which case validity is satisfied, or (b)v has been read byp i in the register. Consider case (b), by the read-commit


property of the register, some processpj must have invoked somewrite() operation. Letp j be the the first process


that invokeswrite(k0, ∗) with k0 equal to the smallestk ever invoked forwrite(k, v). By the algorithm of Figure 6,
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1: procedure consensus() {Constructor, for each process pi}
2: v ← ⊥; reg← new register()
3: procedure propose(k, initi )
4: if reg.read(k) = (commit, v) then
5: if (v =⊥) then v ← initi


6: if (reg.write(k, v) = commit) then return(commit, v)
7: return(abort, initi )


Figure 6. A wait-free round-based consensus using a wait-free round-based register


there are two cases to consider: either (a)v is the value proposed byp j, in which case validity is ensured, or (b)v


has been read bypj in the register. For case (b), by the read-commit property of the register, forp j to readv, some


processpm must have invokedwrite(k ′, v) with k′ < k0: a contradiction. Therefore,v is the value proposed byp j


and validity is ensured. ✷


Lemma 9. Agreement: No two processes decide differently.


Proof. Assume by contradiction that two processesp i andpj decide two different valuesv andv ′. Let pi decides


v after committingpropose(k, v) andpj decidesv′ after committingpropose(k ′, v′). Assume without loss of gen-


erality thatk′ ≥ k. By the algorithm of Figure 6,pj must have committedread(k ′) before invokingwrite(k ′, v′).


By the read-abort property,k ′ > k and by the write-commit propertypj commitsread(k′) with v and then invokes


write(k′, v). Even if write(k′, v) aborts,pj tries to writev and notv′ 
= v. Therefore, the next timepj commits


write(k′, v′), thenv′ = v, i.e., decidesv: a contradiction. ✷


Lemma 10. Termination: If a propose(k, ∗) aborts, then some operation propose(k ′, ∗) was invoked with k′ ≥ k; if


propose(k, ∗) commits, then no operation propose(k ′, ∗) can subsequently commit with round k ′ ≤ k.


Proof. For the first part, assume that some operationpropose(k, ∗) invoked byp i aborts. By the algorithm of Figure 6,


this means thatpi abortsread(k) or write(k, ∗). By the read-abort property, some process must have proposed in a


roundk′ ≥ k. Consider now the second part. Assume that some operationpropose(k, ∗) invoked byp i commits. By


the algorithm of Figure 6 and the read-write-commit property, no process can subsequently commit anyread(k ′) with


k′ ≤ k′. Hence no process can subsequently commit a roundk ′ ≤ k. ✷


Proposition 11. The algorithm of Figure 6 implements a wait-free round-based consensus.


Proof. Termination, agreement and validity follows from lemmata 8, 9 and 10. The implementation of round-based


consensus is wait-free since it is based on a wait-free round-based register and does not introduce any “wait” statement.


✷


4.3 Weak Leader Election


Figure 7 describes a simple implementation of a wait-free weak leader election. The protocol relies on the assump-


tions (i) that at least one process is correct and (ii) the existence of failure detectorΩ [2]: Ω outputs (at each process)


a trusted process, i.e., a process that is trusted to be up. Failure detectorΩ satisfies the following property:There is a
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time after which exactly one correct process pl is always trusted by every correct process.11 Our weak leader election


relies onΩ in the following way. The output of failure detectorΩ at processp i is denoted byΩi. The function simply


returns the value ofΩi.


1: procedure leader() {For each process pi}
2: return(Ωi)


Figure 7. A wait-free weak leader election withΩ


Proposition 12. With failure detector Ω and the assumption that at least one process is correct, the algorithm of


Figure 7 implements a wait-free weak leader election.


Proof. Follows from the property ofΩ [2]. ✷


4.4 A Simple Variant of Paxos


The algorithm of Figure 9 can be viewed as a simple and modular version of Paxos in a crash-stop model (whereas


the original Paxos protocol considers a crash-recovery model - see next section). The algorithm uses a series of


consecutive round-based consensus (or simply consensus) instances: each consensus instance being used to agree on


a batch of messages. Every process differentiates consecutive consensus instances by maintaining a local counter (L):


each value of the counter corresponds to a specific consensus instance and is indexed to thepropose() operation.


Consensus instances are triggered according to the output of the weak leader election protocol: only leaders trigger


consensus instances.


We give here an intuitive description of the algorithm. When a processp i TO-Broadcasts a messagem, pi consults


the weak leader election protocol and sendsm to leaderp j . Whenpj receivesm, pj triggers a new consensus instance


by proposing all messages that it received (and not yet TO-Delivered) and set the round number to the process id. Note


that in order to decide on a batch of messages, more than one consensus round might be necessary; various invocation


consensus for the same batch (L) are differentiated with round numberk. Due to round number uniqueness, no process


can propose twice for the same roundk.12 In fact,pj starts a new taskpropose (Lth) that keeps on trying to commit


consensus for this batch (L), as long aspj remains leader. If consensus commits,pj sends the decision to every


process. Otherwise, taskpropose periodically invokes consensus with the same batch of messages but increases its


round number byn, unlesspj stops being leader or some consensus instance for the same batch commits. Whenp i


elects another processpk, pi sends topk every message thatpi received, and not yet TO-Delivered. By the weak leader


election property, eventually every correct process elects the eventual perpetual leaderp l, and sends its messages topl.


By the round-based consensus specification, eventuallyp l commits consensus and sends the decision to every process.


Oncepi receives a decision for theLth batch of messages,pi stops taskpropose for this batch. Processpi TO-Delivers


this batch of messages only if it is the next one that was expected, i.e., ifp i has already TO-Delivered messages of
11It was shown in [2] thatΩ is the weakest failure detector to solve consensus and total order broadcast in a crash-stop system model. Failure


detectorΩ can be implemented in a message passing system with partial synchrony assumptions [3].
12Allowing two processes to propose for the same round could violate agreement. For example, processp1 invokespropose(1, v) and commits,


and processp2 invokespropose(1, v′). The termination property of consensus allowsp2 to commit: agreement would indeed be violated.
However, if pi invokespropose(1, v), crashes and recovers,p1 can then invokepropose(1, v) or evenpropose(1, v′) without violating the
properties of round-based consensus.
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(d) p1 first electsp3, thenp2 and finallyp5


Figure 8. Execution schemes


batchL-1. If it is not the case,pi waits for the next expected batch (nextBatch) to respect total order. Within a batch


of messages, processes TO-Deliver messages using a deterministic ordering function.


Note that an array of round-based registers is used in the total order broadcast protocol: each round-based register


corresponds to the “store and lock” of a given consensus instance. Finally, note that a processp i instantiates a round-


based register when (i)pi instantiates a round-based consensus, or (ii)p i receives for the first time a message for the


Lth consensus, i.e.,Lth register of the array.


Figure 8 depicts four typical execution schemes of the algorithm. We assume for all cases that (i) processp 1


TO-Broadcasts a messagem, (ii) processp5 is the eventual perpetual leader, and (iii)L =1. (prop(∗) stands in the


figures forpropose(∗).) In Figure 8(a),p1 elects itself, triggers a new consensus instance by invokingpropose(1, m),


commits, and sends the decision to all. In Figure 8(b),p1 electsp5 and sendsm to p5. Processp5 then invokes


propose(5, m), commits, then sends the decision to all. In Figure 8(c),p1 first electsp3 and sendsm to p3. In this


case however,p3 does not elect itself and therefore does nothing. Later on,p 1 electsp5 and then sendsm to p5. As


for case (b),p5 commits consensus and sends the decision to every process. Note thatp 3 could have sentm to p5 if p3


had electedp5. Finally, in Figure 8(d),p1 electsp3 (which does not elect itself), thenp1 electsp2, which elects itself


and invokespropose(2, m) but aborts. Finally,p1 electsp5, and, as for case (c),p5 commits consensus and sends the


decision to all.


Precise description. We give here more details about the algorithm of Figure 9. We first describe the main data


structure, and then the main parts of the algorithm. Each processp i maintains a variableTO delivered that contains
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the messages that were TO-Delivered. Whenpi receives a messagem, pi addsm to the setReceived which keeps


track of all messages that need to be TO-Delivered. ThusReceived - TO delivered, denotedTO undelivered, contains


the set of messages that were submitted for total order broadcast, but are not yet TO-Delivered. The batches that have


been decided but not yet TO-Delivered are put in the setAwaitingToBeDelivered. The variablenextBatch keeps track


of the next expected batch in order to respect the total order property.


There are four main parts in the protocol: (a) when a process receives some message, tasklaunch starts13 task


propose if the processpi is leader, or ifpi is not leader, sends the messages it did not yet TO-Delivered to the leader;


(b) taskpropose keeps on starting round-based consensus whilep i is leader, until a decision is reached; (c) primitive


receive handles received messages, and stops taskpropose oncep i receives a decision; and (d) primitivedeliver TO-


Delivers messages. Each part is described below in more details. Initially, when a processp i TO-Broadcasts a message


m, pi putsm into the setReceived which has the effect of changing the predicate of guard line 15.


• In tasklaunch, processpi triggers the upon case when the setTO undelivered contains new messages or whether


pi elects another leader (line 15). Note that the upon case is executed only once per received message to avoid


multiple consensus instances of the exact same batch of messages. If the upon case is triggered by a leader


change,pi jumps directly to line 26 and sends to the leader all the messages it did not yet TO-Delivered.


Otherwise, before starting a new consensus instance,p i first verifies at line 16 if (i) it already received the


decision for this batch of messages, or (ii) it already TO-Delivered this batch of messages. Processp i verifies


then if it is a leader, and if so,pi increments the batch number to initiate a consensus for a new batch of messages


(L+1), i.e.,pi starts taskpropose with TO undelivered as the batch of messages and the round number set to the


id of pi. If pi is not leader, thenpi sends the messages it did not yet TO-Delivered to the leader.


• In taskpropose, a processpi periodically invokes consensus (proposes) ifp i is leader. By the property of weak


leader election, one of the correct processes (p l) will be the eventual perpetual leader. Oncep l is elected by


every correct process,pl receives all batches of messages from every correct process, proposes and commits


consensus (line 31) and then sends the decision to all (line 34). Note that in this primitive,p i proposes the same


batch of messages but with an increasing round number.


• In the primitivereceive, when processpi receives the decision of consensus (line 36),p i first stops taskproposeL:


pi does not stop other batches (taskpropose) - i.e., this could influence the result of some other consensus


instances (line 37). Processpi then verifies that the decision received is the next decision that was expected


(nextBatch). Otherwise, there are two cases to consider: (i)p i is ahead, or (ii)pi is lagging. For case (i), ifpi


is ahead (i.e., receives a decision from a lower batch),p i sends topj anUPDATE message for each batch thatpj


is missing (line 40). For case (ii), ifpi receives a future batch,pi buffers the messages of the batch in the set


AwaitingToBeDelivered andpi also sends topj anUPDATE message withnextBatch-1 in order forp j to update


itself (pi) whenpj receives this “on purpose lagging” message. Processp i waits until it gets the next expected


batch in order to satisfy the total order property.
13When we say that a new task is started, we mean a new instance of the task with its own variables (since there can be more than one batch of


messages being treated at the same time). Moreover, the variableTO delivered means the union of all arraysTO delivered[L].


15







• In the primitivedeliver, processpi TO-Delivers only the messages that were not already TO-Delivered (line 9


or 12) following the same deterministic order. We assume thatp i removes all messages that appear twice in the


same batch of messages.


We assume here a system model where messages keep being broadcast indefinitely. This assumptions is precisely


what enables us to ensure the uniformity of agreement without additional forced logs and communication steps.


Lemma 13. If the eventual perpetual leader proposes a batch of messages, it eventually decides.


Proof. Assume by contradiction that processp i is the eventual perpetual leader that proposes a batch of messages and


never decides. By the algorithm of Figure 9,p i keeps incrementing round numberk (line 33). Letk 0 be the smallest


round number reached byp i such that no process else thanpi ever invokes any operation. By the algorithm of Figure 9,


such round number exists because, unless it is leader, no other process invokes any operation on the consensus. By the


termination property of consensus and since the implementation of consensus is wait-free,p i commitspropose(k0, ∗),
which means thatpi decides a value: a contradiction. ✷


Lemma 14. Termination: If a process pi TO-Broadcasts a message m and then pi does not crash, then pi eventually


TO-Delivers m.


Proof. Suppose by contradiction that a processp i TO-Broadcasts a messagem but never TO-Deliversm. Remember


that every timepi elects a new process,pi sendsm to this new leader. By the weak leader property, eventuallyp i


elects the eventual perpetual leader processp l andpi sendsm to pl. By lemma 13,pl proposes, decides and sends the


decision to all processes. There are now two cases to consider: (a)p l does not crash, or (b)pl crashes. For case (a), by


the properties of the channels,pi receives the decision frompl and TO-Deliversm: a contradiction. For case (b), ifp l


crashes,pl was not an eventual perpetual leader: a contradiction. ✷


Lemma 15. Agreement: If a process TO-Delivers a message m, then every correct process eventually TO-Delivers m.


Proof. Suppose by contradiction that a processp i TO-Deliversm and letpj be any correct process that does not


TO-Deliverm. Processpi must have received the decision from some processpk (pk could bepi). There are two


cases to consider: (a)pk is a correct process, or (b)pk is a faulty process. For case (a), sincepk TO-Deliveredm, by


the reliable properties of the channels, every correct process receives the decision and TO-Deliversm: a contradiction.


For case (b), since we assume that new messages keep coming, the eventual perpetual leaderp l TO-Deliversm and


therefore sends at some time the decision to every correct process: a contradiction. As explained earlier, due to round


number uniqueness, no two processes can propose for the same round, therefore every correct process decides the


same value for consensus. ✷


Lemma 16. Validity: For any message m, (i) every process pi that TO-Delivers m, TO-Delivers m only if m was


previously TO-Broadcast by some process, and (ii) every process p i TO-Delivers m at most once.


Proof. For the first part (i), suppose by contradiction that some processp i TO-Delivers a messagem that was not


TO-Broadcast by any process. For a messagem to be TO-Delivered, by the algorithm of Figure 9,m must be decided
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through round-based consensus. By the validity property of consensus,m has to be proposed (line 24). In order to be


proposed,m has to be in the setTO undelivered (line 20); then to be in the setTO undelivered, m has to be in the set


Received (line 46). Finally, form to be in setReceived, m has to be TO-Broadcast or sent (lines 6 & 26). Ultimately,


for m to be sent,m must be TO-Broadcast: a contradiction. For the second part (ii),p i cannot TO-Deliver more than


once a messagem. This is impossible since line 8 removes all the messages that have been already TO-Delivered. Of


course, we assume thatpi distinguishes all messages that appear twice in the variablemsgSet. ✷


Lemma 17. Total order: Let pi and pj be any two processes that TO-Deliver some message m. If pi TO-Delivers


some message m′ before m, then pj also TO-Delivers m′ before m.


Proof. Suppose by contradiction thatp i TO-Delivers a messagem before a messagem′ andpj TO-Deliversm′ before


m. There are two cases to consider: (a)m andm ′ are in the same message set, and (b)m andm ′ are in different mes-


sage sets. For case (a), since every process delivers messages following the same deterministic order,m is delivered


beforem′ on both processes: a contradiction. For case (b), suppose thatm is part ofmsgSet L andm′ ∈ msgSetL
′


whereL < L′. Form to be TO-Delivered,msgSetL has to be received as aDECIDE or UPDATE message (line 36).


If pi TO-Deliversm beforem′, thenpj cannot TO-Deliverm′ beforem since the predicate of guard line 38 forbids


pj to TO-Deliver batches of messages out of order: a contradiction. Nevertheless,p j could receive theL′th batch of


messages before theLth batch of messages, but the batch would be put in the setAwaitingtoBeDelivered. ✷


Proposition 18. The algorithm of Figure 9 satisfies the termination, agreement, validity and total order properties.


Proof. Directly from the lemmata 14, 15, 16 and 17. ✷


5 A Faithful Deconstruction of Paxos


This section describes afaithful andmodular deconstruction of Paxos [11]. It ismodular in the sense that it builds


upon our abstractions: the specifications of these are not changed, only their implementations are slightly modified. It


is faithful in the sense that it captures the practical spirit of the original Paxos protocol: it preserves the efficiency of


Paxos and tolerates temporary crashes of links and processes. Just like with the original Paxos protocol, we preclude


the possibility ofunstable processes: either processes are correct (eventually always-up), or they eventually crash and


never recover. We will come back to this assumption in the next section.


To step from a crash-stop model to a crash-recovery model, we mainly adapt the round-based register and slightly


modify the global protocol to deal with recovery (in shade in Figure 10(a), therefore we only present these abstractions


in this section). Every process performs some forced logs so that it can consistently retrieve its state when it recovers.


To cope with temporary link failures, we build upon aretransmission module, associated with two primitivess-send


ands-receive: if a processpi s-sends a message to a correct processpj andpi does not crash, the message is eventually


s-received.
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1: For each processpi:
2: procedure initialisation:
3: Received[]← ∅; TO delivered[] ← ∅; start task{launch}
4: TO undelivered← ∅; AwaitingToBeDelivered[]← ∅; K ← 1; nextBatch← 1
5: procedure TO-Broadcast(m)
6: Received← Received ∪ m
7: procedure deliver(msgSet)
8: TO delivered[nextBatch]← msgSet - TO delivered
9: atomically deliver all messages inTO delivered[nextBatch] in some deterministic order {TO-Deliver}
10: nextBatch← nextBatch +1
11: while AwaitingToBeDelivered[nextBatch] �= ∅ do
12: TO delivered[nextBatch]← AwaitingToBeDelivered[nextBatch]- TO delivered; atomically deliverTO delivered[nextBatch]
13: nextBatch← nextBatch+1
14: task launch {Upon case executed only once per received message}
15: upon Received - TO delivered �= ∅ or leader has changeddo {If upon triggered by a leader change, jump to line 26}
16: while AwaitingToBeDelivered[K+1] �= ∅ or TO delivered[K+1] �= ∅ do
17: K ← K+1
18: if K = nextBatch and AwaitingToBeDelivered[K] �= ∅ and TO delivered[K] = ∅ then
19: deliver(AwaitingToBeDelivered[K])
20: TO undelivered← Received− TO delivered
21: if leader()=pi then
22: while proposeK is active do
23: K ← K+1
24: start task proposeK (K, i, TO undelivered); K ← K+1
25: else
26: send(TO undelivered) to leader()
27: task propose(L, l, msgSet) {Keep on proposing until consensus commits}
28: committed← false; consensusL← new consensus()
29: while not committeddo
30: if leader()=pi then
31: if consensusL.propose(l, msgSet) = (commit, returnedMsgSet) then
32: committed← true
33: l ← l+n
34: send(DECISION,L, returnedMsgSet) to all processes
35: upon receive m from pj do


36: if m = (DECISION,nextBatch,msgSet
Kpj ) or m = (UPDATE,Kpj


,TO delivered[Kpj
]) then


37: if task proposeKpj
is active then stop task proposeKpj


38: if Kpj
�= nextBatch then {pj is ahead or behind}


39: if Kpj
< nextBatch then {pj is behind}


40: for all L such thatKpj
< L < nextBatch: send(UPDATE,L,TO delivered[L]) to pj {If pj �= pi}


41: else
42: AwaitingToBeDelivered[Kpj


] = msgSet
Kpj ; send(UPDATE,nextBatch-1,TO delivered[nextBatch-1]) to pj {If pj �= pi}


43: else
44: deliver(msgSet


Kpj )
45: else
46: Received← Received ∪msgSetT O undelivered {Consensus messages are added to the consensus box}


Figure 9. A modular crash-stop variant of Paxos
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Figure 10. The impact of a crash-recovery model
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5.1 Retransmission Module


We describe here a retransmission module that encapsulates retransmissions issues to deal with temporary crashes


of communication links. The primitives of the retransmission module (s-send and s-receive) preserve the no creation


and fair loss properties of the underlying channels, and ensures the following property:Let p i be any process that


s-sends a message m to a process pj , and then pi does not crash. If pj is correct, then pj eventually s-receives m.


Figure 11 gives the algorithm of the retransmission module. All messages that need to be retransmitted are put in the


variablexmitmsg. Messages inxmitmsg are erased but the Paxos layer stops retransmitting messages except for the


DECISIONor UPDATE messages once a decision has been reached. The no creation and fair loss properties are trivially


satisfied.


1: for each processpi:
2: procedure initialisation:
3: xmitmsg[] ← ∅; start task{retransmit}
4: procedure s-send(m) {To s-send m to pj}
5: if m �∈ xmitmsg then {Ensure that m is not added to xmitmsg more than once}
6: xmitmsg← xmitmsg ∪m
7: if pj �= pi then
8: send m to pj


9: else
10: simulates-receive m from pi


11: upon receive(m) from pj do
12: s-receive(m)
13: task retransmit {Retransmit all messages received and sent}
14: while true do
15: for all m ∈ xmitmsg do
16: s-send(m)


Figure 11. Retransmission module


Proposition 19. Let pi be any process that s-sends a messagem to a processpj , and thenpi does not crash. Ifpj is


correct, thenpj eventually s-receivesm.


Proof. Suppose thatpi s-sends a messagem to a processpj and then does not crash. Assume by contradiction thatp j


is correct, yetpj does not s-receivem. There are two cases to consider: (a)p j does not crash, or (b)pj crashes and


eventually recovers and remains always-up. For case (a), by the fair loss properties of the links,p j receives and then


s-receivesm: a contradiction. For case (b), since processp i keeps on sendingm to pj , there is a time after whichpi


sendsm to pj and none of them crash afterwards. As for case (a), by the fair loss property of the links,p j eventually


receivesm, then s-receivesm: a contradiction. ✷


5.2 Round-Based Register


We give in Figure 12 the implementation of a round-based register in a crash-recovery model. The main differ-


ences with our crash-stop implementation given in the previous section are the following. As shown in Figure 10(b),


a process logs the variablesreadi, writei andvi, in order to be able to recover consistently its precedent state after a


crash. A recovery procedure re-initialises the process and retrieves all variables. The send (resp. receive) primitive is
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1: procedure register() {Constructor, for each process pi}
2: readi ← 0
3: writei ← 0
4: vi ← ⊥
5: procedure read(k)
6: s-send [READ,k] to all processes
7: wait until s-received [ackREAD,k,*,*] or [nackREAD,k] from �n+1


2 � processes
8: if s-received at least one [nackREAD,k] then
9: return(abort, v)
10: else
11: select the [ackREAD,k, k′, v] with the highestk′


12: return(commit, v)
13: procedure write(k, v)
14: s-send [WRITE,k, v] to all processes
15: wait until s-received [ackWRITE,k] or [nackWRITE,k] from �n+1


2 � processes
16: if s-received at least one [nackWRITE,k] then
17: return(abort)
18: else
19: return(commit)
20: task wait until s-receive [READ,k] from pj


21: if writei ≥ k or readi ≥ k then
22: s-send [nackREAD,k] to pj


23: else
24: readi ← k; store{readi} {Modified from Figure 5}
25: s-send [ackREAD,k, writei, vi] to pj


26: task wait until s-receive [WRITE,k, v] from pj


27: if writei > k or readi > k then
28: s-send [nackWRITE,k] to pj


29: else
30: writei ← k
31: vi ← v; store{writei, vi} {Modified from Figure 5}
32: s-send [ackWRITE,k] to pj


33: upon recovery do {Added procedure to Figure 5}
34: initialisation
35: retrieve{writei, readi, vi}


Figure 12. A wait-free round-based register in a crash-recovery model


also replaced by the s-send (resp. s-receive) primitive.


Proposition 20. With a majority of correct processes, the algorithm of Figure 12 implements a wait-free round-based


register.


Lemma 21. Read-abort: If read(k) aborts, then some operation read(k ′) or write(k′, ∗) was invoked with k′ ≥ k.


Lemma 22. Write-abort: If write(k, ∗) aborts, then some operation read(k ′) or write(k′, ∗) was invoked with


k′ > k.


Lemma 23. Read-write-commit: If read(k) or write(k, ∗) commits, then no subsequent read(k ′) can commit with


k′ ≤ k and no subsequent write(k ′′, ∗) can commit with k′′ < k.


Lemma 24. Read-commit: If read(k) commits with v and v 
=⊥, then some operation write(k ′, v) was invoked with


k′ < k.


Lemma 25. Write-commit: If write(k, v) commits and no subsequent write(k ′, v′) is invoked with k′ ≥ k and v′ 
= v,


then any read(k′′) that commits, commits with v if k′′ > k.


The proofs for lemmata 21 through 25 are similar to those of lemmata 1 through 5 since: (a) ifp i invokes aread()


or awrite() operation and then does not crash, by the property of the retransmission module,p i keeps on sending


messages (e.g., READ messages for theread() operation) until it gets a majority of replies (e.g., ackREAD or nack-


READ); (b) since all variables are logged before sending any positive acknowledgement messages, a process does


not behave differently if it crashes and recovers. If a process crashes and recovers, it recovers its precedent state and
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therefore acts as if it did not crash.


5.3 Weak Leader Election


The implementation of the weak leader election does not change in a crash-recovery model. However, the failure


detectorΩ has only been defined in a crash-stop model [2]. Interestingly, its definition (there is a time after which


exactly one correct process pl is always trusted by every correct process) does not change in a crash-recovery model


(the notion of correctness changes though). We give in Appendix B an implementation of the failure detectorΩ in a


crash-recovery model with partial synchrony assumptions.


5.4 Modular Paxos


Figure 10(b) shows that compared to a crash-stop version, the total order broadcast protocol adds (i) a recovery


procedure, and (ii) one forced log to store the setTO delivered and the variablenextBatch. We now say that a process


TO-Delivers a messagem when the process logsm. In a stable period, a process can TO-Deliver a message after


three forced logs and two round trip communication steps (if the leader is the process that broadcasts the message).


Section 6.4 introduces a powerful optimisation that requires only one forced log at a majority of processes and one


round-trip communication step (if the requesting process is leader).


Proposition 26. With a wait-free round-based consensus, and a wait-free weak leader election, the algorithm of


Figure 13 ensures the termination, agreement, validity and total order properties in a crash-recovery model without


unstable processes.


Lemma 27. Termination: If a process pi TO-Broadcasts a message m and then pi does not crash, then pi eventually


TO-Delivers m.


Lemma 28. Agreement: If a process TO-Delivers a message m, then every correct process eventually TO-Delivers m.


Lemma 29. Validity: For any message m, (i) every process pi that TO-Delivers m, TO-Delivers m only if m was


previously TO-Broadcast by some process, and (ii) every process p i TO-Delivers m at most once.


Lemma 30. Total order: Let pi and pj be any two processes that TO-Deliver some message m. If pi TO-Delivers


some message m′ before m then pj also TO-Delivers m′ before m.


The proofs for lemmata 27 through 30 are identical to those of from lemmata 14 to 17 since: (a) ifp i TO-Broadcasts


m and then does not crash; by the property of the retransmission module,p i keeps on sendingm to the leader, therefore


the predicate at line 17 of Figure 13 becomestrue at the eventual perpetual leader; (b) by the weak leader election


property, one of the correct processes will be an eventual perpetual leaderp l that decides; by its definition,pl is


eventually always-up, and then eventually keeps on sending the decision to all processes, therefore all correct processes


s-receive the decision (even those that crash and recover); (c) the implementation is build on a wait-free round-based


register and on a wait-free round-based consensus that are tolerant to crash-recovery (without unstable processes); (d)


when a process crashes and recovers, it retrieves its precedent state by retrievingTO delivered andnextBatch; (e) when
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1: For each processpi:
2: procedure initialisation:
3: Received[]← ∅; TO delivered[] ← ∅; start task{launch}
4: TO undelivered[] ← ∅; AwaitingToBeDelivered[]← ∅; K ← 1; nextBatch← 1
5: procedure TO-Broadcast(m)
6: Received← Received ∪ m
7: procedure deliver(msgSet)
8: TO delivered[nextBatch]← msgSet - TO delivered;
9: atomically deliver all messages inTO delivered[nextBatch] in some deterministic order
10: store{TO delivered,nextBatch} {TO-Deliver, added to Figure 9}
11: nextBatch← nextBatch +1 {Stop retransmission module ∀ messages of nextBatch-1 except DECIDE or UPDATE}
12: while AwaitingToBeDelivered[nextBatch] �= ∅ do
13: TO delivered[nextBatch]← AwaitingToBeDelivered[nextBatch]- TO delivered; atomically deliverTO delivered[nextBatch]
14: store{TO delivered,nextBatch} {Stop retransmission module ∀ messages of nextBatch except DECIDE or UPDATE}
15: nextBatch← nextBatch+1
16: task launch {Upon case executed only once per received nessage}
17: upon Received - TO delivered �= ∅ or leader has changeddo {If upon triggered by a leader change, jump to line 28}
18: while AwaitingToBeDelivered[K+1] �= ∅ or TO delivered[K+1] �= ∅ do
19: K ← K+1
20: if K = nextBatch and AwaitingToBeDelivered[K] �= ∅ and TO delivered[K] = ∅ then
21: deliver(AwaitingToBeDelivered[K])
22: TO undelivered← Received− TO delivered
23: if leader()=pi then
24: while proposeK is active do
25: K ← K+1
26: start task proposeK (K, i, TO undelivered); K ← K+1
27: else
28: s-send(TO undelivered) to leader()
29: task propose(L, l, msgSet) {Keep on proposing until consensus commits}
30: committed← false; consensusL← new consensus()
31: while not committeddo
32: if leader()=pi then
33: if consensusL.propose(l, msgSet) = (commit, returnedMsgSet) then
34: committed← true
35: l ← l+n
36: s-send(DECISION,L, returnedMsgSet) to all processes
37: upon s-receive m from pj do


38: if m = (DECISION,nextBatch,msgSet
Kpj ) or m = (UPDATE,Kpj


,TO delivered[Kpj
]) then


39: if task proposeKpj
is active then stop task proposeKpj


40: if Kpj
�= nextBatch then {pj is ahead or behind}


41: if Kpj
< nextBatch then {pj is behind}


42: for all L such thatKpj
< L < nextBatch: s-send(UPDATE,L,TO delivered[L]) to pj {If pj �= pi}


43: else
44: AwaitingToBeDelivered[Kpj


] = msgSet
Kpj ; s-send(UPDATE,nextBatch-1,TO delivered[nextBatch-1]) to pj {If pj �= pi}


45: else
46: deliver(msgSet


Kpj )
47: else
48: Received← Received ∪msgSetT O undelivered {Consensus messages are treated in the consensus box}
49: upon recoverydo {Added procedure to Figure 9}
50: initialisation
51: retrieve{TO delivered, nextBatch}; K ← nextBatch; nextBatch← nextBatch+1; Received← TO delivered


Figure 13. A modularisation of Paxos
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recovering,Received is set toTO delivered otherwise the predicate of line 17 would never befalse and would keep on


proposing messages; and (f) since processes keep on broadcasting messages, the leader process eventually updates a


process that has crashed and recovered with all lagging messages.


6 The Four Seasons


This section presents four interesting variants of the Paxos protocol. Subsection 6.1 describes a variant of the


protocol that alleviates the need for stable storage under the assumption that some processes never crash. This is


obtained mainly by modifying the implementation of our round-based register. Subsection 6.2 describes a variant of


the protocol that copes with unstable processes through a modification of our weak leader election implementation.


Subsection 6.3 describes a variant of the protocol that guarantees progress even if only one process is correct. This


is obtained through an implementation of our round-based register that assumes a decoupling between disks and


processes, along the lines of [5]. Subsection 6.4 describes an optimised variant (Fast Paxos) of the protocol that is


very efficient in stable periods. These variants are orthogonal, except 6.1 and 6.3 (because of their contradictory


assumptions).


Weak Leader 
Election


Round-Based
Register


 Round-Based
Consensus


Paxos


- Some processes  never         
   crash                                           


- No need for stable storage 


Communication


Retransmission module


- No need for stable storage, new recovery procedure


(a) Winter


Weak Leader 
Election


- Exchange of state of     
Failure Detector         
between processes    


- Needs a majority to     
trust  a process            


Communication


Retransmission module


Paxos


Round-Based
Register


 Round-Based
Consensus


(b) Spring


Weak Leader 
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Round-Based
Register


 Round-Based
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  processes,                 
- Majority of correct 
  commodity disks vs   
  correct processes 


Communication


Retransmission module
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(c) Summer
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 Fast Round-Based
Consensus


Fast Paxos


- fastwrite() operation


Communication


Retransmission module


- fastpropose() operation


- Switch from regular to fast communication pattern


(d) Fall


Figure 14. Modified (in shade) modules from a crash-recovery variant


6.1 Winter: Avoiding Stable Storage


Basically, we assume here that some of the processes never crash and, instead of stable storage, we store the crucial


information of the register inside “enough” processes (in main memory). The protocol assumes that the number of pro-


cesses that never crash (na) is strictly greater than the number of faulty processes:nf .14 As depicted by Figure 14(a),


the weak leader election and the round-based consensus remain unchanged. We mainly change the round-based regis-


ter implementation and we add to the Paxos protocol a recovery procedure that relies on initialisation messages instead


of stable storage. Basically, a recovered processpi asks all other processes to return the set of messages that they have


TO-Delivered andpi initialises its state using those messages.


Round-Based Register. The trick in the round-based register implementation is to ensure that the register’s value is


“locked” in at least one process that never crashes. Intuitively, anyread() or write() uses a threshold that guarantees
14Note thatna is not known whilenf is.
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this property, as we explain below. (The idea is inspired by [1].) When a process recovers, it stops participating in


the protocol, except that it periodically broadcasts aRECOVEREDmessage. When a processp i receives such message


from a processpj , pi addspj to a setRi of processes (known to have recovered). This scheme allows any process to


count the number ofrecovered processes. While collecting ackREAD or ackWRITE messages, ifp i detects that a new


processpk has recovered (Ri 
= PrevRi), pi restarts the whole procedure of reading or writing. Forp i to commit a


read() (resp.write()) invocation),pi must receive max(nf+1,n-nf -|Ri|) ackREAD (resp. ackWRITE) messages.


1: seqrd (resp.seqwr) distinguishes the phases whenpi has restarted to s-send READ (resp. WRITE) messages becausepi received aRECOVEREDmessage
2: procedure register() {Constructor, for each process pi}
3: readi ← 0
4: writei ← 0
5: vi ← ⊥
6: Ri ← ∅; PrevRi ← ∅ {Added to Figure 5}
7: seqrdpi


← 0; seqwrpi
← 0 {Variable use to distinguish retrial, added to Figure 5}


8: procedure read(k)
9: repeat {Added to Figure 5}
10: PrevRi ← Ri; seqrdpi


← seqrdpi
+ 1


11: s-send [READ,k, seqrdpi
] to all processes


12: wait until s-received [ackREAD,k, seqrdpi
,*,*] or [nackREAD,k, seqrdpi


] from max(nf +1,n-nf -|Ri|)processes
13: until Ri = PrevRi {Added to Figure 5}
14: if s-received at least one [nackREAD,k, seqrdpi


] then
15: return(abort, v)
16: else
17: select the [ackREAD,k, seqrdpi


, k′, v] with the highestk′


18: return(commit, v)
19: procedure write(k, v)
20: repeat {Added to Figure 5}
21: PrevRi ← Ri; seqwepi


← seqwrpi
+ 1


22: s-send [WRITE,k, seqwrpi
, v] to all processes


23: wait until s-received [ackWRITE,k, seqwrpi
] or [nackWRITE,k, seqwrpi


] from max(nf +1,n-nf -|Ri|)processes
24: until Ri = PrevRi {Added to Figure 5}
25: if s-received at least one [nackWRITE,k, seqwrpi


] then
26: return(abort)
27: else
28: return(commit)
29: task wait until s-receive [READ,k, seqrdpj


] from pj


30: if writei ≥ k or readi ≥ k then
31: s-send [nackREAD,k, seqrdpj


] to pj


32: else
33: readi ← k
34: s-send [ackREAD,k, seqrdpj


, writei, vi] to pj


35: task wait until s-receive [WRITE,k, seqwrpj
, v] from pj


36: if writei > k or readi > k then
37: s-send [nackWRITE,k, seqwrpj


] to pj


38: else
39: writei ← k
40: vi ← v
41: s-send [ackWRITE,k, seqwrpj


] to pj


42: upon s-receive RECOVERED from pj do {Added procedures to Figure 5}
43: Ri ← Ri ∪ pj


44: upon recovery do
45: initialisation;readi ←∞; writei ←∞ {Do not reply to READ or WRITE msg}
46: s-sendRECOVEREDto all processes


Figure 15. A wait-free round-based register in a crash-recovery model without stable storage


Proposition 31. The algorithm of Figure 15 implements a wait-free round-based register in a crash-recovery model


without stable storage assuming that na > nf .


Lemma 32. Read-abort: If read(k) aborts, then some operation read(k ′) or write(k′, ∗) was invoked with k′ ≥ k.


Lemma 33. Write-abort: If write(k, ∗) aborts, then some operation read(k ′) or write(k′, ∗) was invoked with
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k′ > k.


Lemma 34. Read-write-commit: If read(k) or write(k, ∗) commits, then no subsequent read(k ′) can commit with


k′ ≤ k and no subsequent write(k ′′, ∗) can commit with k′′ < k.


Lemma 35. Read-commit: If read(k) commits with v and v 
=⊥, then some operation write(k ′, v) was invoked with


k′ < k.


Lemma 36. Write-commit: If write(k, v) commits and no subsequent write(k ′, v′) is invoked with k′ ≥ k and v′ 
= v,


then any read(k′′) that commits, commits with v if k′′ > k.


The proofs for lemmata 32 through 36 are identical to those of lemmata 21 through 25. They are based on the


following aspects: (a) we assume thatna > nf ; (b) when a process crashes and recovers, it keeps on sendingRE-


COVEREDmessages which ensures that a recovered process is never considered correct; and (c) since a process waits


for the maximum betweennf +1 andn-nf -|Ri|, the register’s value is always locked into at leastonealways-up process.


The Paxos Variant. Figure 16 presents a Paxos variant for a crash-recovery model without stable storage.


Proposition 37. With a wait-free round-based consensus, and a wait-free weak leader election, the algorithm of


Figure 16 ensures the termination, agreement, validity and total order properties in a crash-recovery model (without


any stable storage) assuming that na > nf .


Lemma 38. Termination: If a process pi TO-Broadcasts a message m and then pi does not crash, then pi eventually


TO-Delivers m.


Lemma 39. Agreement: If a process TO-Delivers a message m, then every correct process eventually TO-Delivers m.


Lemma 40. Validity: For any message m, (i) every process pi that TO-Delivers m, TO-Delivers m only if m was


previously TO-Broadcast by some process, and (ii) every process p i TO-Delivers m at most once.


Lemma 41. Total order: Let pi and pj be any two processes that TO-Deliver some message m. If pi TO-Delivers


some message m′ before m, then pj also TO-Delivers m′ before m.


The proofs for lemmata 38 through 41 are identical to those of lemmata 27 through 30 since the recovery procedure


requests every participant to s-send back their state when they s-receive aRECOVEREDmessage. A process that crashes


and recovers receives the “latest state” from at least onealways-up process.


6.2 Spring: Coping with Unstable Processes


We discuss here a Paxos variant that copes with unstable processes, i.e., processes that keep crashing and recovering


forever. We adapt our modular protocol by simply changing the implementation of our weak leader election protocol


as depicted in Figure 14(b). All our other modules remain unchanged.


Intuitively, the issue with unstable processes is the following. Consider an unstable processp i (i.e., pi keeps


on crashing and recovering), and suppose that itsΩ i module permanently outputspi, whereas the correct processes


permanently consider some other correct processp j as leader. This is possible sinceΩ “only” guarantees that some


correct process is always trusted by everycorrect process. For instance, an unstable process is free to permanently


elect itself. The presence of two concurrent leaders can prevent the commitment of any consensus decision and hence
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1: For each processpi:
2: procedure initialisation:
3: Received[]← ∅; TO delivered[] ← ∅; start task{launch}
4: TO undelivered[] ← ∅; AwaitingToBeDelivered[]← ∅; K ← 1; k← 0; nextBatch← 1
5: procedure TO-Broadcast(m)
6: Received← Received ∪ m
7: procedure deliver(msgSet)
8: TO delivered[nextBatch]← msgSet - TO delivered;
9: atomically deliver all messages inTO delivered[nextBatch] in some deterministic order {TO-Deliver}
10: nextBatch← nextBatch +1 {Stop retransmission module ∀ messages of nextBatch-1 except DECIDE or UPDATE}
11: while AwaitingToBeDelivered[nextBatch] �= ∅ do
12: TO delivered[nextBatch]← AwaitingToBeDelivered[nextBatch]- TO delivered; atomically deliverTO delivered[nextBatch]
13: nextBatch← nextBatch+1 {Stop retransmission module ∀ messages of nextBatch-1 except DECIDE or UPDATE}
14: task launch {Upon case executed only once per received message}
15: upon Received - TO delivered �=⊥ or leader has changeddo {If upon triggered by a leader change, jump to line 26}
16: while AwaitingToBeDelivered[K+1] �= ∅ or TO delivered[K+1] �= ∅ do
17: K ← K+1
18: if K = nextBatch and AwaitingToBeDelivered[K] �= ∅ and TO delivered[K] = ∅ then
19: deliver(AwaitingToBeDelivered[K])
20: TO undelivered← Received− TO delivered
21: if leader()=pi then
22: while proposeK is active do
23: K ← K+1
24: start task proposeK (K, i, TO undelivered); K ← K+1
25: else
26: s-send(TO undelivered) to leader()
27: task propose(L, l, msgSet) {Keep on proposing until consensus commits}
28: committed← false; consensusL← new consensus()
29: while not committeddo
30: if leader()=pi then
31: if consensusL.propose(l, msgSet) = (commit, returnedMsgSet) then
32: committed← true
33: l ← l+n
34: s-send(DECISION,L, returnedMsgSet) to all processes
35: upon s-receive m from pj do


36: if m = (DECISION,nextBatch,msgSet
Kpj ) or m = (UPDATE,Kpj


,TO delivered[Kpj
]) then


37: if task proposeK is active then stop task proposeK


38: if Kpj
�= nextBatch then {pj is ahead or behind}


39: if Kpj
< nextBatch then {pj is behind}


40: for all L such thatKpj
< L < nextBatch: s-send(UPDATE,L,TO delivered[L]) to pj {If pj �= pi}


41: else
42: AwaitingToBeDelivered[Kpj


] = msgSet
Kpj ; s-send(UPDATE,nextBatch-1,TO delivered[nextBatch-1]) to pj {If pj �= pi}


43: else
44: deliver(msgSet


Kpj )
45: else
46: Received← Received ∪msgSetT O undelivered {Consensus messages are treated in the consensus box}
47: upon recoverydo {Added procedure to Figure 9}
48: initialisation; s-send(UPDATE,0,∅) to all processes


Figure 16. A variant of Paxos in a crash-recovery model without stable storage
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prevent progress. We basically need to prevent unstable processes from being leaders after some time. We modify


our new leader election protocol as follows: (a) every processp k exchanges the output value of itsΩk with all other


processes, and (b) the functionleader() returnsp l only when a majority of processes thinks thatp l is leader. The


latter step is required to avoid the following case. Imagine an unstable processp u that invokesleader() which returns


pu, then crashes, recovers and keeps on doing the same scheme forever. Processp u always trusts itself which violates


theΩ property. By waiting for a majority of processes, we ensure that the values (Ω i) of at least one correct process


belongs to the setΩ[]. Therefore,pu cannot trusts itself forever (or any unstable processes) since its epoch number is


eventually greater than any correct process. This idea, inspired by [7], assumes a majority of correct processes. Note


that this assumption is now needed both in the implementation of the register and in the implementation of the leader


election protocol.


We give the implementation of this new weak leader election in Figure 17 and it is easy to verify that the imple-


mentation is wait-free under the assumption that a majority of processes are correct. Now, the weak leader election


exchanges the output ofΩ between every process. However, this exchange phase can be piggy-backed on theI-


AM -ALIVE messages in the implementation ofΩ (see Appendix B). Thus, the exchange phase does not add any


communication steps.


1: initialisation:Ω[] ← ⊥; start task EXCHANGE


2: procedure leader() {Modified from Figure 7, for each process pi}
3: wait until pl ∈ �n+1


2 � Ω[k]
4: return(pl)
5: task exchange {Added task to Figure 7}
6: periodically sendΩpi


to all processes
7: upon receiveΩpj


from pj do
8: Ω[j]← Ωpj


Figure 17. A wait-free weak leader election withΩ and unstable processes


Proposition 42. The algorithm of Figure 17 ensures that some process is an eventual perpetual leader.


Proof. Suppose, by contradiction, there are more than one eventual perpetual leader or there is no eventual perpetual


leader. Consider the first case, suppose that there are forever two eventual perpetual leaders. This contradicts the


definition of an eventual perpetual leader. Now, consider the second case where there is no eventual perpetual leader.


By the property ofΩ failure detector, eventually all correct processes trust only one correct processp l. By line 3


of Figure 17, it is impossible for any process to elect forever a process other thanp l. The leader() function is non-


blocking since there is a majority of correct processes. So eventually the invocation ofleader() at every process


returns in a bounded time (or the process crashes) and always returnsp l, so there is one eventual perpetual leaderp l:


a contradiction. ✷


6.3 Summer: Decoupling Disks and Processes


The Paxos protocol ensures progress only if there is a time after which a majority of the processes are correct.


The need for this majority is due to the fact that a process cannot decide on a given order for any two messages,


unless this information is “stored and locked” at a majority of the processes. If disks and processes can be decoupled,
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which is considered a very reasonable assumption in some practical systems [5], a process might be able to decide on


some order as long as it can “store and lock” that information within a majority of the disks. We simply modify the


implementation of our round-based register (Figure 14(c)) to obtain a variant of Paxos that exploits that underlying


configuration.


In this Paxos variant, we assume that disks can be directly (and remotely) accessed by processes, and failures


of disks and processes are separated. Every process has an assigned block on each disk, and maintains a record


dblock[pi] that contains three elements:readi, writei andvi; disk[dj ][pk] denotes the block on diskdj in which


processpk writesdblock[pk]. We denote byreadd() (resp. writed()) the operation of reading (resp. writing) on a


disk. As in [5], we assume that every disk ensures that (i) an operationwrite d(k, ∗) cannot overwrite a value of an


earlier roundk ′ < k, and (ii) a process must wait for acknowledgements when performing awrite d() operation, and


(iii) writed() andreadd() are atomic operations.


The round-based register protocol works as follows. For theread() operation, a processp i tries to writed on each


disk pj its dblock[pi] (∀pj disk[pj][pi]). After writing, pi readsd for anypj and anypk: disk[pj][pk]. If pi readsd


a block with a round that is lower than the round of the highestwrite i, theread() operation aborts. Otherwise, the


read() commits and returns the value associated with the highestwrite i. A similar scheme is used for thewrite()


operation. Note that the round-based register implementation is simpler than the previous round-based register due to


the usage of disks.


1: procedure register() {Constructor, for each process pi}
2: The operationwrited() stores the whole block into disk. For presentation clarity, we have put as a parameter the value that is actually modified.
3: procedure read(k)
4: writed(k) {readi = k}
5: readd() {Wait for a majority of disk block}
6: if (received a block withreadj ≥ k or writej ≥ k) then return(abort, initi )
7: choosevmax from the block with highestwritej ; return(commit, vmax) {vmax =⊥ if writej = 0}
8: procedure write(k, v)
9: writed(k, v) {writei = k, vi = v}
10: readd() {Wait for a majority of disk block}
11: if (received a block withreadj > k or writej > k) then return(abort, v) else return (commit, v)
12: upon recovery do
13: readd(); readi ← MAX(readreceived); writei ← MAX(writereceived) {Read all blocks}
14: vi ← dblock[].vwritei


{Take v from the block with the highest vi}


Figure 18. A wait-free round-based register built on commodity disks


Lemma 43. Read-abort: If read(k) aborts, then some operation read(k ′) or write(k′, ∗) was invoked with k′ ≥ k.


Proof. Assume that some processpj invokes aread(k) that returnsabort (i.e., aborts). By the algorithm of Figure 18,


this can only happen if some processpi has a valuereadi ≥ k or writei ≥ k (line 6), which means that some process


has invokedread(k′) or write(k′) with k′ ≥ k. ✷


Lemma 44. Write-abort: If write(k, ∗) aborts, then some operation read(k ′) or write(k′, ∗) was invoked with


k′ > k.


Proof. Assume that some processpj invokes awrite(k, ∗) that returnsabort (i.e., aborts). By the algorithm of Fig-


ure 18, this can only happen if some processp i has a valuereadi > k or writei > k (line 11), which means that some


process has invokedread(k ′) or write(k′) with k′ > k. ✷
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Lemma 45. Read-write-commit: If read(k) or write(k, ∗) commits, then no subsequent read(k ′) can commit with


k′ ≤ k and no subsequent write(k ′′, ∗) can commit with k′′ < k.


Proof. Remember that we assume that awrited(k′, ∗) cannot overwrited awrited(k, ∗) with k′ < k. In the algorithm


of Figure 18,pi invokeswrited() in both procedures, thereforep i cannot commitread(k′) with k′ ≤ k (line 6) or


commitwrite(k′, ∗) with k′ < k (line 11). ✷


Lemma 46. Read-commit: If read(k) commits with v and v 
=⊥, then some operation write(k ′, v) was invoked with


k′ < k.


Proof. By the algorithm of Figure 18, if some processp j commitsread(k) with v 
=⊥, then some processpi must


have writed to some disk sincevi is only modified in thewrite() operation. Otherwisevmax would be equal⊥. ✷


Lemma 47. Write-commit: If write(k, v) commits and no subsequent write(k ′, v′) is invoked with k′ ≥ k and v′ 
= v,


then any read(k′′) that commits, commits with v if k′′ > k.


Proof. Assume that some processpi commitswrite(k, v), and assume that no subsequentwrite(k ′, v′) has been


invoked withk′ ≥ k andv′ 
= v, and that for somek ′′ > k some processpj commitsread(k′′) with v′. Assume by


contradiction thatv 
= v ′. Sinceread(k′′) commits withv′, by the read-commit property, somewrite(k ′′, v′) was


invoked before or at the same roundk ′′. However, this is impossible since we assumed that nowrite(k ′, v′) operation


with k′ ≥ k andv′ 
= v has been invoked, i.e.,vi remains unchanged tov: a contradiction. ✷


Proposition 48. The algorithm of Figure 18 implements a wait-free round-based register.


Proof. Directly from lemmata 43, 44, 45, 46 and 47 and the fact that we assume a majority of correct disks.✷


6.4 Fall: Fast Paxos


In Paxos, when a processpi TO-Broadcasts a messagem, pi sendsm to the leader processpl. Whenpl receives


m, pl triggers a new round-based consensus instance by proposing a batch of messages. A round-based consensus is


made up of two phases, aread phase and awrite phase. Theread phase figures out if some value was already written,


while thewrite phase either writes a new value (if the register contained⊥) or rewrites the last written value. In the


specific case ofk = 1 (i.e., the first round),p1 can safely invoke thewrite(1, ∗) operation without reading: indeed, if


any other process has read or written any value, thewrite(1, ∗) invocation ofp 1 aborts. In this case, consensus (if it


commits) can be reached significantly faster than in a “regular” scenario.


Interestingly, this optimisation can actually be applied whenever the system stabilises (even if processes do not know


when that occurs). Indeed, the key idea behind that optimisation is thatp 1 knows that writing directly at round1 is


safe because in case of any other write,p1’s write would be automatically aborted. In fact, once a leader gets elected


and commits a value, the leader can send a new message to all processes indicating that, for the subsequent consensus


instances, only this process can try to directly write onto the register. This new message can be piggy-backed onto the


messages of thewrite() primitive, thus avoiding any additional communication steps. Moreover, the last decision is
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piggy-backed onto the next consensus invocation, thus saving one more communication step.


Hence, the optimised protocol goes through two modes. Whenever a leaderp i commits consensus (in the initial


regular mode), it switches to thefast mode and tries to directly impose its value for next consensus. If the system is sta-


ble,pi succeeds and hence needs only one forced log and one communication round trip. We introduce here a specific


fastpropose() operation that invokeswrite() directly and ensures that only one process can invokefastpropose()


per consensus, i.e., per batch of messages (independently of the round number). Afastpropose() invokeswrite()


with a round number range between1 andn, while forpropose(), i.e., regularwrite(), the round number range starts


at n+1. This way, a process can differentiate awrite() from apropose() or afastpropose(). If the fastpropose()


does not succeed,pi goes back to theregular mode. We implement this mode switching by refining our round-based


consensus and round-based register abstractions. We give here the intuition.


TO-Broadcast m


p1


p2


p4


p5


p3


 m


prop(1,m) Round-Based Consensus


p1 is leader


TO-Deliver m


TO-Deliver m


TO-Deliver m


TO-Deliver m


TO-Deliver m


Decision


Fast
Round-Based 
Consensus


TO-Broadcast m’


 m’


fastprop(1,m’)


precedent
decision+
imposition m’ 


Regular pattern (L) Fast pattern (L+1)


Figure 19. Communication steps for a regular followed by a fast communication pattern


Basically, we change the initialisations of our round-based consensus and round-based register abstractions. We


use, in their constructors, a boolean variablefast that is set totrue (resp. false) to distinguish the two cases. We


add one specific operationfastpropose() to the interface of round-based consensus. Our modular Paxos protocol is


also slightly modified to invoke thefastpropose() operation. Figure 19 depicts the different communication steps


schemes; for clarity, we omit forced logs. Processp1 executes a regular communication pattern for messagem and


then a fast communication pattern for the next consensus (messagem ′). First,p3 electsp1 and sendsm to p1. When


p1 commits consensus for batchL and with the permission to allow the next batch to be performed in a fast mode,


p1 switches to the fast mode for batchL+1. Whenp5 TO-Broadcastsm′, p5 electsp1 and sendsm′ to p1. Process


p1 then imposes the decision for batchL+1 and piggy-backs the last decision (L) on the same consensus invocation


(L+1). TheL+1 batch of messages is decided but will be TO-Delivered only with the next batch of messages (L+2).


Fast Round-Based Register. The fast round-based register has similarread() andwrite() operations than a regular


round-based register. A variablepermission is added to the returned values of thewrite() primitive: permission is set


to true if the variablev from the current and the next consensus are empty, otherwise it is set tofalse. The variable


permission indicates to the upper layer that the process can directly invoke Fast Paxos for the next consensus. If a
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processpi receives a nackWRITE message, it returns (abort,false). If p i gathers only ackWRITE message, then it


returns (commit,true) only if pi received only ackWRITE messages withpermission set totrue, otherwisep i returns


(commit,false). Note that ifvi is modified and stored afterpermission is set, indeed only one process can perform a


Fast Paxos per consensus. Fast round-based register has a different constructor since it extracts (if there is any) the


decision that is piggy-backed from the invocation and simulates the reception of aDECIDE message. Note also that


line 32 of Figure 20 prevents the violation of the agreement property.15


1: procedure register() {Constructor, for each process pi}
2: readi ← 0
3: writei ← 0
4: vi ← ⊥
5: if any, extractmsgSet andKpj


and simulate the receive of a message (DECIDE,Kpj
,msgSet) {Added from Figure 12}


6: permission← false {Added from Figure 12}
7: procedure read(k)
8: s-send [READ,k] to all processes
9: wait until received [ackREAD,k,*,*] or [nackREAD,k] from �n+1


2 � processes
10: if received at least one [nackREAD,k] then
11: return(abort, v)
12: else
13: select the [ackREAD,k, k′, v] with the highestk′


14: return(commit, v)
15: procedure write(k, v) {Modified from Figure 12}
16: s-send[WRITE,k, v] to all processes
17: wait until received [ackWRITE,k,*] or [nackWRITE,k] from �n+1


2 � processes
18: if received at least one [nackWRITE,k] then
19: return(abort,false)
20: else
21: if received at least one [ackWRITE,k,false] then return(commit,false) else return (commit,true)
22: task wait until receive [READ,k] from pj


23: if writei ≥ k or readi ≥ k then
24: s-send [nackREAD,k] to pj


25: else
26: readi ← k; store{readi}
27: s-send [ackREAD,k, writei, vi] to pj


28: task wait until received [WRITE,k, v] from pj {Modified from Figure 12}
29: if writei > k or readi > k then
30: s-send [nackWRITE,k] to pj


31: else
32: if k ≤ n then writei ← n+ 1


2 else writei ← k
33: permission← ((vi = ⊥) and (vi+1 = ⊥))
34: vi ← v; store{writei, vi}
35: s-send [ackWRITE,k,permission] to pj


36: upon recovery do
37: initialisation
38: retrieve{writei, readi, vi}


Figure 20. Wait-free fast round-based register


Fast Round-Based Consensus. Fast round-based consensus has a parameterised constructor:fast indicates if the


mode is fast or not, and the new constructor instantiates a new register using thefast parameter. Fast round-based con-


sensus exports the primitivepropose() of a regular round-based consensus (augmented with the return valuenextFast).


The variablenextFast is a boolean that indicates if the next batch of messages can be executed in a fast manner. Its


value is set to the return value of the fast round-based register (permission). Moreover,nextFast is set in such way


that for a particular batchL, it returnstrue only once independantly of the number of invocation ofpropose() or


fastpropose(). A processpi can perform Fast Paxos for batchL+1 only if p i commits consensus (either bypropose()


or fastpropose()) for batchL with nextFast set totrue. The fast round-based consensus also exports a new primitive
15Variablewritei is set to a value betweenn andn+1. If set ton+ 1, the invocation ofwrite(n+1) would abort and hence require an added


round. Ifwrite is set ton, then the agreement property can be violated since two fast write can occur, e.g.,write(1), write(n).
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fastpropose() that takes as input an integer and an initial valuev (i.e., a proposition for the fast consensus). It returns


a status in {commit, abort}, a valuev′ and a boolean valuenextFast. Thefastpropose() primitive is apropose()


primitive that satisfies the validity and agreement properties of the regularpropose() primitive plus the followingFast


Termination property iffastpropose() is invoked only with round numbern ≥ k ≥ 1:


• Fast Termination: If some operationfastpropose(∗, ∗) aborts, then some operationfastpropose(−,−) was


invoked; iffastpropose(∗, ∗) commits then no different operationfastpropose(−,−) can commit.


In fact, thefastpropose() primitive is straightforward to implement since it only invokes thewrite() primitive


with round number between1 andn of the fast round-based register.


1: procedure consensus(fast) {Constructor, for each process pi, modified from Figure 6}
2: v ← ⊥; reg← new register();writeRes← abort; nextFast← false {Initialisation,modified from Figure 6}
3: procedure propose(k, initi )
4: if reg.read(k) = (commit, v) then
5: if (v =⊥) then v ← initi


6: (writeRes,nextFast)← reg.write(k, v)
7: if writeRes=commit then return(commit, v,nextFast) else return(abort, initi ,nextFast)
8: return(abort, initi ,false)
9: procedure fastpropose(k, initi) {Added from Figure 6}
10: (writeRes,nextFast)← reg.write(k, initi)
11: if writeRes=commit then return(commit, initi,nextFast) else return(abort, initi,nextFast)


Figure 21. Wait-free fast round-based consensus


Lemma 49. Fast Termination: If some operation fastpropose(∗, ∗) aborts, then some operation fastpropose(−,−)


was invoked; if fastpropose(∗, ∗) commits then no different operation fastpropose(−,−) can commit.


Proof. We assume here that processes invokefastpropose() only with round numbern ≥ k ≥ 1. There are two


cases to consider: (i) two different processes invokefastpropose() for the same consensus, or (ii) a process invokes


fastpropose() twice for the same consensus. Consider case (i), let us assume by contradiction that two different pro-


cessespi andpj invokefastpropose(). Assume moreover thatpi returns fromfastpropose(), by line 32 of Figure 20,


whenpj tries to invokefastpropose(), by the algorithm of Figure 20,p j cannot succeed sincewritei is already set


to n+1
2 : a contradiction. Now consider case (ii). Assume thatp i invokesfastpropose() twice for the same consen-


sus number, sincewritei is stored,pi cannot commit twicefastpropose() with nextFast set totrue: a contradiction.✷


Proposition 50. If fastpropose() is invoked only once, then Figure 21 implements a wait-free fast round-based


consensus in a crash-recovery model.


Proof (sketch). The proof is based on lemma 49 and the fact that the proofs of the validity and agreement properties


are similar to the proofs of lemmata 8 and 9. ✷


Fast Paxos. Intuitively, once a processp i returns frompropose() or fastpropose() with nextFast set totrue for batch


L, it implies that a process has the permission to execute a fast consensus, i.e., invokefastpropose() for batchL+1.


We slightly modify the Paxos algorithm by adding an arrayfast[] that is set tofalse initially. When a processp i


decides for batchL (in the regular mode),p i sends the decision to every process and sets the variablefast[L+1] to true
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if fastpropose() or propose() returns withnextFast set totrue (changes from a regular to a fast mode for the next


consensus). The next timepi invokes a new consensus (fast[L] is true), pi (i) piggy-backs the last decision (if there


is any) to the new instantiation of consensus, and (ii) invokesfastpropose(). This invocation has a different impact


on the round-based register as explained earlier. Whenp i commitsfastpropose(), pi (a) does not need to send the


decision to every process since the decision is piggy-backed onto the next consensus invocation, and (b) setsfast of


the next consensus totrue so thatpi can perform again a Fast Paxos. Whenpi abortsfastpropose(), pi setsfast back


to false sincepi cannot force the decision for this consensus, i.e., the communication pattern becomes regular again.


Note that it is necessary in the fast mode that the last decision (if there is any) to be piggy-backed onto the invocation


of the constructor of our round-based register. Otherwise, the process that creates the round-based register will not be


able to TO-Deliver the last decision. Since there can be concurrent executions of consensus, when a process commits a


regular consensus for batchL, the next fast consensus will not always be batchL+1. Consider the following example,


if a processpi starts three consensus for batch numberL=1,2, and 3; whenp i commits batch numberL=1, pi sets


fast to true for batch number 2 and not 4 (only the subsequent batch number ofL is set totrue and not the last batch


number started). Note also that the last decision piggy-backed isTO deliver[L-1] but it can be empty. In this case,


the last decision piggy-backed is the latest decision thatp i has, e.g,AwaitingToBeDelivered[latestDecisionReceived]


or TO delivered[lastestTODelivered]. Note that we assume here that lines 24 and 25 are executed atomically.


Lemma 51. There can be only one invocation of fastpropose() per consensus.


Proof. By the algorithm of Figure 22, processes invokefastpropose() only with round numbern ≥ k ≥ 1. There


are two cases to consider: (i) two different processes invokefastpropose() for the same consensus, or (ii) a pro-


cess invokesfastpropose() twice for the same consensus. Consider case (i), let us assume by contradiction that


two different processespi andpj invokefastpropose() for consensus numberL+1. For both processes, to invoke


fastpropose() for consensusL+1, fast[L+1] must be set totrue, which requires a process to perform a successful


propose() (or fastpropose()) which returnsnextFast astrue for consensusL. Assume thatp i returns frompropose()


(or fastpropose()) with nextFast to true: a majority of processes have returned withpermission set totrue (hence


vL = ⊥ at a majority of processes) and no process has returned withpermission set to false. Whenp j invokes


propose() or fastpropose(), by the algorithm of Figure 20,p j has to return withnextFast to false since two majori-


ties will always intersect: a contradiction. Now consider case (ii). Assume thatp i invokesfastpropose() twice for


the same consensus numberL+1, by the algorithm of Figure 22,p i must have crashed and recovered between the two


invocations offastpropose(). Whenpi recovers,fast[L+1] is reset tofalse (initialisation). To invokefastpropose()


after having recovered,pi has to perform a successfulpropose() (or fastpropose()) with nextFast set totrue for


consensusL. This is impossible because a majority of processes have already theirvL 
= ⊥: a contradiction. ✷


Proposition 52. With a wait-free round-based consensus, and a wait-free weak leader election, the algorithm of


Figure 22 ensures the termination, agreement, validity and total order properties in a crash-recovery model.


Lemma 53. Termination: If a process pi TO-Broadcasts a message m and then pi does not crash, then pi eventually


TO-Delivers m.


Lemma 54. Agreement: If a process TO-Delivers a message m, then every correct process eventually TO-Delivers m.


33







1: For each processpi:
2: procedure initialisation:
3: Received[]← ∅; TO delivered[] ← ∅; fast[] ←{false,..} {Modified from Figure 13}
4: TO undelivered← ∅; AwaitingToBeDelivered[]← ∅; K ← 1; nextBatch← 1; start task{launch}
5: procedure TO-Broadcast(m)
6: Received← Received ∪ m
7: procedure deliver(msgSet)
8: TO delivered[nextBatch]← msgSet - TO delivered;
9: atomically deliver all messages inTO delivered[nextBatch] in some deterministic order
10: store{TO delivered,nextBatch}
11: nextBatch← nextBatch +1 {Stop retransmission module ∀ messages of nextBatch-1 except DECIDE or UPDATE}
12: while AwaitingToBeDelivered[nextBatch] �= ∅ do
13: TO delivered[nextBatch]← AwaitingToBeDelivered[nextBatch]- TO delivered; atomically deliverTO delivered[nextBatch]
14: store{TO delivered,nextBatch}
15: nextBatch← nextBatch+1 {Stop retransmission module ∀ messages of nextBatch-1 except DECIDE or UPDATE}
16: task launch {Upon case executed only once per received message}
17: upon Received - TO delivered �= ∅ or leader has changeddo {If upon triggered by a leader change, jump to line 28}
18: while AwaitingToBeDelivered[K+1] �= ∅ or TO delivered[K+1] �= ∅ do
19: K ← K+1
20: if K = nextBatch and AwaitingToBeDelivered[K] �= ∅ and TO delivered[K] = ∅ then
21: deliver(AwaitingToBeDelivered[K])
22: TO undelivered← Received− TO delivered
23: if leader()=pi then
24: while proposeK is active do
25: K ← K+1
26: start task proposeK (K, i, TO undelivered); K ← K+1
27: else
28: s-send(TO undelivered) to leader()
29: task propose(L, l, msgSet) {Modified from Figure 13}
30: committed← false
31: if fast[L] then {Added from Figure 13}
32: piggy-backTO delivered[L-1] (if not empty) otherwise latest decision onto next instantiation and invocation of consensus
33: consensusL← new consensus(true)
34: if consensusL.fastpropose(l, msgSet) = (commit, returnedMsgSet,nextFast) then
35: if L = nextBatch then deliver(returnedMsgSet) else AwaitingToBeDelivered[L] = returnedMsgSet; committed← true
36: fast[L]← false; fast[L+1]← nextFast
37: if consensusL = ⊥ then consensusL ← new consensus(false)
38: while not committeddo
39: l← l + n
40: if leader()=pi then
41: if consensusL.propose(l, msgSet) = (commit, returnedMsgSet,nextFast) then
42: committed← true; s-send(DECISION,L, returnedMsgSet) to all processes;fast[L+1]← nextFast
43: else
44: fast[L+1]← false
45: upon s-receive m from pj do


46: if m = (DECISION,nextBatch,msgSet
Kpj ) or m = (UPDATE,Kpj


,TO delivered[Kpj
]) then


47: if task proposeKpj
is active then stop task proposeKpj


48: if Kpj
�= nextBatch then {pj is ahead or behind}


49: if Kpj
< nextBatch then {pj is behind}


50: for all L such thatKpj
< L < nextBatch: s-send(UPDATE,L,TO delivered[L]) to pj {If pj �= pi}


51: else
52: AwaitingToBeDelivered[Kpj


] = msgSet
Kpj ; s-send(UPDATE,nextBatch-1,TO delivered[nextBatch-1]) to pj {If pj �= pi}


53: else
54: deliver(msgSet


Kpj )
55: else
56: Received← Received ∪msgSetT O undelivered {Consensus messages are treated in the consensus box}
57: upon recovery do
58: initialisation
59: retrieve{TO delivered, nextBatch}; K ← nextBatch; nextBatch← nextBatch+1; Received← TO delivered


Figure 22. Fast Paxos in a crash-recovery model
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Lemma 55. Validity: For any message m, (i) every process pi that TO-Delivers m, TO-Delivers m only if m was


previously TO-Broadcast by some process, and (ii) every process p i TO-Delivers m at most once.


Lemma 56. Total order: Let pi and pj be any two processes that TO-Deliver some message m. If pi TO-Delivers


some message m′ before m, then pj also TO-Delivers m′ before m.


By lemma 51, the proofs for lemmata 53 through 56 are identical to those of lemmata 27 through 30 since (a) the


properties of thefastpropose() primitive are more restrictive than thepropose() primitive; and (b) the properties of


the regularpropose() remain the same.


7 Related Work


The contribution of this paper is afaithful deconstruction of the Paxos replication algorithm. Our deconstruction


is faithful in the sense that it preserves the efficiency of the original Paxos algorithm. This promotes the implemen-


tation of the algorithm in a modular manner, and the reconstruction of variants of it that are customised for specific


environments.


In [12, 16], the authors focused on the consensus part of Paxos with the aim of either explaining the algorithm and


emphasising its importance [12] or proving its correctness [16]. In [12, 16], the authors discussed how a state machine


replication algorithm can be constructed as a sequence of consensus instances. As they pointed out however, that


might not be the most efficient way to obtain a replication scheme. Indeed, compared to the original Paxos protocol,


additional messages and forced logs are required when relying on a consensus box. This is in particular because the


very nature of traditional consensus requires every process to start consensus, i.e, adds messages compared to Paxos,


and, in a crash-recovery model, every process needs to log its initial value. Considering a finer-grained and round-


based consensus abstraction, separated from a leader election abstraction, is the key to our faithful deconstruction


of the Paxos replication algorithm. Our round-based consensus allows a process to propose more than once without


implying a forced log, and allows us to merge all logs at the lowest abstraction level while exporting the round number


up to the total order broadcast layer.


Our round-based consensus abstraction is somehow similar to the “weak” consensus abstraction identified by Lamp-


son in [12]. There are two fundamental differences. “Weak” consensus does not ensure any liveness property. As stated


by Lampson, the reason for not giving any liveness property is to avoid the applicability of the impossibility result of


[4]. Our round-based consensus specification is weaker than consensus and does not fall into the impossibility result


of [4], but nevertheless includes a liveness property. The termination property of our round-based consensus coupled


with our leader election property is precisely what allows us to ensure progress at the level of total order broadcast.


In [5], a variant of Paxos, called Disk Paxos, decouples processes and stable storage. A crash-recovery model is


assumed and progress requires only one process to be up and a majority of functioning disks. Thanks again to our


modular approach, we implement Disk Paxos by only modifying the implementation of our round-based register. The


algorithm of Section 6.3 is faithful to Disk Paxos in that both have the same number of forced logs, messages and


communication steps.16 Note that our leader election implementation that copes with unstable processes can be used
16Variablesbal, mbal andinp in [5] correspond towritei, readi andvi in our case, while a ballot number in [5] corresponds to a round number
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with Disk Paxos to improve its resilience.


Independently of Paxos, [15] presented a replication protocol that also ensures fast progress in stable periods of the


system: our Fast Paxos variant can be viewed as a modular version of that protocol. In [13], a new failure detector,


✸C, is introduced. This failure detector, which is shown to be equivalent toΩ, adds to the failure detection capabil-


ity of ✸S [3] an eventual leader election flavour. Informally, this flavour allows every correct process to eventually


choose the same correct process as leader and eventually ensure fast progress. We have shown thatΩ can be directly


used for that purpose, and we have done so in a more general crash-recovery model. Finally, [17] have given a total


order broadcast in a crash-recovery model based on a consensus box [3]. As we pointed out, by using consensus as


a black box, all processes need to propose an initial value which, in a crash-recovery model, means that they all need


a specific forced log for that (this issue was also pointed in [17]). Precisely because of our round-based consensus


abstraction, we are able to alleviate the need for this forced log.
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A Optional Appendix. Performance measurements


We have implemented our abstractions on a network of Java machines as a library of distributed shared objects. We


give here some performance measurements of our modular Paxos implementation in different configurations. These


measurements were made on a LAN interconnected by Fast Ethernet (100Mb/s) on a normal working day. The LAN


consisted of 60 UltraSUN 10 (256Mb RAM, 9 Gb Harddisk) machines. All stations were running Solaris 2.7, and


our implementation was running on Solaris Java HotSpotTM Client VM (build 1.3.001, mixed mode). The effective


message size was of 1Kb and the performance tests consider only cases where as many broadcasts as possible are


executed. In all tests, we considered stable periods where processp0 was the leader and one process was running per


machine.
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Figure 23. Broadcast performance


Figure 23(a) depicts the throughput difference between Regular Paxos and Fast Paxos. Not surprisingly, Fast Paxos


has a higher throughput. The overall performance of both algorithms decreases since the leader has to send and receive


messages from an increasing number of processes.


Figure 23(b) depicts the performance of Fast Paxos when the number of broadcasting processes increases. We


considered four cases, (i) only the leader broadcasts, (ii) one process other than the leader broadcasts, (iii) all processes


except the leader broadcast, and (iv) all processes broadcast. Distributing the load of the broadcasting processes to a


larger number of processes improves the average throughput. As expected, the throughput is lower when the leader


is the unique broadcasting process, since it is the most overloaded. Case (iii) has a better throughput than case (iv)


after 12 processes since the leader does not broadcast and can allow more processing power than case (iv). This shows


that broadcasting messages slows down a process, and this is also verified by the increased throughput when another


process than the leader (case ii) is broadcasting.17


Figure 24 compares Fast Paxos in two different modes: (i) concurrent consensus instances are started, and (ii)


only consecutive consensus instances are launched. Not to overwhelm the process with context switching, Paxos is


implemented using a thread pool that is limited to ten, i.e., at most ten concurrent consensus run at each process. The
17When increasing the number of processes, the performances come close to each other because the capacity of Paxos is reached.
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Figure 24. Concurrent vs consecutive (Fast Paxos)
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throughput in both modes decreases as the number of protocol instances increases. At first, the concurrent version


gives better performance, but this diminishes as the number of broadcast increases. In fact, the increasing computation


needed (in the tasklaunch) impedes the performance of the concurrent version, i.e., performance degrades. The results


show that the more process a system has, the less difference there is in throughput between consecutive and concurrent


executions, i.e, when there are more processes in the system, there are less consensus instances that are launched.


Figure 25 depicts the broadcast rate at which the best throughput can be achieved from 4 to 10 processes. For


all cases, the throughput increases (approximately) linearly until a certain point, e.g., up to 10 broadcast/sec/process


for a six processes system and then the throughput falls suddenly linearly. Above the breakpoint, the leader again


becomes the bottleneck, its taskreceive is overwhelmed by the number of broadcasts it has to handle, thus delaying


new protocol instances.
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Figure 25. Best throughput (Fast Paxos)


Figure 26(a) depicts the impact of forced logs for the Fast Paxos algorithm. When forced logs are removed, the


increased performance is minimal since the algorithm is fine-tuned and waits for a certain number of broadcast mes-


sages before launching a consensus. The TO-Delivery rate is by far better when a consensus is launched for a certain
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number of messages rather than starting a consensus for each single broadcast message. The number of consensus


becomes too big and slows down the algorithm. Due to this optimisation, there are few instances of consensus per


second and hence few stable storage access per second. Therefore, upon removal of stable storage, the performance


improvement is not drastic as one might think. This result shows that the winter season protocol is not really useful


for a practical system.18 However, Figure 26(b) shows that forced logs have an impact on performance. If Fast Paxos


launches a large number of consensus per second, i.e., a consensus is started consecutively for each single broadcast


message. (There are no other consensus instance running in parallel, but there can be many consensus instances per


second.) In this case, the impact of forced logs is quite significant, as shown in Figure 26(b).
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Figure 26. Comparison between forced logs and no stable storage (Fast Paxos)


Finally, Figure 27 gives the recovery time required by a process depending on the number of messages retrieved


from the stable storage. The number of retrieved messages is proportional to the number of reads from the disk, thus


increasing the recovery time.
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Figure 27. Recovery time


18Moreover, Note that for a long-lived application, this model is not really practical, since every process is likely to crash and recover at least
once during the life of the application.
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B Optional Appendix. Implementation of Ω in a Crash-Recovery Model with partial syn-


chrony


Figure 28 gives the implementation of the failure detectorΩ in a crash-recovery model with partial synchrony


assumptions. We assume that message communication times are bound by an unknown period but hold after some


global stabilisation time. Intuitively, the algorithm works as follows. A processp i keeps track of the processes that it


trusts in a set denotedtrustlist. A processpi keeps on sendingI-AM -ALIVE messages to every process. Periodically,


pi removes of itstrustlist the processes from which it did not receive, within a certain threshold, anyI-AM -ALIVE


message. Whenpi receives anI-AM -ALIVE message from some processpj and if pj was not part of thetrustlist, pi


then addspj to its trustlist and incrementspj ’s threshold. However, an unstable process can be trusted, therefore the


algorithm counts the number of times that a process crashes and recovers. This scheme allows a process to detect


when a process crashes and recovers, an unstable process has an unbouded epoch number at a correct process, while


a correct process has an epoch number that stops increasing. Whenp i crashes and recovers,pi sends aRECOVERED


message to every process (line 8). Whenpj receives aRECOVEREDmessage frompi, pj updates the epoch number


of pi at line 21 andpj addspi to its trustlist. VariableΩ.trustlist contains the process, within the trustlist, that has the


lowest epoch number (line 15), and if several of these exist, select the one with the lowest id.


Processes exchange their epoch number and take the maximum of all epoch numbers to prevent the following case.


Assume that processesp2, p3, p4 never crash and that processp1 crashes and recovers. Whenp1 recovers, assume that


every process exceptp1 receives theRECOVEREDmessage fromp1. Therefore,p1 has epochp1 = 0, 0, 0, 0, while the


other processes have epochp2,3,4 = 1, 0, 0, 0. Each process has the same trustlist, indeedΩp1 outputsp1 andΩp2,3,4


outputsp2 which violates the property ofΩ, exchanging their epoch number and taking the maximum such case is


avoided. Therefore, when receiving the trustlist,p i also takes the maximum between its epoch number and the one it


received frompj . Note that the MIN function gives thefirst index that realises the minimum.


Proposition 62. The algorithm of Figure 28 satisfies the following property in a crash-recovery model with partial


synchrony assumptions: There is a time after which exactly one correct process is always trusted by every correct


process.


Proof. There is a time after which every correct process stops crashing and remains always-up. Therefore, every cor-


rect process keeps on sendingI-AM -ALIVE message to every process. Thanks to the partial synchrony assumptions,


we know that after some global stabilisation time, a message does not take longer than a certain period of time to go


from one process to another. Eventually, every process guesses this period of time by incrementing∆ pi at line 19.


By the fair loss property of the links, every correct process then receives an infinite number of timesI-AM -ALIVE


messages. Therefore, every correct process eventually has the same set trustlist and epoch list, indeed they output all


the same process. Eventually, this process is correct since the algorithm chooses the process with the lowest epoch


number (remember that an unstable process has a non decreasing epoch number at a correct process). ✷
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1: for each process pi:
2: upon initialisation or recoverydo
3: Ω.trustlist← ⊥; trustlistpi


← Π


4: for all pj ∈ Π do
5: ∆pi


[pj ]← default time-out interval
6: epochpi


[pj ]← 0
7: start task{updateD}
8: if recovery then send(RECOVERED) to all
9: task updateD
10: repeat periodically
11: send (I-AM-ALIVE ,epochpi


) to all processes
12: for all pj ∈ Π do
13: if pj ∈ trustlistpi


and pi did not receiveI-AM-ALIVE from pj during the last∆pi
[pj ] then


14: trustlistpi
← trustlistpi


\ {pj}
15: Ω.trustlist← MIN(pk ∈ trustlistpi


| pk = MIN(epochpi
))


16: upon receivem from pj do
17: if m = (I-AM-ALIVE ,epochpj


) then
18: if pj �∈ trustlistpi


then
19: trustlistpi


← trustlistpi
∪ {pj}; ∆pi


[pj ]← ∆pi
[pj ] + 1


20: for all pk ∈ Π do
21: epochpi


[pk ]← MAX(epochpj
[pk ], epochpi


[pk ])


22: else if m = RECOVEREDthen
23: epochpi


[pj ]← epochpi
[pj ] + 1; trustlistpi


← trustlistpi
∪ {pj}


Figure 28. ImplementingΩ in a crash-recovery model with partial synchrony assumptions
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