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1 Introduction

Background. This paper addresses the fault-tolerant mutual exclusion prob-
lem in a distributed message-passing system where channels are reliable and
processes can fail by crashing. The mutual exclusion problem [1-4] involves
managing access to a single, indivisible resource that can be accessed by at
most one process at a time (mutual ezclusion property). The process accessing
the resource is said to be in its critical section (CS). In the fault-tolerant mu-
tual exclusion problem, we require that if a correct process (i.e., a process that
takes an infinite number of steps of an algorithm assigned to it) wants to enter
its CS, then there eventually will be some correct process in its CS (progress
property), even if some process crashes (stops taking steps) while in its CS.

Evidently, the problem cannot be solved deterministically in a crash-prone
asynchronous system without any information about failures: there is no way
to determine that a process in its CS is crashed or just slow. (We do not
consider here probabilistic mutual exclusion algorithms [5,6]. We also do not
restrict ourselves to particular scenarios in which, for instance, no process can
crash outside its remainder section.) Clearly, no deterministic algorithm can
guarantee fault-tolerant progress and mutual exclusion simultaneously. In this
sense, the problem is related to the famous impossibility result that consensus
cannot be solved deterministically in an asynchronous system that is subject
to even a single crash failure [7].

Failure detectors. To circumvent the impossibility of consensus, Chandra
and Toueg [8] introduced the notion of failure detector. Informally, a failure
detector is a distributed oracle that gives (possibly incorrect) hints about
which processes have crashed so far. Each process has access to a local failure
detector module that monitors other processes in the system. In [8], it is shown
that a rather weak failure detector &GW is sufficient to solve consensus in an
asynchronous system with a majority of correct processes, and that GW can
be implemented using partial synchrony assumptions. In [9], it is shown in a
precise sense that GW is also necessary to solve consensus, given a majority
of correct processes. In short, OW is the weakest failure detector to solve
consensus.

Trusting failure detector 7. A natural question follows: what is the weakest
failure detector to solve the fault-tolerant mutual exclusion problem? Tradi-
tionally, mutual exclusion algorithms either assume that no process crashes
outside its remainder section [1-4,10,11], or suppose that (1) every crash is
eventually detected by every correct process and (2) no correct process is sus-
pected [12,13]: the conjunction of (1) and (2) is equivalent to the assumption
of the perfect failure detector P [8]. In other words, perfect information about
failures is sufficient to solve the fault-tolerant mutual exclusion problem. But



is P necessary? We show that the answer is “no”: we can solve the problem
using the trusting failure detector 7, a new failure detector we introduce here,
which is strictly weaker than P (but strictly stronger than OGP, the eventually
perfect failure detector of [8]).

Roughly speaking, failure detector 7 satisfies the following properties: (1)
there is a time after which 7 trusts every correct process, (2) there is a time af-
ter which 7 does not trust any crashed process, and (3) at all times, if 7 stops
trusting a process, then the process is crashed. Failure detector 7 might how-
ever trust temporarily a crashed process as well as not trust temporarily a
correct process. Intuitively, 7 can thus make mistakes and algorithms using
T are, from a practical point of view, more resilient than those using P.

The algorithm we present here to show that 7 is sufficient to solve fault-
tolerant mutual exclusion assumes a majority of correct processes and is in-
spired by the well-known Bakery algorithm of Lamport [2,3]: a process that
wishes to enter its CS first passes a guard (gets trusted by some correct pro-
cess), then draws a ticket and is served in the order of its ticket number.
Failure detector 7 guarantees that a crash of the process will be eventually
detected by every correct process in the system. We show that, in addition
to mutual exclusion and progress, our algorithm guarantees also a fairness
property, ensuring that the only excuse for not granting the access to a CS re-
quested by a correct process is the permanent stay of some correct process in
its CS (starvation-freedom property).

We also show that 7 is weaker than any failure detector D sufficient to solve
the problem (7 provides at least as much information about failures as D).
Intuitively, this stems from the fact that, if a process ¢ in its CS does not
execute the exit protocol, another process can enter its CS only if it is sure that
1 is crashed. We present an algorithm that extracts the information provided
by 7 from any algorithm that solves fault-tolerant mutual exclusion.

Contributions.

e We show that 7 is indeed the weakest failure detector to solve the prob-
lem in a system with a majority of correct processes. We show also that
the majority is actually necessary for any fault-tolerant mutual exclusion
algorithm using 7.

e Then we address the question: what if we do not make the assumption of
a majority of correct processes? Is P necessary? We show that it is still
not: we present a failure detector 7 + S (where S is the strong failure
detector of [8]) which is strictly weaker than P and which is sufficient (but
possibly not necessary) to solve the problem even with an arbitrary number
of failures.

e Finally, we turn our attention to group mutual exclusion [14-17], a recent



generalization of mutual exclusion and we show that 7 is the weakest to
solve fault-tolerant group mutual exclusion (with a majority of correct pro-
cesses). In other words, we show that the problem is equivalent to fault-
tolerant mutual exclusion in an asynchronous system augmented with fail-
ure detectors and the assumption of a majority of correct processes. Anal-
ogously, failure detector 7 + S is sufficient to solve fault-tolerant group
mutual exclusion in an asynchronous system with an arbitrary number of
failures.

Roadmap. The rest of the paper is organized as follows. Section 2 overviews
the system model. Section 3 defines the fault-tolerant mutual exclusion prob-
lem. Section 4 introduces the trusting failure detector 7. Sections 5 and 6
show that 7 is, respectively, necessary and sufficient to solve the problem.
Section 7 discusses the bounds on the number of correct processes necessary
to solve the problem with 7 and introduces a failure detector 7 + S which
is sufficient to solve the problem without a majority of correct processes. Sec-
tion 8 generalizes our result to the group mutual exclusion problem. Section 9
discusses the performance cost of the resilience provided by 7 and Section 10
concludes the paper with some practical remarks.

2 The Model

We consider in this paper the traditional crash-prone asynchronous message
passing system model augmented with the failure detector abstraction [8,9].

System. The system consists of a set of n processes Il = {1,...,n} (n > 1).
Every pair of processes is connected by a reliable channel. Processes communi-
cate by message passing. To simplify the presentation of our model, we assume
the existence of a discrete global clock. This is a fictional device: the processes
have no direct access to it. (More precisely, the information about global time
can come only from failure detectors.) We take the range T of the clock’s ticks
to be the set of natural numbers and 0 (T = {0} UN).

Failures and failure patterns. Processes are subject to crash failures. A
failure pattern F is a function from the global time range T to 2, where
F(t) denotes the set of processes that have crashed by time t. Once a process
crashes, it does not recover, i.e., V¢t < t' : F(t) C F(t'). We define correct(F) =
IT — UerF(t), the set of correct processes. A process i ¢ F(t) is said to be
alive at time t. A process i € F(t) is said to be crashed at time ¢. Processes in
IT — correct(F) are called faulty in F. We do not consider Byzantine failures:
a process either correctly executes the algorithm assigned to it, or crashes



and stops forever executing any action. An environment & is a set of possible
failure patterns. In this paper, we consider environments of the type £y that
consists of all failure patterns in which up to f processes can crash. We assume
that 0 < f < n: at least one process might crash and at least one process is
correct.

Failure detectors. A failure detector history H with range R is a function
from IT x T to R. H(i,t) is the value of the failure detector module of process
1 at time t. A failure detector D is a function that maps each failure pattern
to a set of failure detector histories (usually defined by a set of requirements
that these histories should satisfy). D(F') denotes the set of possible failure
detector histories with range Rp permitted by D for the failure pattern F.
Processes use a failure detector D in the sense that every process 7 has a failure
detector module D; that provides ¢ with information about the failures in the
system. We do not make any assumption a priori on the range of a failure
detector.

Among the failure detectors defined in [8], we consider perfect, eventually per-
fect and strong failure detectors, each one outputs at every process a set of
processes that the process currently suspects to have crashed. These failure
detectors are defined by completeness and accuracy properties:

Perfect (P): strong completeness (i.e., every crashed process is eventually
suspected by every correct process) and strong accuracy (i.e., no process is
suspected before it crashes);

Eventually perfect (OP): strong completeness and eventual strong accuracy
(i.e., there is a time after which no correct process is ever suspected).

Strong (8): strong completeness and weak accuracy (i.e., some correct process
is never suspected).

For any failure pattern F, P(F), OP(F) and S(F) denote the sets of all
histories satisfying the corresponding properties.

Algorithms, configurations, schedules, and runs. Following [8, 9], we
model the asynchronous communication channels as a message buffer which
contains messages not yet received by their destinations. An algorithm A is a
collection of n (possibly infinite state) deterministic automata, one for each
process. A(7) denotes the automaton on which process i is running algorithm
A. Computation proceeds in steps of A. In each step of A, process 7 performs
atomically the following three actions: (1) i receives a single message addressed
to i from the message buffer, or a null message, denoted A; (2) i queries and
receives a value from its failure detector module; (3) ¢ changes its state and
sends a message to a single process according to the automaton A(i). Note
that the received message is chosen non-deterministically from the messages
in the message buffer destined to 7, or the null message A.



A configuration defines the current state of each process in the system and the
set of messages currently in the message buffer. Initially, the message buffer
is empty. A step (i,m,d, A) of an algorithm A is uniquely determined by
the identity of the process ¢ that takes the step, the message m received by 7
during the step (m might be the null message \), and the failure detector value
d seen by ¢ during the step. We say that a step e = (i, m, d, A) is applicable to
a configuration C' if and only if m = X or m is in the message buffer of C'. For
a step e applicable to C, e(C) denotes the unique configuration that results
from applying e to C.

A schedule S of algorithm A is a (finite or infinite) sequence of steps of A.
S| denotes the empty schedule. We say that a schedule S is applicable to a
configuration C' if and only if (a) S = S, or (b) S[1] is applicable to C, S[2]
is applicable to S[1](C), etc. For a finite schedule S applicable to C, S(C)
denotes the unique configuration that results from applying S to C.

A partial run of algorithm A in an environment € using a failure detector D
is a tuple R = (F, Hp,I,S,T) where F' € £ is a failure pattern, Hp € D(F)
is a failure detector history, I is an initial configuration of A, S is a finite
schedule of A, and T C T is a finite list of increasing time values (indicating
when each step S occurred) such that |S| = |T'|, S is applicable to I, and for
all £ < |S|, if S[k] = (i, m, d, A) then: (1) 7 has not crashed by time T[], i.e.,
i ¢ F(T[k]) and (2) d is the value of the failure detector module of i at time
T[k], i-e., d = Hp(i, T[k]).

A run of algorithm A in an environment £ using a failure detector D is a tuple
R=(F,Hp,I,S,T) where F € £ is a failure pattern, Hp € D(F) is a failure
detector history, I is an initial configuration of A, S is an infinite schedule
of A, and T C T is an nfinite list of increasing time values indicating when
each step S occurred. In addition to satisfying the properties (1) and (2) of
a partial run, a run R should guarantee that (3) every correct process in F'
takes an infinite number of steps in S and eventually receives every message
sent to it (this conveys the reliability of the communication channels). (In
fact, the sufficient part of this paper holds even with a weaker guarantee such
as “every correct process eventually receives every message sent to it by any
correct process”.)

Problems and solvability. A problem is a set of runs (usually defined by
a set of properties that these runs should satisfy). An algorithm A solves a
problem M in an environment £ using a failure detector D if all the runs of
Ain & using D are in M (i.e., they satisfy the properties of M). We say that
a failure detector D solves problem M in £ if there is an algorithm A which
solves M in £ using D.

Let M and M' be any two problems and £ be any environment. If for any



algorithm A’ that solves M’ in &, there is a transformation algorithm of A’
into an algorithm A, R4, 4 such that A solves M in &, we say that M’ is
harder than M in €. If M' is harder than M in £ and M is harder than M’
in £, we say that M and M’ are equivalent in .

Weakest failure detector. If, for failure detectors D and D’, there is an
algorithm Rp/_,p that transforms D’ into D in environment £ (Rp/_,p, called
a reduction algorithm, emulates histories of D using histories of D’), we say
that D is weaker than D' in €, and we write D <¢ D'. If D <¢ D' but D' £¢ D,
we say that D is strictly weaker than D' in £, and we write D <g D'. Note
that Rp_,p does not need to emulate all histories of D; it is required that all
the failure detector histories it emulates be histories of D.

We say that a failure detector D is the weakest failure detector to solve a
problem M in an environment & if the following conditions are satisfied: (suf-
ficiency) D solves M in £ and (necessity) if a failure detector D’ solves M in
&, then D is weaker than D' in £.

3 The fault-tolerant mutual exclusion problem

In defining the fault-tolerant mutual exclusion problem (from now on — FTME)
we use the terms of [18, chapter 10]. The FTME problem involves the alloca-
tion of a single, indivisible, resource among n processes. An alive (not crashed)
process with access to the resource is said to be in its critical section (CS).
When a process is not involved in any way with the resource, it is said to be in
its remainder section. To gain access to its critical section, a process executes
a trying protocol, and after the process is done with the resource, it executes
an exit protocol. This procedure can be repeated, so each process i cyclically
moves from its remainder section (rem;) to its trying section (try;), then to its
critical section (crit;), then to its ezit section (exit;), and then back again to
rem;. We assume that every process i is well-formed, i.e., i does not violate
the cyclic order of execution: rem;, try,, crit;, exit;, . ...

A mutual exclusion algorithm defines trying protocol try, and exit protocol
exit; for every process i. (We do not restrict the process behavior in the critical
and remainder sections.) We say that the algorithm solves the FTME problem
if, under the assumption that every process is well-formed, any run of the

1" An alternative stronger definition of the problem can allow a process to be initially
in its CS. Clearly, the perfect failure detector P is necessary for this problem. We
instead follow the original definition of [18] where the competition between processes
for the critical section is “fair”, since none of them can usurp the CS from the very
beginning.



algorithm satisfies the following properties:

Mutual exclusion: No two different processes are in their CSs at the same
time.
Progress:
(1) If a correct process is in its trying section, then at some time later some
correct process is in its CS.
(2) If a correct process is in its exit section, then at some time later it enters
its remainder section.

We will show in Section 5 and Section 6 that, in an environment with a
majority of correct processes, any algorithm that solves the FTME problem
can be transformed into an algorithm satisfying not only the properties above
but also the following fairness property:

Starvation freedom: If no process stays forever in its CS, then every correct
process that reaches its trying section eventually enters its CS.

Note that mutual exclusion is a safety property while progress and starvation
freedom are liveness properties.

4 The trusting failure detector

This section introduces a new failure detector that we call the trusting failure
detector and we denote by 7. The range of T is Ry = 2. Let Hy be any
history of 7. Hy(i,t) represents the set of processes that process i suspects
(i.e., considers to have crashed) at time ¢t. We say that process i trusts process
J at time t if j & Hy(i,t).

For every failure pattern F', 7 (F') is defined by the set of all histories H7 that
satisfy the following properties:

Strong completeness: eventually, every crashed process is permanently
suspected by every correct process. That is:

Vi & correct(F), 3t : Vt' > t,Vj € correct(F),i € Hr(j,t')

Eventual strong accuracy: eventually, no correct process is suspected by
any correct process. That is:

Vi € correct(F),3t : Vt' > t,Yj € correct(F),i ¢ Hy(j,t')

Trusting accuracy: every process j that is suspected by a process ¢ after



being trusted by 7 is crashed. That is:
Vi,jt<t':j¢ Hr(i,t) ANj € Hr(i,t') = j€ F(t')

Figure 1 depicts a possible scenario of failure detection with 7. We consider
the system IT = {1,2,3,4}. Initially, the failure detector module at process
1 outputs {2,3,4}: H(1,t;) = {2,3,4}, i.e., process 1 trusts only itself. At
time ¢y > t;, processes 2 and 3 also get trusted by process 1: H(1,%y) = {4}.
Process 3 crashes and at some time later is not trusted anymore by process 1:
Vit > t3, H(1,t) = {3,4}. Note that process 1 never trusts process 4.

H(1,t) = {2,3,4)  H(L,t) = {4} H(1,t3) = {3,4}
1 : : | -

; - X
! - X

Fig. 1. Failure detection scenario for 7.

Now we identify the position of 7 in the hierarchy of failure detectors intro-
duced in [8]. We show that, in any environment & with 0 < f < n, OP is
strictly weaker than 7, and 7 is strictly weaker than P. The “weaker” parts
of the proofs follow directly form the definition of 7. The “strictly” parts of
the proofs are done by contradiction: we assume that a reduction algorithm
Ry_,p (respectively, Rop_,7) exists and expose a run of the algorithm that
violates some properties of P (respectively, T).

Proposition 1 T <¢, P, in any environment £ with 0 < f < n.

Proof

(a) Clearly, T <¢ P in any environment &£: P satisfies all properties of T.
Indeed, strong completeness is given for free, eventual strong accuracy is im-
plied by strong accuracy of P. Trusting accuracy follows from the fact that P
guarantees that any suspected process is crashed.

(b) Now we show that P is not weaker than 7. Intuitively, it follows from
the fact that 7 is allowed to make mistakes about processes (see the scenario
of Figure 1).

By contradiction, assume that there exists a reduction algorithm R;_,p that,
for any failure pattern F' € £; and any history Hy € T(F), constructs a



history Hp such that Hp € P(F).

Consider failure pattern F; € & such that Fy(0) = {j}, correct(Fy) = 11— {5}
(the only faulty process j is initially crashed) and take a history H} € T (F})
such that H}(i,¢t) = {j}, Vi # j,Vt € T (remember that we consider an
environment where at least one process can crash and at least one process is
correct). Consider run Ry = (Fy, H3, I, S1,T) of Ry_p that outputs a history
H3 € P(F}). By the strong completeness property of P: 3ko € N, 3l € II—{j}:
HL (1, Tlko]) = ().

Consider failure pattern Fy € & such that correct(Fy) = II (F5 is failure-free)
and define a history H% such that Vi € II and V¢ € T:

H2(i,t) =
) 0, ¢t > Tlko)

Note that HZ € T(Fy), and Vt < Tlko|, Vi € 11 — {j} : H}(i,t) = HZ(i, ).
Consider run Ry = (Fy, H3, 1,55, T) of Ry_,p such that S;[k] = Sa[k], Vk < ko
(processes take the same steps in R; and Ry up to time T[ko]). Let Ry outputs
a history H2 € P(Fy). Since partial runs of R; and Ry for ¢t < Tl[ko| are
identical, the resulting history H% is such that H3(l,T[k]) = {j}, for some
I € I1 — {j}. But process j is alive at T[ko| in F5, i.e., the strong accuracy of
P is violated — a contradiction.

Thus, T =& P. O

Proposition 2 OP <¢, T, in any environment £ with 0 < f < n.

Proof Clearly, &P <¢ 7 in any environment &£: by definition, every 7 satis-
fies strong completeness and eventual strong accuracy.

Now we show that 7 is not weaker than &P. Intuitively, it follows from the
fact that 7 is allowed to make only a bounded number of mistakes, while the
number of mistakes OGP can make is unbounded.

By contradiction, assume that there exists a reduction algorithm Rop_,7 that,
for any failure pattern F' € £ and any history Hop € OP(F), constructs a
history Hy such that Hr € T(F).

Consider a failure-free pattern Fy € &; (correct(Fy) = II) and take Hyp €
OP(Fy) such that Vi,Vt € T: Hyp(i,t) = 0. Consider a run Ry = (Fy,H}p,
1,51, T) of Rop_y1 that outputs a history H} € T(F;). By the eventual
strong accuracy property of 7, Jky € N, such that Vk > ky and Vi € 1I:
HL(i,T[k]) = 0.

10



Now consider a failure pattern F» € & such that correct(F;) = II — {j} in
which j crashes at time T'[ko] + 1. Take a history H2, € OP(F) such that
forall t € T and ¢ € II:
H.,(i,t), t < Tk
2 g - | T 1 < Tlk

{]}a > T[kO]

Now consider a run Ry = (Fy, H3p, I, S5, T) of Rop_,7 that outputs a history
H%Z € T(F,). Assume that Si[k] = Ss[k], Vk < ko. Clearly, for all i € II,
HZ(i,T[ko]) = 0. By the strong completeness property of 7, there exists a
time k; > ko such that Vi # j: H2(:, T[k1]) = {5}

Now we construct a history H3, such that for all ¢t € T and : € II:
H<1>P(7;,t)a < T[k()]

H35(i,t) = { H2,(i,1), Tlko) < t < T[ki]
0, t > T[ki]

Clearly, H3p € OP(Fy).

Finally, consider a run Ry = (Fy,H3,,1,53,T) of Rop_,7 that outputs a
history H3 € T (F1). Assume that S3[k] = Sa[k], Vk < k;. Since partial runs
of Ry and Rj for t < T'[k;] are identical, there exists i # j such that:
H%’(Z’T[ko]) = (0’
H3 (i, T[k1]) = {5}

In other words, j is suspected by i at time T[] after not being suspected by
i at time T'[ky] < T[k1]. By the trusting accuracy property of 7, j is crashed
in Fi, which contradicts the assumption that Fj is failure-free.

Thus, OP <¢, T. |

5 The necessary condition for solving FTME

This section shows that the trusting failure detector 7 is necessary to solve
FTME in any environment £. In other words, we show that if a failure detector
D solves FTME in £, then T <¢ D.

11



Assume that an algorithm A solves FTME in an environment £ using a fail-
ure detector D. A reduction algorithm Rp_,7 that transforms D into T is
presented in Figure 2. At any time ¢t € T and for any process ¢« € I, Rp_,1
outputs the set of processes suspected by i, output,(t).

In the algorithm of Figure 2, processes can access n different critical sections:
CS1, .., CS, by using n parallel instances of algorithm A. Let try,;, crit;;, exit;;
and rem;; denote, respectively, trying, critical, exit and remainder sections of
process ¢ with respect to CS;. Each process ¢ controls critical section CS;, i.e.,
in any run in which 7 is correct, ¢ eventually gets access to CS;. As a parallel
task, ¢ may request and gain access to any CS;. (For brevity, we say that i
requests CS; and that i enters CS;.) Process i requests CS; (j =1,...,n) by
executing trying protocol try;;. By definition, if C5; is used correctly (the pro-
cesses are well-formed with respect to CS)), then A guarantees the properties
of FTME.

The idea of the algorithm is the following. Initially, Vi € II: output; = II (every
process is suspected). Process i first runs the trying protocol try,; in order to
enter CS;. Since 7 is the only process in the trying section for CS;, ¢ eventually
either crashes or enters CS; and then sends the message [me, i, ] to all. Every
correct process that received [me, 7, ] stops suspecting 7 and executes try;; in
order to enter CS;.

In our algorithm, a process can leave its CS only because of a crash. Thus,
the only reason for which a correct process i can enter CS; (i # j) is the crash
of j. In this case, process ¢ sends the message [me, 7, j| to all processes. Every
process that receives the message [m, 1, j| (i # j) starts suspecting j.

As a result, eventually, no correct process is suspected by any correct process
and every crashed process is permanently suspected by every correct process.
Moreover, the only reason to start suspecting a process 7 after trusting it, is
the crash of 7. That is, the output of 7 is emulated.

To ensure progress of the failure detector output, the reduction algorithm of
Figure 2 maintains, at every process ¢ € 1I, n + 2 parallel tasks:

e task 0 in which ¢ runs the trying protocol try,;;

e task £ (k = 1,...,n) in which 7 detects that k£ has entered CSj, stops
suspecting k£ and runs the trying protocol try;, (lines 9-10 are executed
atomically);

e task n+1 in which 7 detects failures of other processes and starts suspecting
them.

Lemma 3 The algorithm of Figure 2 emulates the trusting failure detector

T.

12



1: output; :=1I { Initialization }
2: crashed; := ()
3: start tasks 0,...,n+ 1

4: task 0:
5:  tryy { i requests CS; }
6: send [me,i,1i] to all { i enters CS; }

{An indication that k entered CSy is received }
7 task k (k=1,...,n):
8:  upon receive [me, k, k] do

9: if k ¢ crashed; then

10: output; := output; — {k} { i stops suspecting k }
11:  if k#i then

12: try;p { i requests CSy }
13: send [me, i, k] to all { i enters CSy }

{An indication that j entered CSy is received }

14: task n + 1:

15:  upon receive [me, j, k] with j # k do

16: crashed; := crashed; U {k}

17: output; := output; U {k} { i starts suspecting k }

Fig. 2. Reduction algorithm Rp_,7 — process .

Proof According to the algorithm of Figure 2, no process 7 requests twice the
same instance CS; or exits. Thus, each 7 is well-formed with respect to each
CS;. Note that, once entered CS}, 7 can leave CS; only if ¢ crashes.

By contradiction, assume that the strong completeness property of 7 is vio-
lated. More precisely,

dF, 3 € correct(F), 35 ¢ correct(F) : Vt,3t' > t,7 ¢ output,(t').

Initially, output, = II (every process is suspected). By the algorithm, initially,
Jj € output;, and the correct process i removes j from output; (line 10 of
Figure 2) at most once and only if (a) the message [me, j, j] is received (line 8),
i.e., jisin CS; (line 6) and, (b) j ¢ crashed,.

As a result, i runs try;; in order to enter CS; (line 12). By the progress prop-
erty of FTME, at some time later, some correct process m is in CS;. By the
algorithm, m sends [me, m, j| to all. Eventually, process i receives [me, m, j]
(7 is faulty, thus, m # j). Since lines 9-10 are executed atomically, 7 cannot
execute line 16 (while processing [me, m, j]) before executing line 10 (while
processing [me, j, j|). As a result of processing [me, m, j|, i adds j to output,
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(line 17) and j stays in output; forever — a contradiction with.
Thus, strong completeness of T is satisfied.
By contradiction, assume that trusting accuracy is violated. More precisely,

AF, 3, ' >t, 35 ¢ F(t') : (j ¢ output;(t) A j € output,(t')).

By the algorithm, ¢ suspects j at time ¢’ only if some process k # j enters CS;
at some time t; < ¢’ and only if at some time ¢; < t, j itself entered CS;. By
the mutual exclusion property of FTME, j had to leave CS; before t,. Since j
never executes the exit protocol, j could leave CS; only because of its crash,
that is, j € F(t') — a contradiction.

By contradiction, assume now that eventual strong accuracy is violated. More
precisely,

3F, i € correct(F),3j € correct(F),Vt,3t' >t : j € output,(t').

Note that the assumption implies that V¢ € T, j € output,(t), otherwise, trust-
ing accuracy is violated.

Thus, 7 never stops suspecting j: by the algorithm, 7 never reaches line 10 while
processing the reception of [me, 7, j|. That is, either (1) i receives [me, k, j] with
k # j and put j into crashed; (lines 15-17), or (2) ¢ never receives [me, j, j|.

Assume that (1) is true. By the algorithm, [me, k, j] with k& # j can be only
received if k entered CS; at some time ¢y and if at some time ¢; < ¢, 7 entered
CS;. Since j never executes the exit protocol, j could leave CS; only if it is
faulty — a contradiction.

Assume that (2) is true. Since both i and j are correct, j never sends [me, j, j|
(line 6). Thus, no process ever receives [me, j, j|. By the algorithm, a process
k executes the trying protocol try,; only if k received [me, 7, j]. Thus, j is the
only correct process that ever requests access to CS;. By the progress property
of FTME, j eventually enters CS; and sends [me, j, j] to all — a contradiction.
Thus, the reduction algorithm of Figure 2 guarantees the properties of 7. O

As a corollary, we obtain the following result.

Theorem 4 For any environment £, if a failure detector D solves FTME in
5, then T =¢ D.
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6 The sufficient condition for solving FTME

We give in Figure 3 an algorithm that solves FTME using 7 assuming an
environment £ with a majority of correct processes (f < [5]). The algorithm
uses the fact that &P =g, T and, as a result, we can implement total order
broadcast using T in & [8].

Total order broadcast is defined through the primitives to-broadcast() and
to-deliver() and satisfies the following properties:

validity: if a correct process 7 to-broadcasts a message m, then i eventually
to-delivers m;

agreement: if a process to-delivers a message m, every correct process even-
tually to-delivers m;

integrity: every message is to-delivered at most once, and only if the message
was previously to-broadcast;

total-order: if a process ¢ to-delivers a message m before having delivered a
message m’, then no process j can to-deliver m’ without having to-delivered
m first. 2

Note that the total-order property implies that if a process ¢ to-delivered a
message m and a process j to-delivered a message m', then either m is to-
delivered by j before m’ or m' is to-delivered by i before m.

The algorithm of Figure 3 assumes that:

- an algorithm implementing total order broadcast is provided;

- every process ¢ has access to the output of its trusting failure detector
module 7;;

- every process ¢ is well-formed.

In our algorithm of Figure 3, each process 7 maintains the following local
variables:

(1) a boolean ready;, initially false, indicating whether i is ready to execute
the trying protocol;

(2) a set trusted; C II, initially empty, of processes currently trusted by i;

(3) an integer r;, initially 0, indicating the number of times 7 has run the

2 This definition of the total-order property is slightly stronger than the one pro-
posed in [19]: we require that all correct processes deliver the same sequence of
messages, and all faulty processes deliver prefizes of this sequence. This distinction
however does not matter for our results, since the algorithm given in [8] implements
the strongest version of total order broadcast.
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1: ready; := false { Initialization }
2: r; = 0

3: trusted; ==

4: start tasks 0,...,n

Trying protocol try;:
if not ready; then
send [me, ] to all { Send a trust request to all }
wait until received |n/2] + 1 [ack]’s
ready; = true
9 rpi=r+ 1
10: to-broadcast([s, r;])
11: repeat
12:  wait until the next request [4, k] is to-delivered
13:  if i # j then
14: wait until received [ezit, j, k| or received [crash, j]
15: untili =3
16: { i enters CS }

Exit protocol exit;:
17: send [ezit, 3, 7;] to all

{ A crash of process | is detected }

18: task 0:

19:  wupon (I € trusted; and [ € 7;) do

20: trusted; := trusted; — {l}

21: send [crash,l] to all { I stops being trusted }

{ A trust request is received from m € II }
22: taskm (m=1,...,n):
23:  upon receive [me, m| do

24: wait until m ¢ 7; { Wait until m is trusted }
25: trusted; := trusted; U {m}
26: send [ack] to m

Fig. 3. FTME algorithm using 7 process i.

trying protocol;
(4) integers j and k indicating the last processed request of the type [j, k|
where j is the process that issued the request and % is j’s request number.

Our algorithm also assumes that every process i stores the identifiers of all
received messages in a buffer, so that, for a given message m, the predicate
“received m” (lines 7 and 14 of Figure 3) is true if and only if m has been
previously received by i.
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The idea of our algorithm is inspired by the well-known Bakery algorithm of
Lamport [2, 3]: the processes that wish to enter their CSs (the candidates)
first draw tickets and then are served in the order of their tickets numbers.
Before drawing a ticket, every candidate asks for a permission to proceed
from some correct process and waits (line 7) until the permission is received
(it eventually happens due to the assumption of a majority of correct processes
in the system). Then the candidate is put into the waiting line implemented
by the total order broadcast mechanism. Total order broadcast guarantees
that the requests are eventually delivered in the same order (line 12), i.e., no
candidate ¢ can be served unless every candidate in the waiting line before 7
has been served and has released the resource, or crashed (line 14). If a process
crashes in its CS, then at least one correct process will eventually detect the
crash and informs the others (lines 19-21 in Figure 3).

To ensure the progress property of FI'ME, in addition to the trying and exit
protocols (respectively, lines 5-16 and line 17 of Figure 3), the algorithm
maintains, at every process ¢ € II, n + 1 parallel tasks:

e task 0 in which 7 detects failures of other processes;
e task m (m =1,...,n) in which ¢ takes care of the trust request of process
m.

Now we prove the correctness of the algorithm through Lemmas 5 and 6.

Lemma 5 No two different processes are in their CSs at the same time.

Proof By contradiction, assume that ¢ and j (i # j) are in their CSs at time
to. Let, at time ¢y, r; = k; and r; = k;.

In the trying protocol (lines 5-16), every process to-broadcasts its request for
a CS and no process enters its CS before having first to-delivered its request.
Thus 4 must have to-delivered ¢, k;] and j must have to-delivered [j, k;] before
to- By the ordering property of to-broadcast, either both 7 and j to-delivered
i, k;] before having to-delivered [j, k;], or the contrary. Assume, without loss
of generality, that to-deliver([i, k;]) precedes to-deliver([j, k;]) at j. That is, at
some time t; < to, j passed the “wait” clause in line 14 while processing [z, k;].
Thus, one of the following events occurred before t; at j:

(1) j received [ezit, i, k;]: by the algorithm, i left the CS with r; = k; before
time t;. But 7 is in the CS with r; = k; at ¢, > t; — a contradiction.

(2) j received [crash,i|: by the algorithm, at some process m, at some time
ty < t; the following is true: i € trusted,, and i € 7,. But ¢ can be
in trusted,, only if previously ¢ ¢ T, (lines 24-25). That is, m stopped
trusting ¢ at time to. By the trusting accuracy property of 7, ¢ is crashed
at to. But 7 is in the CS at ¢ty > t9 — a contradiction.
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Hence, mutual exclusion is guaranteed. O

Lemma 6 If a correct process is in its trying section, then at some time later
some correct process is in its CS. If a correct process is in its exit section, then
at some time later it enters its remainder section.

Proof Assume that a correct process ¢ in its trying section at some time ¢,
with ; = 7, and no correct process is ever in its CS after ¢.. By the algorithm,
7 never reaches line 16. Thus, 7 is blocked in a “wait” clause or at the non-
terminating repeat-until loop. The first “wait” clause (line 7 of Figure 3) is
not able to block the process, due to eventual strong accuracy of 7 and the
fact that at least |n/2] + 1 processes are correct. Thus, 7 eventually issues
to-broadcast([i, 7]). The second “wait” clause (more precisely, the statement in
line 12 of Figure 3) is not blocking neither, because of validity of total order
broadcast: eventually, i to-delivers at least one message — [z, 7]. Further, if the
“wait” clause in line 14 is not blocking, then validity of total order broadcast
implies that [i,7] is eventually to-delivered by 4, thus i exits the repeat-until
loop and enters its CS.

Thus, 7 is blocked in the third “wait” clause (line 14 of Figure 3) while pro-
cessing some [j, k] (i # 7). Thus, i never receives [exit, j, k] or [crash, j].

By integrity of total order broadcast, j has previously to-broadcast [4, k| (line 10
of Figure 3).

Let j be any process that reaches line 10.

We observe first that (Claim 1) j has been previously put in trusted,, by
some correct process m. Indeed, j received |n/2] + 1 [ack]’s from processes
that trusted j. Since at least |n/2]|+1 processes are correct, j receives at least
one [ack] from a correct process m that previously put j in trusted,, at some
time t;.

Then we notice that (Claim 2) if j is faulty, then, every correct process even-
tually receives [crash, j|. Indeed, if j is faulty, then, by trusting completeness of
T and Claim 1, some correct process m eventually and permanently suspects
jrdty >ty oVt >t 1 j € T, That is, eventually, the condition of line 19 is
satisfied at m for j (j € trusted,, and j € T,). Thus, m sends [crash, j] to all
processes and every correct process eventually receives it.

Hence, process j should necessarily be correct. Indeed, if j is faulty, then,
by Claim 2, correct process i eventually receives [crash, j| and releases from
waiting in line 14.

Further, we observe that trusting accuracy of 7 implies that (Claim 3) if a

18



message [crash, j] is received, then j is crashed.

Finally, we show that (Claim 4) if a correct process m passed an entry [j, k]
in the total order (is not blocked in line 14 while processing [j, k]), then no
correct process can be blocked while processing [j, k|. Indeed, the following
cases are possible:

(a) 7 = m: j enters its CS (line 16). By the assumption of the proof, no
correct process is in its CS after t., thus, j left its CS before ¢, and j sent
[ezit, 7, k] to all (line 17). Thus, every correct process eventually receives
the message and releases.

(b) 7 # m, and j is faulty. By Claim 2, every correct process eventually
receives [crash, j| and releases.

(c) j # m, and j is correct. By Claim 3, m could only receive [ezit, j, k|.
Every correct process eventually receives [erit, j, k] and releases.

Recall that i is blocked in line 14 while processing request [j, k] (i # j). By
Claim 2, j is correct, and, by Claim 4, j should have passed all entries in the
total order that 7 has passed before reaching [j, k]. By the algorithm j enters
its CS (line 16). By the assumption of the proof, no correct process is in its
CS after t., thus, j left its CS before ¢, and sent [ezit, j, k] to all. 7 eventually
receives the message and releases — a contradiction.

The second part of the lemma follows directly from the algorithm: every correct
process ¢ that runs exit; enters rem; after a finite number of steps. That is,
every correct process in its exit section eventually enters its remainder section.

Thus, progress is guaranteed. O

The following theorem follows directly from Lemmas 5 and 6:

Theorem 7 The algorithm of Figure 3 solves FTME using T, in any envi-
ronment E; with f < [§].

Finally, combining Theorem 4 and Theorem 7, we can state the following
result:

Theorem 8 For any environment £ with f < [%], T is the weakest failure
detector to solve FTME in &;.

Remark. In fact, the algorithm of Figure 3 solves a harder problem: in addi-
tion to mutual exclusion and progress, it satisfies also the starvation-freedom

property.

Indeed, assume that a correct process 7 is in its trying section with r; = k.
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Eventually, due to the properties of the total order broadcast, all entities
[7,1] preceding [i, k] in the total order are eventually processed: if any process
releases its CS, no process can be blocked in a “wait” clause (see line 14 in
Figure 3). Finally, 7 eventually reaches its own entry [i, k] in the total order
and 7 enters its CS.

From Theorem 8 it follows that any algorithm solving FTME (in &; with
f < [%]) can be transformed into an algorithm that solves FTME with the

starvation freedom property.

7 On the number of correct processes

Proposition 9 No algorithm solves FTME using T in any environment Ef
where f > [5].

Proof Assume that an algorithm A solves FTME using 7 in an environment
where a majority of correct processes is not guaranteed. Let X and Y be any
two disjoint sets of processes such that I = X UY and |X| = [§]. Consider
two possible runs of A:

(1) R;:no process in Y takes any step in R; (e.g., processes in Y are initially
crashed in R;), and processes in X always suspect every process in Y.
Assume that a correct process ¢ € X is the only process in its trying
section. By the progress property of FTME, 7 enters its CS at some time
tl.

(2) Rs: no process from X takes any step in Ry (e.g., processes in X are
initially crashed in Ry), no process in Y takes any step before ¢; 4+ 1, and
processes in Y always suspect every process in X. Assume that a correct
process j € Y is the only process in its trying section. By the progress
property of FTME, j enters its CS at some time ty. Clearly, t; < 5.

Assume that no process ever runs an exit protocol in R; and R,. We construct
a run R that is identical to R; at any time in [0, ¢;] and identical to Ry at any
time in [t;+1, t5]. Now assume that every process is correct in R, the processes
in X and Y start to trust each other after to (this is a valid history of 7T),
and all messages sent between X and Y are delayed until ¢, + 1. Evidently, R
is a valid run of A. But, since 7 and j never enter their exit sections, at time
to both 7 and j are in their CSs — a contradiction. O

Now we consider the extreme case of an environment &, where f = n — 1
and question ourselves whether P is the weakest failure detector to solve the
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problem in &, 1. A close look at the correctness proof for the algorithm of
Figure 3 reveals that we use the assumption of a correct majority only to
implement the total order broadcast primitive and to guarantee that for each
correct process 7, there is a correct process m that trusts 7. If a strong failure
detector S [8] is available, we can overcome both issues even if n — 1 processes
can crash. Indeed, total order broadcast is implementable in &, _; using S [8]
and the “wait” clause in line 7 can be substituted by:

wait until receive [ack] from all j ¢ S;.

By the strong completeness property of S, eventually all processes not in S;
are correct. On the other hand, by the eventual strong accuracy of 7, every
correct process is eventually trusted by all correct processes. Hence, this “wait”
clause is not blocking.

By the weak accuracy property of &, one correct process is never suspected.
That is, some correct process m is never in S;, Vi € II. If ¢ crashes while 7
is in its CS, m can detect the crash and inform the other processes. Thus,
we can implement FTME in &, | using failure detector 7 + S. For every
failure pattern F' € & (f < n), T + S outputs a pair of histories (Hr, Hs)
(Rrys = 2% x 21, such that Hy € T(F) and Hs € S(F).

Proposition 10 7 + S <¢, P, in any environment & with 0 < f < n.

Proof

(a) S <¢; P [8] and T <¢; P (Proposition 2). That is, both 7 and S are
weaker than P. Thus, T +S =Z¢, P.

(b) Now we show that P is not weaker than 7 + S. Indeed, assume there
exists an algorithm Ry s_,p that, for any failure pattern F' € £;, constructs
Hp from Hy € T(F) and Hg € S(F), such that Hp € P(F).

Let j,1 € Il and j # [. Consider failure pattern F; € &; such that F;(0) = {j},
correct(Fy) = I1 — {j}, and take histories H} € T (F}) and Hg € S(F}) such
that Vi € II,Vt € T: H(i,t) = {j} (j is always suspected) and Hg(i,t) =
IT — {I} (I is never suspected). Assume that the corresponding run R; =
(F1,(Hy,Hg),1,51,T) of Ryys_p outputs a history Hj € P(F}). By the
strong completeness property of P: Jky € N: Hi (1, T[ko]) = {j}-

Consider failure pattern Fy, € & such that correct(F;) = II and define histories
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H?* and HZ such that Vi € II and V¢ € T:

H2(i,t) = {7}, t < Tko]
0, t > Tko]
H(i,t) = IT— {1}, t < Tlko]

0, t > Tk

Clearly, H* € T (F3) and H% € S(F»).

Consider arun Ry = (Fy, (H7, H3), 1, S2,T) of Ry.s_,p that outputs a history
H% € P(F,), where Si[k] = Ss[k],Vk < ko. Thus, j takes no steps in Sy for
all ¢ < Tlko]. Since partial runs of Ry and Ry for t < T[kg| are identical,
the resulting history H3 is such that H3(l,T[ko]) = {j}- In other words, j is
suspected before it crashes, and the strong accuracy of P is violated.

By (a) and (b), we have T + S <¢, P. O

Hence, there is a failure detector 7 + S which is strictly weaker then P and is
sufficient to solve FTME in an environment where up to n — 1 processes can
crash.

8 Group mutual exclusion

Group mutual exclusion [14-16] is a natural generalization of the classical
mutual exclusion problem [1,3], where a process requests a “session” before
entering its critical section. Processes are allowed to be in their critical sections
simultaneously provided that they have requested the same session. Sessions
represent resources each of which can be accessed simultaneously by an arbi-
trary number of processes, but no two of which can be accessed simultaneously.

Formally, the trying protocol of process ¢ has an integer parameter s. We say
that i requests session s if i is running the trying protocol try,(s) or it is in its
CS immediately after running try;(s). As with FTME, we assume that every
process ¢ is well-formed.

Thus, in addition to the progress properties of FTME, fault-tolerant group
mutual exclusion (FTGME) satisfies the group mutual exclusion and concur-
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rent entering properties (we follow the terminology used in Section 3):

Progress:
(1) If a correct process is in its trying section, then at some time later some
correct process is in its CS.
(2) If a correct process is in its exit section, then at some time later it enters
its remainder section.
Mutual exclusion: If two processes are in their critical sections at the same
time, then they request the same session.
Concurrent entering: If a correct process ¢ requests a session and no other
process requests a different session, then i eventually enters its CS.

The last property means that, for a given session, a process that has already
entered its CS cannot prevent another process requesting the same session
from entering its CS. The property excludes trivial solutions of group mutual
exclusion using any simple mutual exclusion algorithm. In contrast to [14,15,
17], we do not make the assumption that a process can stay in its CS for
a finite time only. This is the reason why we put “eventually” instead of “a
bounded number of its own steps” as in [14,15,17] in the concurrent entering
property. Clearly, if another process is concurrently trying to enter a different
session, it can enter its CS first. In this case, the trying process can prevent
another process from entering its CS.

FTGME is at least as hard as FTME: we can easily implement FTME from
FTGME just associating every process with a unique session number. On the
other hand, we show here that 7 solves FTGME in a system with a majority of
correct processes. Thus, in the sense of failure detection, FTME and FTGME
are equivalent.

In Figure 4, we present an algorithm that solves FTGME using 7. For each
process i, the algorithm of Figure 4 defines trying protocol try,(session;) that
handles the request of i for session session;, and exit protocol exit;. In the
algorithm, each process ¢ maintains the following local variables:

(1) a boolean ready;, initially false, indicating whether i is ready to execute
the trying protocol;

(2) an integer 7;, initially 0, indicating the number of requests for the CS that
7 has made;

(3) a set trusted;, initially empty, of processes currently trusted by i;

(4) an integer Is;, initially —1 (we assume that requested session numbers are
non-negative), indicating the number of currently satisfied session;

(5) a set inCS;, initially empty, of requests with session number [s; that i
suspects to be currently satisfied;

(6) integers j, k and s indicate the last processed request of the type [J, &, s]
where j is the process that issued the request, k£ is j’s request number
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and s is the session that j requests.

The algorithm is similar to that of Section 6. Before requesting a session
every process waits until it gets trusted by a correct process. The requests are
broadcast using total order broadcast primitive to-broadcast(), and delivered
through to-deliver(). If several consecutive requests for the same session s are
placed in the total order, then the requests are satisfied simultaneously. No
request for a new session s’ # s is satisfied until all processes requested earlier
session s leave their CSs.

Now we state the correctness of the algorithm through Lemmas 11-13.

Lemma 11 If two processes are in their critical sections at the same time,
then they request the same session.

Proof Assume that processes ¢ and j requesting sessions, respectively, s; and
s; are in their CSs at some time ¢y. Let, at time ¢y, r; = k; and r; = k;.

In the trying protocol (lines 7-20), every process to-broadcasts its request for a
CS and no process enters its CS before having first to-delivered its own request.
Thus ¢ must have to-delivered [, k;, s;] and j must have to-delivered (7, h;, 5,]
before ty,. By the ordering property of to-broadcast, either both ¢ and j to-
delivered [i, k;, s;] before having to-delivered [j, k;, s;], or the contrary. Assume,
without loss of generality, that to-deliver([z, k;, s;] precedes to-deliver([j, k;, s;])
at j.

By the algorithm, j can be in the CS with session; = s; and r; = k; at
only if every entry [j', k', s'| with s’ # s; in the total order preceding [j, k;, s,]
has passed through the “if” clause defined in lines 15-16 before time Zy. As
a result, before time ¢y, j has put (¢, £;) into inCS; and set Is; to s; (lines 17
and 18).

Since 7 is still in its CS with r; = k; at time %y, 7 could not have received
[exit, i, k;] before ty. Now assume that j received [crash,i| before to: by the
algorithm of Figure 4, at some process m, at some time t; < ty the following
is true: i € trusted,, and i ¢ T,, (m stops trusting 7). By trusting accuracy of
T, i is crashed at t;. But 7 is in the CS at ty > ¢t; — a contradiction.

Thus, j has not received [ezit, i, k;] or [crash,i] before ty, i.e., the condition
in line 26 is not satisfied at j before #;. As a result, at the moment when
Jj to-delivered [j, k;, s;] (line 14), (i, k;) € inCS; and ls; = s;. Assume that j
reaches line 15 while processing [7, k;, s;] at some time ¢; < t, (j is in its CS at
to). Furthermore, inCS; is non-empty at any ¢ € [t1,?] (it includes at least
one entry (7, k;)), j never receives [crash, j| (by trusting accuracy of T), and
Is; = s; at t;. Thus, j can pass lines 15-16 and enter its CS before ¢, only if
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1: ready; := false { Initialization }
2: r; = 0
3: trusted; :== ()
4: inC8; := 0
5: Is; :=—1
6: start tasks 0,...,n
Trying protocol try,(session;):
7: if not ready; then
8:  send [me,i] to all { Send a trust request }

9:  wait until received [n/2] + 1 [ack]’s
10:  ready, := true
11: 7y i=r; 4+ 1
12: to-broadcast([i, r;, session;])
13: repeat
14:  wait until the next request [4, %, s] is to-delivered
15:  if inCS; # () and s # Is; then

16: wait until inCS; = 0 or received [crash, j]
17: inCS; :== inCS; U{(j,k)}
18: Is;:=s

19: until j =1
20: { 7 enters its CS }

Ezit protocol exit;:
21: send [ezit, 1, 7;] to all

22: task 0:

23:  upon (j € trusted; and j € T;) do

24: trusted; := trusted; — {j} { A crash of process j is detected }
25: send [crash, j] to all { j stops being trusted }

26: upon ((j,k) € inCS; and
(received [ezit, j, k| or received [crash, j])) do
27 inCS; .= inCS; — {(j,k)} {lg, k, Isi] releases the CS }

28: task m (m=1,...,n):
29:  upon receive [me,m| do

30: wait until m ¢ 7; { A trust request is received from m }
31: trusted; := trusted; U {m} { m is trusted by i }
32: send [ack] to m

Fig. 4. FTGME algorithm using 7 process i.

s; = s;. Hence, group mutual exclusion is guaranteed. O

Lemma 12 If a correct process is in its trying section, then at some time later
some correct process is in its CS. If a correct process is in its exit section, then
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at some time later it enters its remainder section.

Proof The proof is similar to the one of Lemma 6. Assume that a correct
process 7 is in its trying section at time t;, and no correct process ever enters its
CS after ty. Applying the arguments of Lemma 6, we observe that 4 is blocked
in line 16 of Figure 4 because some entry (j, k) never leaves inCS; (line 27).
Claims 1-4 of Lemma 6 are proved similarly. By Claim 1 and Claim 2 of
Lemma 6, j must be correct. By Claim 3 and Claim 4 of Lemma 6 j should
have passed all entries in the total order that precede [4, k, 3] and entered its
CS. Since no process is in its CS after t,, j executed the exit protocol before
to and sent [ezit, 7, k] to all. Thus i eventually receives [ezit, 7, k] and releases
— a contradiction. O

Lemma 13 If a correct process i requests a session and no other process re-
quests a different session, then i eventually enters its CS.

Proof Assume that, at time tg, a process i requests a session s; with r; = k;
and no other process requests a different session. Thus, all processes requesting
different sessions have left their CSs or crashed before ¢;. As a result, after
some time, either inCS; = () or Is; = s;. By the algorithm, eventually, 7 starts
processing its own request [i, k;, s;] with Is; = s; (lines 14-15) and enters its
CS (line 20). O

Finally, we can state the following theorem:

Theorem 14 For any environment £ with f < [3], T is the weakest failure
detector to solve FTGME in &;.

Remark. Similar to the FTME algorithm of Figure 3, our FTGME algorithm
solves (in &y with f < [5]) a harder problem that, in addition to mutual ex-
clusion, progress and concurrent entering, satisfies also the starvation freedom

property.

Analogously, in case when up to m — 1 processes can crash, we can solve
FTGME with 7 4+ &S, simply by substituting line 9 of the algorithm in Figure
4 with:

wait until receive [ack] from all j ¢ S;.
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9 Cost of resilience

In this section we compare the performance of our algorithm (Figure 3) with
the well-known algorithms of [21] and [22]. (The algorithms of [21] and [22]
were designed for the failure-free asynchronous model but could be ported into
the crash-prone model assuming P. More details on the comparative analysis
of the algorithms of [21] and [22] are available in [11].)

The performance of mutual exclusion algorithms can be measured through the
following metrics [11]: (a) the bootstrapping delay, which is the time required
for a new process before entering the CS for the first time; (b) the number of
messages necessary per CS invocation, (c) the synchronization delay, which
is the time required after a process leaves the CS and before the next process
enters the CS, and (d) the response time, which is the time interval a requester
waits to enter the CS after its request message have been sent out. We also
consider two special loading conditions: low load and high load. In low load
conditions, there is seldom more than one request to enter the CS at a time
in the system. In high load conditions, any process that leaves the CS im-
mediately executes the trying protocol again. In discussing performance, we
concentrate here on the runs where no process crashes (the most frequent runs
in practice), which are usually called nice runs.

We denote by ¢. the maximum message propagation delay, and e, the maxi-
mum CS execution time. The bootstrapping delay of our algorithm (Figure 3)
is bounded by 2t,.: before processing any request for CS, every process should
receive the acknowledgment from a majority of the processes. The algorithm
has a relatively high message complexity: each request for CS requires O(n?)
messages per CS invocation. The synchronization delay is bounded by ?.: that
is, it requires only one communication step to inform the next waiting process
that it can enter the CS. The response time in low load conditions is defined
by the time to deliver a total order broadcast message — 2t.. At high loads,
on the average, all other processes execute their CSs between two successive
executions of the CS: the response time converges to n(t. + e.).

The results of our comparative analysis are presented in Figure 5. The per-
formance degradation due to the use of 7 reflects the longer bootstrapping
delay which is inherent to the use of 7 and higher message complexity inher-
ited from using total order broadcast. It would be interesting to figure out to
which extent our algorithm of Figure 3 could be optimized, e.g., by breaking
the encapsulation of the total order broadcast box.
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Metrics Maekawa [21] RA [22] 7T-based

Bootstrapping delay | 0 0 2t
Number of messages | Low Moderate High
Sync. delay 2t. (deadlock-prone) t. te

t. (deadlock-free)
Response time
low load 2t, 2t, 2t,

high load n(2t. + e) n(tc+e.) n(tc+ec)

Fig. 5. Comparative performance analysis of mutual exclusion algorithms.

10 Concluding remark

Is it more beneficial in practice to use a mutual exclusion algorithm based on
T, instead of a traditional algorithm assuming P? The answer is “yes, to some
extent”. Indeed, if we translate the very fact of not trusting a correct process
into a mistake, then T clearly tolerates mistakes whereas P does not. More
precisely, 7 is allowed to make up to n? mistakes (up to n mistakes for each
module 7;, i € II). As a result, given synchrony assumptions, it is somewhat
easier to implement 7 than P.

For example, in a possible implementation of 7, every process i can, starting
from 0, gradually increase the timeout ¢;; corresponding to a heart-beat mes-
sage sent to a process j until a response from j is received. Thus, every such
tij can be flexibly adapted to the current network conditions. (Clearly, as soon
as T starts trusting a site, it is not allowed to make mistakes about the site’s
operational state.)

In contrast, P does not allow this kind of “fine-tuning” of the timeouts: they
are supposed to be known in advance. In order to minimize the probability of
mistakes, the timeouts are normally chosen sufficiently large, and the choice
is based on some a priori assumptions about current network conditions. This
might exclude some remote sites from the group and violate the accuracy
properties of the failure detector.

Thus, we can implement 7 in a more effective manner than P, and an algo-
rithm that solves FTME using 7 exhibits a smaller probability to violate the
requirements of the problem, than one using P, i.e., the use of 7 provides
more resilience. As we have shown in Section 9, the performance cost of this
resilience reflects the bootstrapping delay, i.e., the time a new process needs to
enter its CS for the first time, and higher message complexity inherited from
using total order broadcast.
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