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Abstract

This paper presents a mew, non-binary measure
of the reliability of broadcast algorithms, called A-
Reliability. This measure quantifies the reliability
of practical broadcast algorithms that, on the one
hand, were devised with some form of reliability in
mind, but, on the other hand, are not considered
reliable according to the “traditional” notion of
broadcast reliability [8].

Our specification of A-Reliability suggests a
further step towards bridging the gap between the-
ory and practice in the reliability of broadcast al-
gorithms. We illustrate the use of A-Reliability
through two case studies, namely Bimodal Multi-
cast and IP Multicast.
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1 Introduction

Reliable broadcast. The growing interest in
peer-to-peer computing has underlined the im-
portance of reliable broadcast algorithms. Tra-
ditionally, the reliability of broadcast algorithms
has been defined by three properties [8]:

Validity. If a correct process p broadcasts a mes-
sage m, then p eventually delivers m.

*This work is partially supported by Agilent Labora-
tories, Lombard & Odier, and the Swiss National Science
Foundation (project number 510-207).

Integrity. For any message m, every correct pro-
cess delivers m at most once, and only if m
was previously broadcast by sender(m).

Agreement. If a correct process delivers a mes-
sage m, then every correct process eventu-
ally delivers m.

To obtain these strong properties in a system
with process and link failures, one employs costly,
traditionally acknowledgement-based algorithms.
These can be effective in a local environment,
but may give unstable or unpredictable perfor-
mance under stress, and hence tolerate limited
scalability [3], contradicting the stringent scala-
bility properties claimed by today’s peer-to-peer
applications.

Best-effort broadcast. More pragmatic ap-
proaches to broadcast focus on performance in
very large-scale settings, and sacrifice strong re-
liability guarantees (in the sense of [8]) to scal-
ability. Examples include the Internet Multicast
Usenet (MUSE) protocol [10], the XPress Trans-
fer Protocol (XTP) [15] or a broad range of so-
called network-level protocols building on IP Mul-
ticast [4].1 The reliability of such protocols is
typically expressed in best-effort terminology: if
a participant discovers a failure, the “most rea-
sonable” effort is made to overcome it, but there
is no guarantee that such an attempt will be suc-
cessful. In short, best-effort reliable algorithms

'E.g., Reliable  Multicast  Transport — Protocol
(RMTP) [11], Reliable Multicast Protocol (RMP) [14],
Log-Based  Receiver-Reliable Multicast (LBRM) [9],
Scalable Reliable Multicast (SRM) [7].



are simply not intended to satisfy the traditional
properties of Reliable Broadcast [8].

Probabilistic broadcast. Birman et al [2]
proposed a new look at broadcast reliability.
They informally characterized a wuseful reliable
broadcast algorithm through a set of properties
(illustrated by their gossip-based [5] Bimodal Mul-
ticast algorithm [2]), including the following:

Atomicity. The protocol provides a bimodal de-
livery guarantee, under which there is a high
probability that each broadcast will reach
almost all processes, a low probability that
each broadcast will reach just a very small
set of processes, and a vanishingly small
probability that it will reach some interme-
diate number of processes. That is, the tra-
ditional atomic “all or nothing” guarantee
becomes “almost all or almost none”.

This property is very appealing from a prac-
tical viewpoint, but still rather informal,? and in
[2] the authors concentrate on giving a behavioral
analysis of the Bimodal Multicast algorithm.

Reliability measure. The motivation of this
work is the observation that, beyond the approach
of [2], there is a lack for a precise but also practical
measure to estimate the reliability of inexpensive
and scalable best-effort algorithms. Intuitively,
those are less reliable than algorithms that com-
ply with the strong properties of [8] but more re-
liable for instance than a simple multisend. But
what is the actual meaning of “more reliable” and
“less reliable”? Addressing this question is not
trivial, yet fundamental, since these algorithis
are precisely those used in practice.

The aim of this work is to introduce a measure
to quantify the intuitively understandable notion
of reliability used in practice. In other terms, we
do not aim at introducing an original broadcast
algorithm which is more reliable than others, but

2The “almost all or almost none” is in fact “almost
always almost all or almost none”; the use of the term
“almost” is indeed intuitive, but gives a rather informal
nature to this property.

at defining what the very statement “more reli-
able” may mean.
Contributions. This paper introduces a new
non-binary probabilistically flavored specification
of the reliability of broadcast algorithms called A-
Reliability. Through this measure we contribute
to bridging the gap between theory and practice
in broadcast reliability. In short, our specification
leads to describing the reliability distribution of a
broadcast algorithm, that is, a probability distri-
bution for the reliability degree of an algorithm.
The use of probabilities enables the capture, to a
certain degree, of the nondeterminism inherent to
large-scale systems.

We illustrate our specification through two
well-known examples. The first one, Bimodal
Multicast [2], is a representative of the rapidly
proliferating family of gossip-based algorithms
which have received much attention lately, pre-
cisely because they are “pretty reliable”. As
a representative of another important class of
algorithms often used in practice, namely the
network-level protocols, we discuss IP Multi-
cast [4].

We also demonstrate the use of A-Reliability
in comparing broadcast algorithms by contrast-
ing Bimodal Multicast and IP Multicast, confirm-
ing the intuition that in most practical environ-
ments, Bimodal Multicast is “more reliable” than
IP Multicast, especially as the system grows in
size.

Limitations. There is no universal way to an-
alyze and quantify the reliability of a broadcast
algorithm: when talking about “reliability” we
actually mean “reliability in a certain environ-
ment”. To quantify the reliability of such an algo-
rithm in our probabilistic sense, we need the pre-
cise knowledge of system parameters and an accu-
rate model of the behavior of the algorithm based
on former ones. Such parameters are not always
available, and models usually represent approx-
imations. This outlines the main limitation of
our notion of reliability: not every system model
(and algorithm) matches it well. Moreover, even
with the most precise model, calculations might



require approximations. The weak consolation is
that there does not seem to be any alternative
perfect notion of a broadcast reliability which cov-
ers all possible system models.

Roadmap. Section 2 introduces A-Reliability.
Section 3 discusses the A-Reliability of Bimodal
Multicast. Section 4 similarly applies our specifi-
cation of A-Reliability to IP Multicast. Section 5
illustrates the use of A-Reliability in comparing
broadcasting algorithms through Bimodal Mul-
ticast and IP Multicast. Appendix A discusses
more in detail our definition of A-Reliability, in
particular with respect to alternatives we have
considered. Appendix B recalls details of the Bi-
modal Multicast algorithm.

2 A-Reliability: Specification

This section presents our approach to measur-
ing, in a probabilistic sense, the reliability of a
broadcast algorithm.

2.1 System and Environment

We consider an asynchronous (in the sense of
[8]) system II of processes {pi,..,pn}. Processes
are connected through fair lossy channels of infi-
nite capacity. Let m be any message, uniquely
identified and equipped, in particular, with a
parameter sender(m).
by message passing defined by the primitives
send(m) and receive(m). Broadcast is defined
by the primitives broadcast(m) and deliver(m).
Processes are subject to crash failures. A correct
process is one that never crashes. To simplify pre-
sentation, we do not consider byzantine failures,
and we assume that crashed processes do not re-

Processes communicate

cover.

However, the analysis of a broadcast algorithm
usually depends on more properties of the under-
lying system than only its size and composition,
as well as on parameters of the algorithm itself.
Henceforth, we will use the term environment, de-
noted 3, to refer to the set of relevant system
properties and algorithm parameters.

2.2 A-Reliability

Let A be any pair of real numbers (1, p)
(¢,p € [0,1]). We say that a protocol is A-
Reliable iff the following properties are simulta-
neously satisfied with probability 1):

A-Validity. If a correct process p broadcasts a
message m then p eventually delivers m.

A-Integrity. For any message m, every correct
process delivers m at most once, and only if
m was previously broadcast by sender(m).

A-Agreement. If a correct process delivers a
message m, then eventually at least a frac-
tion p of correct processes deliver m.

Properties A-Validity and A-Integrity here are
the same as Validity and Integrity in traditional
Reliable Broadcast [8], except that we only re-
quire them to be satisfied with a given probabil-
ity. Agreement, as defined in [8], is transformed
here into A-Agreement which is less restrictive in
terms of the number of processes that need to
deliver the message.?

2.3 Interpretation of p and ¥

A = (1, p) represents a basic “reliability mea-
sure” of a broadcast algorithm. The values of
1 and p are intrinsically coupled: ¢ can roughly
be pictured as the probability with which at least
a fraction p of processes behave according to the
properties of Reliable Broadcast [8]. More pre-
cisely, a sample A =(v, p) is characterized by:

Reliability probability : 1 is the probabil-
ity that a protocol run is completed “suc-
cessfully”. That is, once a message m is
broadcast and delivered by a correct pro-
cess, “enough” correct processes eventually
deliver m.

3In Appendix A we discuss alternative approaches to
defining the reliability of a broadcast algorithm in a prob-
abilistic context.

4Note that A-Reliability is stronger than ensuring with
a probability of v the traditional properties of Reliable
Broadcast [8] for a fraction p of the system: in the former
case, Integrity and Validity are ensured with a probability
1 for the entire system, not only for a fraction p.



Reliability degree p: p defines the fraction of
correct processes which eventually deliver
m.

For instance, to satisfy the properties of A-
Reliability with A = (¢ = 0.95,p = 0.9), once
a message m is broadcast, an algorithm should,
with probability 0.95, deliver m to 90% of correct
processes in the system. In other terms, in a run
of the system with 10 correct processes, one can
expect 95% of all messages which are broadcast
to be delivered by at least 9 processes (not neces-
sarily the same processes for every message).

2.4 Reliability Distribution Function

A-Reliability does not aim at giving a binary
interpretation for the reliability of a broadcast al-
gorithm as in [8]. Instead, it defines a measure of
reliability, such that any broadcast protocol can
be proven to be A-Reliable with some set of pa-
rameters A = (1, p).

In a practical system, with a given required
reliability degree p, several broadcast algorithms
can easily be compared along the v they offer
for the given p. To give an informal measure of
the general performance in terms of reliability of
a broadcast algorithm, several samples Ajp...Aq
are usually sufficient. A precise expression of the
reliability of such an algorithm requires however
the consideration of the probabilities for all pos-
sible p € [0,1], especially when comparing two
algorithms in general. Indeed, consider two algo-
rithms By and By and a set Ap,=(0.9, 0.9) and
Ap,=(0.85,0.9). Algorithm B; seems to perform
better for pp, = pp, = 0.9. However, this in-
formation is not sufficient to promote algorithm
Bi as “more reliable” than algorithm Bs, since
for plz = plp, = 0.95, algorithm By might offer a
Y, of 0.8, while in the case of algorithm By, ¢’
is only 0.7. To compare two algorithms in a more
general manner, we define a reliability distribution

function ¥(p):
¥ :[0,1] = [0,1] (1)

Note however, that by “a fraction p of the system
of size n” we mean |pn]. Accordingly, ¥(p) is not

represented by a continuous function, but mani-
fests steps.

As a direct consequence of the definition of A-
Agreement — a sample in which a fraction pg of
processes deliver every message is also a sample in
which at least any fraction p € [0, po] of the pro-
cesses deliver every message — 1¥(p) is a mono-
tonically decreasing function.

Since the reliability distribution function of an
algorithm is strongly coupled with the considered
environment ¥, we will also write ¢(p,%), in par-
ticular when comparing broadcast algorithms. In-
deed, a comparison of algorithms in different en-
vironments is not very meaningful.

2.5 Comparing Broadcast Algorithms

Consider a reliability range V = [p1, p2], p1 <
p2 € [0,1], that is, a range of values for the relia-
bility degree p which is of interest in the context
of a comparison.

In the A-Reliability sense, in the environment
¥, an algorithm By is more reliable in V = [py, po]

than an algorithm By iff

VpeV: wBl (pv E) > sz(P’ Z]) A

3po € V: ¥, (po, Z) > ¥, (po, X)° @

Similarly, in the environment 3, an algorithm
B is said to be strictly more reliable in V =
[p1,p2] (p2 > 0) than an algorithm By iff

VpeV,p#0: ¥p (p,X) > Up,(p,X)°  (3)

Finally, in the environment Y. , an algorithm Bj is
more reliable than an algorithm Bs iff, in X, By is
more reliable than By in V = [0, 1]. Analogously,
in the environment . , an algorithm B is strictly
more reliable than an algorithm By iff, in X, By
is strictly more reliable than By in V = [0, 1].
Note that two algorithms B; and By might
have different sets of parameters in their respec-
tive environments Xp, and Xp,. The environ-
ment for the comparison can in a simplified sense

5This second condition is necessary to avoid that two
equally performing algorithms are “each more reliable than
the other”.

5We exclude p = 0 since for any algorithm B: ¥ (0) =
1.



be viewed as a compound environment; a union of
the two environments (¥ = ¥p, UXp,). In Sec-
tion 5 we will illustrate these comparison criteria.

2.6 Reliable Broadcast: From Perfect to
Useless

A reliability distribution function % in the
sense of 1 can be found for any algorithm. We
demonstrate this through the following extreme
cases.

Dreamcast. One can easily see that an algo-
rithm implementing traditional Reliable Broad-
cast [8] is A-Reliable with A = (1,1). Since ¢rp
is a monotonically decreasing function, this sam-
ple univocally defines ¥ rp: Vp € [0,1] Yrp(p) =
1. One may call such an algorithm perfectly re-
liable. As we mentioned earlier in the introduc-
tion, its practical implementation in a network
with unreliable processes and channels is expen-
sive and not scalable.

Spellcast. A bogus algorithm which does
nothing (useless broadcast) also conforms to
the specification of probabilistic reliability with
Vp € 10,1] ¥yp(p) = 0 (and, as stated previ-
ously, Yyp(0) = 1).

In short, the reliability level of any broad-
cast algorithm can be found somewhere between
these two extreme cases. The following two sec-
tions illustrate this through two well-known and
more meaningful examples, namely Bimodal Mul-
ticast and IP Multicast respectively.

3 Bimodal Multicast

This section focuses on the Bimodal Multicast
algorithm [2]. While providing a lower reliability
in terms of A-Reliability than a perfectly reliable
protocol, it is in most cases more scalable and
efficient. We first recall the algorithm, and then
discuss its A-Reliability.

3.1 Protocol Overview

The algorithm uses the idea of gossip-based
protocols that dates back to the original USENET
news protocol developed in early 1980’s (Network
News Transport Protocol — NNTP). In this pro-
tocol, a communication graph is superimposed on
a set of processes, and neighbors gossip to dif-
fuse news postings in a reliable manner over the
links. If process p; receives a news posting and
then establishes communication with process p;,
p; would offer p; a copy of that news message,
and p; solicits the copy if it has not already seen
the message.

Bimodal Multicast is composed of two sub-
protocols structured roughly as in the Internet
MUSE protocol [10]. The first is an unreliable, hi-
erarchical multicast (IP Multicast [4] can be used
where available) that makes best-effort attempt
to efficiently deliver each message to its destina-
tion. The second is a two-phase anti-entropy [5]
protocol that operates in a series of asynchronous
rounds. During each round, the first phase de-
tects message losses; the second phase corrects
such losses and executes only if needed.

In the present work, we are concerned only
with the first phase of the anti-entropy protocol,
namely the gossip-based knowledge propagation.
For the analysis below, we use a simplified version
of Bimodal Multicast [2], which differs from the
original protocol in ways that simplify the discus-
sion without changing the analytical results. The
algorithm is presented in Appendix B, where the
parameter [ is the so-called fanout, such that ng3
is the size of the fraction of the system which is
chosen as a destination set for the current gossip,
and the parameter T is the number of receive(m)
events in the longest causal chain for the message
m. That is, a message m is consequently for-
warded at most 7T times.

3.2 Model

Gossip protocols such as Bimodal Multi-
cast can be analyzed with a stochastic approach
as used in epidemiological theory [1, 2].



Breakdown in synchronous rounds. The
stochastic analysis below is based on the assump-
tion that the execution of a broadcast algorithm
can be broken up into a sequence of synchronous
rounds, such that, during each round ¢, only pro-
cesses which have gossips with round number ¢
are gossiping (see Appendix B), and every round
happens strictly after all the transmission of the
previous round are completed. Of course, in a real
execution, each process autonomously proceeds in
its own rounds which are completely unsynchro-
nized with respect to other processes. Indeed, a
recently infected process starts gossiping immedi-
ately without waiting for the previous gossip to
complete. But as outlined in [2], the actual ex-
ecution performs better, and the obtained lower
bound does give useful results.

Assumptions and definitions. For the fol-
lowing analysis, we assume that failures are
stochastically independent. In particular, the
probability of a message loss does not exceed a
predefined € > 0, and the number of process
crashes does not exceed f < n. That is, the prob-
ability of a process crash during the protocol ex-
ecution is bounded by 7 = f/n. Furthermore, for
any message m:

An infected process is one that already re-
ceived m.

An infectious process is an infected one which
is gossiping m in the current round.

A susceptible process is one that is not in-
fected yet by m.

We consider a system of n participants using
Bimodal Multicast [2]. Following [2], we describe
the state of the system in round ¢ using the fol-
lowing random variables:

s¢ = the number of infectious processes.

r; = the number of susceptible processes.

We assume that, initially, only one process is
infected (the process which broadcasts). To sum-
marize the constraints on the state of the system:

so=1,rp=n-—1

St41 + Tl =Tt (4)
T

TP Y oSt ="n

3.3 Analysis

We define p = (1 —¢)(1—7) as the probability
that a given gossip message m is successfully re-
ceived by a given process p;, that is: (a) a gossip-
ing (infectious) process chooses p; as destination,
(b) message m is not lost in transmission, and (c),
process p; is not crashed. Respectively, ¢g=1—p
is the probability that a certain process did not
receive a given gossip message from a particular
infectious process.

The corresponding stochastic process can be
expressed in the form of a homogeneous Markov
chain with a transition matrix defined by:

Pijki =P (st41 =k, 141 = ls = 4,74 = J)
Q) A=)t k=] (5)
0 Py

The distribution of .41 and s;y1 can be defined
as follows:

P(st41 =k, re41 = 1)

= Z Z P(s; =i,1¢ = J)pijrl (6)

Using (4),(5) and (6), we can build a distribution
of s and rp. We are interested in the probabil-
ity that, for some p € [0,1], not less than |pn|
processes are infected up to round 7"

Ppr(p, XBur)
= P(rp <[(1—p)n])

=2 >

0<i<|pn] j<[(1=p)n]

(7)

P(ST:i,TT:j)

where Xpyr = (e,7,n,5,T) is the set of system
and algorithm parameters defining the current en-
vironment.



3.4 A-Reliability of Bimodal Multicast

Based on this, we formally characterize the A-
Reliability of Bimodal Multicast [2].

Proposition 1 For any environment Xy =
(e,7,n,B3,T) and any p € [0,1] the reliability dis-
tribution function ey (p, Xpar) of Bimodal Mul-
ticast [2] satisfies the condition:

Yem(p, Xem) > @pm(p, Xem) (8)

Proof: To prove the result it is sufficient to
show that, for any p € [0,1] and any X gy,
Bimodal Multicast is A-Reliable with A =
(YBum(p,XBM), p), such that Ypa(p, Xpar) sat-
isfies (8).

The proof of A-Validity and A-Integrity fol-
lows directly from the algorithm description and
the absence of byzantine failures (see Appendix
B): the sender of a broadcast message deliv-
ers the message immediately and a process that
receives the broadcast message delivers it only
once. Thus, A-Validity and A-Integrity are sat-
isfied with probability 1 > ®par(p, Xpar), for any
p € [0,1].

The proof of A-Agreement follows from the
analysis above. Since ®py/(p, Xpar) gives a lower
bound on the probability of successfully infect-
ing at least a fraction p of processes, the effective
probability given by a real execution of Bimodal
Multicast in X gas is higher, thus Vp € [0, 1]

Yeym(p, Xem) > Cem(p, XBar) O

Remark. Note that an approximation consists
in computing the expected value for the infected
fraction of the system. Let E[r:] be the expected
number of susceptible processes at time t. We can
roughly estimate E[r:| using the following recur-
sive relationship:

E[TO} =n-—1
E[r] = (n - 1)g, (9)
Elriq] = q(E[rt_l]_E[rt])E[rt}

This gives us a simple way to estimate the fraction
of infected processes after T rounds FEpj[p] =~

(n — E[rr])/n, which is relevant for a large-scale

system (the variance is comparatively small for a
large n [13]).

4 TP Multicast

In this section, we illustrate A-Reliability
through a second, in the traditional sense [8] in-
herently unreliable algorithm, namely IP Multi-
cast [4].

4.1 Protocol Overview

IP Multicast is a so-called network-level broad-
cast algorithm. As its name reveals, it is directly
based on IP, and is used to broadcast datagrams.
The transmission of such datagrams is not reli-
able, and basic IP Multicast does not consider
message loss detection and reparation, making
it inherently unreliable. In the context of IP
Multicast, many different protocols have been de-
scribed and deployed, for instance in the MBone,
the Internet’s IP Multicast backbone.

4.2 Model

While certain protocols are targeted at dense
distribution of processes and thus rely on flood-
ing techniques, we focus here on a sparse distri-
bution of processes. We presuppose a spanning
tree, as for instance the ones that are encoun-
tered with the Protocol-Independent Multicast —
Sparse Mode (PIM-SM) [6] protocol.

Spanning tree. In conformance with what is
usually supposed for the analysis of such proto-
cols (e.g., [12]), we suppose a k-ary spanning tree
of depth d. In other terms, we consider a regular
spanning tree with a single broadcasting process
(the broadcaster of a given message) located at
the root, k% receiving processes constituting the
leaves of the tree, and every non-leaf node of the
tree representing a router with k outgoing links.

The system size is thus given by n = k%7 but

"To be absolutely precise, we would have to consider
n = k? + 1 processes, since the broadcasting process is
itself receiving. At an increased system size n, this does
not significantly impact the result.



we will consider n and k as parameters of the en-
vironment, and, since we are interested in large
systems, we use d = loggn. Note that a span-
ning tree obtained in a real use case can always
be captured by a possibly bigger spanning tree
conforming to the above description.

Failures. In conformance with the analysis of
Bimodal Multicast presented in the previous sec-
tion, we consider as 7 the probability that a given
process fails, and the probability of a message loss
as €. In addition, we define as vy the probability
of a router failure.

4.3 Analysis

Similarly to the analysis presented in the previ-
ous section, we propose a breakdown in successive
rounds. These rounds however correspond to the
levels in the spanning tree, that is, at round 1,
the router of a broadcasting process forwards a
given message m to the k routers representing its
child nodes (syp = 1). Due to message losses, only
s1 < k will receive m. In any round 1 < ¢ < d,
the s;_1 “infectious” routers of level t — 1 forward
m to their ks;_1 child nodes (maximum of k%). At
round 7" = d, the routers composing level d — 1
finally send m to the processes constituting the
leaves of the tree. The probability p; of a suc-
cessful reception of m by an entity at level ¢ is
therefrom given by:

(1-m-e) 1=e<d 0
1-m1-¢) t=d

The probability of having a given number s; of
“infected” entities at a given level ¢ can be com-
puted recursively based on the probabilities of any
number of infected entities at level ¢ — 1. Finally,
the probability of obtaining a given number of
infected processes at the leaves of the spanning
tree enables the computation of the fraction p of
the processes in Il which have received m. For
that end, we require the probability of having j
infected entities at level ¢ based on the number ¢
of infected entities at the previous level:

Pijt = (Z]k)Pi(l — py) =9 (11)

Thus, the probability of having j infected entities
at round ¢ is given recursively by:

P(st=j) = Z P(si1 =i)pye  (12)
0<i<kt—1

As a direct consequence, the probability of having
at least a fraction p of infected processes in a k-
ary spanning tree of depth d is given by:

Qrpa(p, Xrpa) =P(sa > |pn])
= > Pla=j), @)

Lon] <j<n

where the environment Xjpp; is defined in
this case as the set of parameters Xjpy =
(677-’77”7 k)'

4.4 A-Reliability of IP Multicast

Based on 13 we are now able to formally char-
acterize the A-Reliability of IP Multicast.

Proposition 2 For any environment Xypy =
(e,7,7,n, k) and Vp € [0,1] IP Multicast is A-
Reliable with A = ((I)IPM(,U, EIPM),p)-

Proof: The proof of A-Integrity follows from the
semantics of IP and the absence of byzantine
failures, and A-Validity is assured with preva-
lent operating systems. Thus, A-Validity and A-
Integrity are satisfied with probability 1.

The proof of A-Agreement follows from the
analysis above. ®rpyr(p, Xrpar) is equal to the
probability of successfully infecting at least a
fraction p of processes. Thus A-Reliability with
A=(P;ppr(p, Xrpar),p) is guaranteed. O

Remark. Note that the expected value for the
fraction p of processes which will receive m,
Erpalpl. is given by:

Erpmlpl = [[ m=0-e)'1—-yn""'1-1)
1<t<d
(14)

Furthermore, the probability that all n processes
will receive a given broadcast message m, P(sq =



n) = (1) can be easily expressed in this model
through:

P(sa=n)= [] # (15)

1<t<d

5 Comparing Bimodal Multicast and
IP Multicast

This section illustrates the use of A-Reliability
in comparing broadcast algorithms. Based on
the analytical results presented in Sections 3 and
4, we present here estimations of the reliabil-
ity distribution functions (and also the expected
values of the reliability degrees for both algo-
rithms), which enable the comparison of Bimodal
Multicast and 1P Multicast in the context of A-
Reliability. As we will show, our analysis confirms
the intuition that, in many cases, Bimodal Multi-
cast is “more reliable” than IP Multicast and that
Bimodal Multicast, unlike IP Multicast, mani-
fests no considerable reliability degradation as the
system grows in size.

Reliability distribution functions. Figure 1
presents a lower bound on the probability of suc-
cessful execution ®pyr(p,Xr) of Bimodal Mul-
ticast and the reliability distribution function
Yrpm(p, Xr) of IP Multicast in some “realistic”
compound environment Xp = (¢ = 0.01,7 =
0.05,7 = 0.001,n = 256,k = 4,3 = 0.02,T = 6).
Indeed, relevant to the intuition, Vp € [0.5,1] :
Yeu(p, XRr) = Cprm(p, Xr) > Yrpm(p. Xr). One
can conclude that Bimodal Multicast is strictly
more reliable in V = [0.5,1] in the environment
Yr. However, in a “better” environment Xp
(with much smaller values for ¢, 7 and ), IP Mul-
ticast may guarantee the same level of reliability
as Bimodal Multicast. At the extremum, in a
perfect environment ¥ p with ep = 7p = vp = 0,
where we have neither message losses nor node
failures, ¥rpap(p, Xp) = 1, Vp € [0,1]. Bimodal
Multicast on the other hand, due to its random-
ized nature, even in the perfect system admits the
case when all the gossips of any given round are
sent to already infected members and some part of
the system will never get the broadcast message.

So ¥par(p, Xp) is strictly less than 1 (but can be
made arbitrarily close to 1). This conveys the
strong impact of the choice of the environment,
in which two algorithms are to be compared, on
the respective reliability distributions,® and thus
on the result of the comparison.
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Figure 1: ®ppr(p,Xr) and the reliability distri-
bution function ¥rpar(p, Xr).

Expected reliability degrees. Figure 2
presents the expected values of the reliability
degrees for Bimodal Multicast and IP Multi-
cast (Epnlpl, resp. Erpum(p]) given a system
size n. As expected, the system size does not
have a noticeable impact on the reliability of
Bimodal Multicast while, for IP Multicast,
Erpaplp) is exponentially decreasing. This con-
firms the advantage of Bimodal Multicast over
IP Multicast in terms of A-Reliability. This
result might seem surprising, since Bimodal
Multicast uses a first quick dissemination phase
based on a tree-based algorithm, possibly IP
Multicast itself. As we already mentioned in
Section 3, this first phase does not impact the
analysis of the propagation of knowledge.
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Appendix A Reliability Distribution

Function

In this section we give more details on the na-
ture of our reliability distribution function v (p),



and we discuss some alternative measures that we
have been exploring.

Separating properties. A-Reliability defines
the same probability for all properties. An al-
ternative specification considering different prob-
abilities vy, ¥; and ¥4 of satisfying each prop-
erty respectively would lead to an underspecified
system: many possible and not quantified inter-
sections between the domains in which each re-
spective property is verified would be introduced.
In a practical context furthermore, it is sufficient
to separate “good” and “bad” runs, without any
further distinction.

Alternatively, one could also assume that A-
Validity and A-Integrity are always fulfilled. In
other terms, these first two properties would be
satisfied with ¢y (1) = 1, while A-Agreement
would have a separate reliability distribution
function 1 4(p). Presupposing that both A-
Integrity and A-Validity are de facto always ful-
filled however bears the danger of ruling out use-
ful algorithms.

Cumulative distribution function. From a
probabilistic point of view, our reliability distri-
bution function ¢ (p) expresses a similar, but not
equivalent measure than a cumulative distribution
function. In fact, for any given random variable
X, the cumulative distribution function of X is
given by

F(z)=P(X <x), Vr € | —00,00[ (16)

In contrast, 1 expresses for a given random vari-
able p:

¥(po) = P(p = po), Vpo <1

Together with the assumption that Vp > 1 9(p) =
0, we are able to express the relationship between
¥ (p) and the cumulative distribution function of a
random variable p describing the fraction of pro-
cesses which deliver a given message

F(po) =1 —4(po) + P(p = po),Ypo €] — 00, 0]
(18)

(17)

where the last term disappears when consider-
ing ¥(p) as a continuous function.

11

Lower bounds. As illustrated through our ex-
amples in Sections 3 and 5, a lower bound on
the probability of successful execution ®p, for a
given broadcast algorithm B; can help to esti-
mate the reliability distribution function v p, (p)
for that algorithm, which can be useful when com-
paring B; with another algorithm Bs, especially
if g, (p) is known and is smaller than g, (p) in
some V. In practice, it is important to find a
lower bound which reflects most truly the effec-
tive reliability distribution v (p) of an algorithm.
The lower bound presented in the case of Bimodal
Multicast is reasonably close to the real probabil-
ity distribution and provides useful information
for comparisons with other broadcast algorithms,
but for many algorithms, finding a precise reliabil-
ity distribution function remains a difficult task.

Appendix B Abstract Version of
Bimodal Multicast

This section presents a simplified version of the
gossip-based phase of the Bimodal Multicast al-
gorithm [2] used in this paper.

{* Auxiliary function. *}
deliver_and_gossip(m, round)
{* Do nothing if already received.*}
if received_already then return

{* Mark the message as received and deliver it.*}
received_already:=true
pbDeliver(m)

{* if last round, don’t gossip.*}
if round=T" then return

let S be a randomly chosen subset of the system,
such that |S| = nj
for each p in S send to p gossip(m,round+1)

{* Initial settings. *}
received_already:=false
initialize(T’)

{* Initiate a Bimodal Multicast. *}
On a pbcast(m):
deliver_and_gossip(m,0)

{* Handle message receipt. *}
On receive gossip(m,round)
deliver_and_gossip(m,round)




