
What Can Be Implemented Anonymously?

Rachid Guerraoui1 and Eric Ruppert2

1 EPFL, Lausanne, Switzerland
2 York University, Toronto, Canada

Abstract. The vast majority of papers on distributed computing as-
sume that processes are assigned unique identifiers before computation
begins. But is this assumption necessary? What if processes do not have
unique identifiers or do not wish to divulge them for reasons of privacy?
We consider asynchronous shared-memory systems that are anonymous.
The shared memory contains only the most common type of shared ob-
jects, read/write registers. We investigate, for the first time, what can be
implemented deterministically in this model when processes can fail. We
give anonymous algorithms for some fundamental problems: timestamp-
ing, snapshots and consensus. Our solutions to the first two are wait-free
and the third is obstruction-free. We also show that a shared object has
an obstruction-free implementation if and only if it satisfies a simple
property called idempotence. To prove the sufficiency of this condition,
we give a universal construction that implements any idempotent object.

1 Introduction

Distributed computing typically studies what can be computed by a system
of n processes that can fail independently. Variations on the capacities of the
processes (e.g., in terms of memory or time), their means of communication (e.g.,
shared memory or message passing), and their failure modes (e.g., crash failures
or malicious failures) have led to an abundant literature. In particular, a prolific
research trend has explored the capabilities of a system of crash-prone asyn-
chronous processes communicating through basic read-write objects (registers).

Several properties have been defined to describe the progress made by an
algorithm regardless of process crashes or asynchrony. The strongest is wait-

freedom [18], which requires every non-faulty process to complete its algorithm
in a finite number of its own steps. However, wait-free algorithms are often
provably impossible or too inefficient to be practical. In many settings, a weaker
progress guarantee is sufficient. The non-blocking property (sometimes called
lock-freedom) is one such guarantee, ensuring that, eventually, some process will
complete its algorithm. It is weaker than wait-freedom because it permits indi-
vidual processes to starve. A third condition that is weaker still is obstruction-

freedom [19], which can be very useful when low contention is expected to be the
common case, or if contention-management is used. Obstruction-freedom guar-
antees that a process will complete its algorithm whenever it has an opportunity
to take enough steps without interruption by other processes.

Virtually all of the literature on those topics assumes that processes have
distinct identities. Besides intellectual curiosity, it is practically appealing to re-
visit this fundamental assumption. Indeed, certain systems, like sensor networks,
consist of mass-produced tiny agents that might not even have identifiers [4].



Others, like web servers [29] and peer-to-peer file sharing systems [11], some-
times mandate preserving the anonymity of the users and forbid the use of any
form of identity for the sake of privacy [10]. Instead of revealing its identity
to a server that houses a shared-memory object, a process might use a trusted
third party that can itself be approximated by a decentralized mechanism [16].
This party forwards the process’s invocations to the server (stripped of the pro-
cess’s id) and then forwards the server’s responses back to the process. But what
can actually be done in an anonymous system? In such a system, processes are
programmed identically [5, 7, 8, 12, 23, 28]. In particular, processes do not have
identifiers. There has been work on anonymous message-passing systems, starting
with Angluin [3]. The very small amount of research that has looked at anony-
mous shared-memory systems assumed failure-free systems or the existence of a
random oracle to build randomized algorithms. (See Sect. 2.)

We explore in this paper, for the first time, the types of shared objects that
can be implemented deterministically in an anonymous, asynchronous shared-
memory system. We assume that any number of unpredictable crash failures
may occur. The shared memory is composed of registers that are (multi-reader
and) multi-writer, so that every process is permitted to write to every register. In
contrast, usage of single-writer registers would violate total anonymity by giving
processes at least some rudimentary sense of identity: processes would know
that values written into the same register at different times were produced by
the same process. Some problems, such as leader election, are clearly impossible
in this model because symmetry cannot be broken; if processes run in lockstep,
they will perform exactly the same sequence of operations. However, we show
that some interesting problems can be solved without breaking symmetry.

We first consider timestamps, which are frequently used to help processes
agree on the order of various events. Objects such as fetch&increment and coun-
ters, which are traditionally used for creating timestamps, cannot be imple-
mented in our model, so we introduce a weaker object called a weak counter

which provides sufficiently good timestamps for our applications. We construct,
in Sect. 4, an efficient, wait-free implementation of a weak counter.

In non-anonymous systems, the snapshot object [1, 2, 6] is probably the most
important example of an object that has a wait-free implementation from regis-
ters. It is an abstraction of the problem of obtaining a consistent view of many
registers while they are being updated by other processes. There are many known
implementations of snapshot objects but, to our knowledge, all do make essential
use of process identities. Wait-free algorithms generally rely on helping mecha-
nisms, in which fast processes help the slow ones complete their operations. One
of the challenges of anonymity is the difficulty of helping other processes when
it is not easy to determine who needs help. In Sect. 5, we show that a wait-free
snapshot implementation does exist and has fairly efficient time complexity. The
timestamps provided by the weak counter are essential in this construction. We
also give a non-blocking implementation with better space complexity.

In non-anonymous systems, most objects have no wait-free (or even non-
blocking) implementation [18]. However, it is possible to build an obstruction-
free implementation of any object by using a subroutine for consensus, which is a
cornerstone of distributed computing that does itself have an obstruction-free im-



Theorem Implemented Object Using Space Progress Uses
1 weak counter registers O(k) wait-free
3 weak counter binary registers O(k) non-blocking
4 m-component snapshot registers m non-blocking
5 m-component snapshot registers O(m + k) wait-free 1
6 binary consensus binary registers unbounded obs-free
7 binary consensus registers O(n) obs-free 4
9 consensus binary registers unbounded obs-free 6, 8
9 consensus registers O(n log d) obs-free 7, 8
10 idempotent object binary registers unbounded obs-free 3, 9
12 idempotent object registers object-dependent obs-free 3, 7

Fig. 1. Summary of implementations, where n is the number of processes, k is the
number of operations invoked, and d is the number of possible inputs to consensus.

plementation [19]. Consensus also arises in a wide variety of process-coordination
tasks. There is no (deterministic) wait-free implementation of consensus using
registers, even if processes do have identifiers [18, 26]. In Sect. 6, we note that
an obstruction-free anonymous consensus algorithm can be obtained by simply
derandomizing the randomized anonymous algorithm of Chandra [13]. The re-
sulting algorithm uses unbounded space. We then give a new algorithm that uses
a bounded number of registers, with the help of our snapshots.

Finally, we give a complete characterization of the types of objects that
have obstruction-free implementations in our model in Sect. 7. An object can be
implemented if and only if it is idempotent: i.e. applying any permitted operation
twice in a row (with the same arguments) has the same effect as applying it once.
We use a symmetry argument to show this condition is necessary. To prove
sufficiency, we give a “universal” construction that implements any idempotent
object, using our weak counter object and our consensus algorithm.

To summarize, we show that the anonymous asynchronous shared-memory
model has some, perhaps surprising, similarities to the non-anonymous model,
but there are also some important differences. We construct a wait-free algo-
rithm for snapshots and an obstruction-free algorithm for consensus that uses
bounded space. Not every type of object has an obstruction-free anonymous im-
plementation, however. We give a characterization of the types that do. Table
1 summarizes all anonymous implementations given in this paper, indicating
which implementations are used as subroutines for others.

2 Related Work

Some research has studied anonymous shared-memory systems when no fail-
ures can occur. Johnson and Schneider [23] gave leader election algorithms using
versions of single-writer snapshots and test&set objects. Attiya, Gorbach and
Moran [8] gave a characterization of the tasks that are solvable without fail-
ures using registers if n is not known. The characterization is the same if n is
known [14]. Consensus is solvable in these models, but it is not solvable if the reg-
isters cannot be initialized by the programmer [22]. Aspnes, Fich and Ruppert [5]
looked at failure-free models with other types of objects, such as counters. They
also characterized which shared-memory models can be implemented if com-



munication is through anonymous broadcasts, showing the broadcast model is
equivalent to having shared counters and strictly stronger than shared registers.

There has also been some research on randomized algorithms for anonymous
shared-memory systems with no failures. For the naming problem, processes
must choose unique names for themselves. Processes can randomly choose names,
which will be unique with high probability. Registers can be used to detect when
the names chosen are indeed unique, thus guaranteeing correctness whenever the
algorithm terminates, which happens with high probability [25, 30]. Two papers
gave randomized renaming algorithms that have finite expected running time,
and hence terminate with probability 1 [15, 24].

Randomized algorithms for systems with crash failures have also been stud-
ied. Panconesi et al. [28] gave a randomized wait-free algorithm that solves the
naming problem using single-writer registers, which give the system some ability
to distinguish between different processes’ actions. Several impossibility results
have been shown for randomized naming using only multi-writer registers [12, 15,
24]. Interestingly, Buhrman et al. [12] gave a randomized wait-free anonymous
algorithm for consensus in this model that is based on Chandra’s randomized
consensus algorithm [13]. Thus, producing unique identifiers is strictly harder
than consensus in the randomized setting. Aspnes, Shah and Shah [7] extended
the algorithm of Buhrman et al. to a setting with infinitely many processes.

Solving a decision task can be viewed as a special case of implementing
objects: each process accesses the object, providing its input as an argument,
and later the object responds with the output the process should choose. Herlihy
and Shavit [20] gave a characterization of the decision tasks that have wait-
free solutions in non-anonymous systems using ideas borrowed from algebraic
topology. They also describe how the characterization can be extended to systems
with a kind of anonymity: processes have identifiers but are only allowed to use
them in very limited ways. Herlihy gave a universal construction which describes
how to create a wait-free implementation of any object type using consensus
objects [18]. Processes use consensus to agree on the exact order in which the
operations are applied to the implemented object. Although this construction
requires identifiers, it was the inspiration for our obstruction-free construction
in Sect. 7. Recently, Bazzi and Ding [9] introduced, in the context of Byzantine
systems, non-skipping timestamps, a stronger abstraction than what we call a
weak counter. (Our weak counter does not preclude skipping values.)

3 Model

We consider an anonymous system, where a collection of n processes execute
identical algorithms. In particular, the processes do not have identifiers. The
system is asynchronous, which means that processes run at arbitrarily varying
speeds. It is useful to think of processes being allocated steps by an adversarial
scheduler. Algorithms must work correctly in all possible schedules. Processes
are subject to crash failures: they may stop taking steps without any warning.
The algorithms we consider are deterministic.

Processes communicate with one another by accessing shared data structures,
called objects. The type of an object specifies what states it can have and what
operations may be performed on it. The programmer chooses the initial state of



the objects used. Except for our weak counter object in Sect. 4, all objects are
linearizable (atomic) [21]: although operations on an object take some interval of
time to complete, each appears to happen at some instant between its invocation
and response. An operation atomically changes the state of an object and returns
a response to the invoking process. (The weak counter object can be viewed as
a set-linearizable object [27].) We consider oblivious objects: all processes are
permitted to perform the same set of operations on it and its response to an
operation does not depend on the identity of the invoking process. (Non-oblivious
objects are somewhat inconsistent with the notion of totally anonymous systems,
since processes must identify themselves when they invoke an operation.)

Some types of objects are provided by the system and all other types needed
must be implemented from them. An implementation specifies the code that must
be executed to perform each operation on the implemented object. Since we are
considering anonymous systems, all processes execute identical code to perform
a particular operation. (We refer to such an implementation as an anonymous
implementation.) The implementation must also specify how to initialize the
base objects to represent any possible starting state of the implemented object.

We assume the shared memory contains the most basic kind of objects: reg-

isters, which provide two types of operations. A read operation returns the state
of the object without changing it. A write(v) changes the state to v and returns
ack. Every process can access every register. If the set of possible values that
can be stored is finite, the register is bounded; otherwise it is unbounded. A bi-

nary register has only two possible states. When describing our algorithms in
pseudocode, names of shared objects begin with upper-case letters, and names
of the process’s private variables begin with lower-case letters.

4 Weak Counters

A weak counter provides a single operation, GetTimestamp, which returns
an integer. It has the property that if one operation precedes another, the value
returned by the later operation must be larger than the value returned by the
earlier one. (Two concurrent GetTimestamp operations may return the same
value.) Furthermore, the value returned to any operation should not exceed
the number of invocations that have occurred so far. This object will be used
as a building block for our implementation of snapshots in Sect. 5 and our
characterization of implementable types in Sect. 7. It is used in those algorithms
to provide timestamps to different operations. The weak counter is essentially a
weakened form of a fetch&increment object: a fetch&increment object has the
additional requirement that all values returned should be distinct. It is known
that a fetch&increment object has no wait-free implementation from registers,
even if processes have identifiers [18]. By considering our weaker version, we have
an object that is implementable, and still strong enough for our purposes.

We give an anonymous, wait-free implementation of a weak counter from
unbounded registers. A similar but simpler construction, which provides an im-
plementation that satisfies the weaker non-blocking progress property, but uses
only binary registers, is then described briefly. Processes must know n, the num-
ber of processes in the system, (or at least an upper bound on n) for the wait-free
implementation, but this knowledge is not needed for the non-blocking case.



GetTimestamp

1 b← a + 1
2 ℓ← L; t← ℓ; j ← 0
3 loop until A[b] = ⊥
4 if L 6= ℓ

5 then ℓ← L; t← max(t, ℓ); j ← j + 1
6 if j ≥ n then a← b + 1; return t and halt
7 end if

8 end if

9 b← 2b − a + 1
10 end loop

11 loop until a = b

12 mid ← a+b−1

2
� This is an integer, since b− a + 1 is a power of 2

13 if A[mid ] = ⊥ then b← mid

14 else a← mid +1
15 end if

16 end loop

17 write ⊤ to A[b]
18 L← b

19 return b

Fig. 2. Wait-free implementation of a weak counter from registers.

Our wait-free implementation uses an array A[1, 2, . . .] of binary registers,
each initialized to ⊥. To obtain a counter value, a process locates the first entry of
the array that is ⊥, changes it to ⊤, and returns the index of this entry. (See Fig.
2.) The key property for correctness is the following invariant: if A[k] = ⊤, then
all entries in A[1..k] are ⊤. To locate the first ⊥ in A efficiently, the algorithm
uses a binary search. Starting from the location a returned by the process’s
previous GetTimestamp operation, the algorithm probes locations a + 1, a +
3, a+7, . . . , a+2i − 1, . . . until it finds a ⊥ in location b. (For the first operation
by the process, we initialize a to 1.) We call this portion of the algorithm,
corresponding to the first loop in the pseudocode, phase 1. The process then
executes a binary search of A[a..b] in the second loop, which constitutes phase 2.

To ensure processes cannot enter an infinite loop in phase 1 (while other
processes write more and more ⊤’s into the array), we incorporate a helping
mechanism. Whenever a process writes a ⊤ into an entry of A, it also writes
the index of the entry into a shared register L (initialized to 0). A process may
terminate early if it sees that n writes to L have occurred since its invocation.
In this case, it returns the largest value it has seen in L. The local variables j

and t keep track of the number of times the process has seen L change, and the
largest value the process has seen in L, respectively.

Theorem 1. Fig. 2 gives a wait-free, anonymous implementation of a weak

counter from registers.

Proof. We first give three simple invariants.
Invariant 1: For each process’s value of a, if a > 1, then A[a − 1] = ⊤.
Once ⊤ is written into an entry of A, that entry’s value will never change again.
It follows that line 14 maintains Invariant 1. Line 6 does too, since the preceding



iteration of line 3 found that A[b] = ⊤.
Invariant 2: If A[k] = ⊤, then A[k′] = ⊤ for all k′ ≤ k.
This follows from Invariant 1: whenever line 17 is executed, we have a = b, so
A[b − 1] is already ⊤.
Invariant 3: Whenever a process P executes line 11 during a GetTimestamp

operation op, P ’s value of b has the property that A[b] was equal to ⊥ at some
earlier time during op.
This is easy to prove by induction on the number of iterations of the second loop.

Wait-freedom: To derive a contradiction, assume there is an execution
where some operation by a process P runs forever without terminating. This
can only happen if there is an infinite loop in Phase 1, so an infinite number
of ⊤’s are written into A during this execution. This means that an infinite
number of writes to L will occur. Suppose some process Q writes a value x into
L. Before doing so, it must write ⊤ into A[x]. Thus, any subsequent invocation
of GetTimestamp by Q will never see A[x] = ⊥. It follows from Invariant 3
that Q can never again write x into L. Thus, P ’s operation will eventually see
n different values in L and terminate, contrary to the assumption.

Correctness: Suppose one GetTimestamp operation op1 completes before
another one, op2, begins. Let r1 and r2 be the values returned by op1 and op2,
respectively. We must show that r2 > r1. If op1 terminates in line 6, then, at
some earlier time, some process wrote r1 into L and also wrote ⊤ into A[r1]. If
op1 terminates in line 19, it is also clear that A[r1] = ⊤ when op1 terminates.

If op2 terminates in line 19, then A[r2] was ⊥ at some time during op2, by
Invariant 3. Thus, by Invariant 2, r2 > r1. If op2 terminates in line 6, op2 has
seen the value in L change n times during its run, so at least two of the changes
were made by the same process. Thus, at least one of those changes was made by
an operation op3 that started after op2 began (and hence after op1 terminated).
Since op3 terminated in line 19, we have already proved that the value r3 that
op3 returns (and writes into L) must be greater than r1. But op2 returns the
largest value it sees in L, so r2 ≥ r3 > r1.

In any finite execution in which k GetTimestamp operations are invoked,
at most O(k) of the registers are ever accessed, and the worst-case time for any
operation is O(log k). An amortized analysis can be used to prove the stronger
bound of O(log n) on the average time per operation in any finite execution.
Intuitively, if some process P must perform a phase 1 that is excessively long,
we can charge its cost to the many operations that must have written into A

since P did its previous operation. (See [17] for a detailed proof of the following.)

Proposition 2. If n processes perform a total of k invocations of the Get-

Timestamp algorithm in Fig. 2, the total number of steps by all processes is

O(k log n) and O(k) registers are accessed.

If we do not require the weak counter implementation to be wait-free, we
do not need the helping mechanism. Thus, we can omit lines 2, 4–8 and 18,
which allow a process to terminate early if it ever sees that n changes to the
shared register L occur. This yields a non-blocking implementation that uses
only binary registers. The proof of correctness is a simplified version of the proof
of Theorem 1, and the analysis is identical to the proof of Proposition 2.



Update(i, x)

1 t← GetTimestamp

2 v ← Scan

3 write (x, v, t) in Ri

Scan

1 t← GetTimestamp

2 loop

3 read R1, R2, . . . , Rm

4 if a register contained (∗, v, t′) with t′ ≥ t

5 then return v

6 elseif n + 1 sets of reads gave same results
7 then return the first field of each value
8 end if

9 end loop

Fig. 3. Wait-free implementation of a snapshot object from registers.

Theorem 3. There is a non-blocking, anonymous implementation of a weak

counter from binary registers. In any execution with k invocations of GetTimes-

tamp in a system of n processes, the total number of steps is O(k log n) and O(k)
registers are accessed.

5 Snapshot Objects

The snapshot object [1, 2, 6] is an extremely useful abstraction of the problem
of getting a consistent view of several registers when they can be concurrently
updated by other processes. It has wait-free (non-anonymous) implementations
from registers, and has been widely used as a basic building block for other al-
gorithms. A snapshot object consists of a collection of m > 1 components and
supports two kinds of operations: a process can update the value stored in a com-
ponent and atomically scan the object to obtain the values of all the components.
Since we are interested in anonymous systems, we consider the multi-writer ver-
sion, where any process can update any component. Many algorithms exist to
implement snapshots, but all use process identifiers. The following proposition
can be proved using a simple modification of the standard non-blocking snapshot
algorithm for non-anonymous systems [1]. A proof appears in [17].

Proposition 4. There is a non-blocking, anonymous implementation of an m-

component snapshot object from m registers.

More surprisingly, we show that a standard algorithm for (non-anonymous)
wait-free snapshots [1] can also be modified to work in an anonymous system.
The original algorithm could create a unique timestamp for each Update op-
eration. We use our weak counter to generate timestamps that are not nec-
essarily distinct, but are sufficient for implementing the snapshot object. The
non-uniqueness of the identifiers imposes a need for more iterations of the loop
than in the non-anonymous algorithm. Our algorithm uses m (large) registers,
R1, . . . , Rm, and one weak counter, which can be implemented from registers,
by Theorem 1. Each register Ri will contain a value of the component, a view
of the entire snapshot object and a timestamp. See Fig. 3.

Theorem 5. The algorithm in Fig. 3 is an anonymous, wait-free implementa-

tion of a snapshot object from registers. The average number of steps per opera-

tion in any finite execution is O(mn2).



Proof. (Sketch) See [17] for a detailed proof. It can be shown that the regis-
ters either keep changing continually, eventually including timestamps that will
satisfy the first termination condition, or stop changing so that the second ter-
mination condition will eventually be satisfied. Updates are linearized when
the write occurs. If a Scan sees n + 1 identical sets of reads, it can be shown
that these values were all in the register at one instant in time, which is used as
the linearization point. If a Scan uses the vector recorded from another Scan

as its output, the two Scans are linearized at the same time. The timestamp
mechanism is sufficient to guarantee that the linearization point so chosen is
between the invocation and response of the Scan.

6 Consensus

In the consensus problem, processes each start with a private input value and
must all choose the same output value. The common output must be the input
value of some process. These two conditions are called agreement and validity,
respectively. Herlihy, Luchangco and Moir [19] observed that a randomized wait-
free consensus algorithm can be “derandomized” to obtain an obstruction-free
consensus algorithm. If we derandomize the anonymous consensus algorithm of
Chandra [13], we obtain the following theorem. (A proof appears in [17].)

Theorem 6. There is an anonymous, obstruction-free binary consensus algo-

rithm using binary registers.

The construction that proves Theorem 6 uses an unbounded number of bi-
nary registers. In this section, we give a more interesting construction of an
obstruction-free, anonymous algorithm for consensus that uses a bounded num-
ber of (multivalued) registers. First, we focus on binary consensus, where all
inputs are either 0 or 1, and give an algorithm using O(n) registers.

In the unbounded-space algorithm, each process maintains a preference that
is either 0 or 1. Initially, a process’s preference is its own input value. Intuitively,
the processes are grouped into two teams according to their preference and the
teams execute a race along a course of unbounded length that has one track for
each preference. Processes mark their progress along the track (which is repre-
sented by an unbounded array of binary registers) by changing register values
from ⊥ to ⊤ along the way. Whenever a process P sees that the opposing team is
ahead of P ’s position, P switches its preference to join the other team. As soon
as a process observes that it is sufficiently far ahead of all processes on the oppos-
ing team, it stops and outputs its own preference. Two processes with opposite
preferences could continue to race forever in lockstep but a process running by
itself will eventually out-distance all competitors, ensuring obstruction-freedom.

Our bounded-space algorithm uses a two-track race course that is circular,
with circumference 4n + 1, instead of an unbounded straight one. The course
is represented by one array for each track, denoted R0[1, 2, . . . , 4n + 1] and
R1[1, 2, . . . , 4n + 1]. We treat these two arrays as a single snapshot object R,
which we can implement from registers. Each component stores an integer, ini-
tially 0. As a process runs around the race course, it keeps track of which lap it
is running. This is incremented each time a process moves from position 4n + 1



Propose(input)

1 v ← input ; j ← 0; lap ← 1
2 loop

3 S ← Scan of R

4 if Sv[i] < Sv̄[i] for a majority of values of i ∈ {1, .., 4n + 1}
5 then v ← v̄

6 end if

7 if min
1≤i≤4n+1

Sv[i] > max
1≤i≤4n+1

Sv̄[i]

8 then return v

9 elseif some element of S is greater than lap

10 then lap ← maximum element of S; j ← 1
11 else j ← j + 1
12 if j = 4n + 2 then lap ← lap +1; j ← 1
13 end if

14 end if

15 Update the value of Rv[j] to lap

16 end loop

Fig. 4. Obstruction-free consensus using O(n) registers.

to position 1. The progress of processes in the race is recorded by having each
process write its lap into the components of R as it passes.

Several complications are introduced by using a circular track. After a fast
process records its progress in R, a slow teammate who has a smaller lap number
could overwrite those values. Although this difficulty cannot be eliminated, we
circumvent it with the following strategy. If a process P ever observes that
another process is already working on its kth lap while P is working on a lower
lap, P jumps ahead to the start of lap k and continues racing from there. This
will ensure that P can only overwrite one location with a lower lap number, once
sufficiently many k’s have been written. There is a second complication: because
some numbers recorded in R may be artificially low due to the overwrites by slow
processes, processes may get an incorrect impression of which team is in the lead.
To handle this, we make processes less fickle: they switch teams only when they
have lots of evidence that the other team is in the lead. Also, we require a process
to have evidence that it is leading by a very wide margin before it decides. The
algorithm is given in Fig. 4, where we use v̄ to denote 1 − v.

Theorem 7. The algorithm in Fig. 4 is an anonymous, obstruction-free binary

consensus algorithm that uses 8n + 2 registers.

Proof. We use 8n + 2 registers to get a non-blocking implementation of the
snapshot object R using Proposition 4.

Obstruction-freedom: Consider any configuration C. Let m be the max-
imum value that appears in any component of R in C. Suppose some process
P runs by itself forever without halting, starting from C. It is easy to check
that P ’s local variable lap increases at least once every 4n + 1 iterations of the
loop until P decides. Eventually P will have lap ≥ m + 1 and j = 1. Let v0 be
P ’s local value of v when P next executes line 7. At this point, no entries in
R are larger than m. Furthermore, Rv0

[i] ≥ Rv̄0
[i] for a majority of the values



i. (Otherwise P would have changed its value of v in the previous step.) From
this point onward, P will never change its local value v, since it will write only
values bigger than m to Rv0

, and Rv̄0
contains no elements larger than m, so

none of P ’s future writes will ever make the condition in line 4 true. During
the next 4n + 1 iterations of the loop, P will write its value of lap into each of
the entries of Rv0

, and then the termination condition will be satisfied, contrary
to the assumption that P runs forever. (This termination occurs within O(n)
iterations of the loop, once P has started to run on its own, so termination is
guaranteed as soon as any process takes O(n4) steps by itself, since the Scan

algorithm of Proposition 4 terminates if a process takes O(n3) steps by itself.)
Validity: If all processes start with the same input value v, they will never

switch to preference v̄ nor write into any component of Rv̄.
Agreement: For each process that decides, consider the moment when it

last scans R. Let T be the first such moment in the execution. Let S∗ be the
Scan taken at time T . Without loss of generality, assume the value decided by
the process that did this Scan is 0. We shall show that every other process that
terminates also decides 0. Let m be the minimum value that appears in S∗

0 . Note
that all values in S∗

1 are less than m.
We first show that, after T , at most n Updates write a value smaller than

m into R. If not, consider the first n + 1 such Updates after T . At least two of
them are done by the same process, say P . Process P must do a Scan in between
the two Updates. That Scan would still see one of the values in R0 that is at
least m, since 4n+1 > n. Immediately after this Scan, P would change its local
variable lap to be at least m and the value of lap is non-decreasing, so P could
never perform the second Update with a value smaller than m.

We use a similar proof to show that, after T , at most n Update operations
write a value into R1. If this is not the case, consider the first n+1 such Updates

after T . At least two of them are performed by the same process, say P . Process
P must do a Scan between the two Updates. Consider the last Scan that P

does between these two Updates. That Scan will see at most n values in R1

that are greater than or equal to m, since all such values were written into R1

after T . It will also see at most n values in R0 that are less than m (by the
argument in the previous paragraph). Thus, there will be at least 2n + 1 values
of i for which R0[i] ≥ m > R1[i] when the Scan occurs. Thus, immediately after
the Scan, P will change its local value of v to 0 in line 5, contradicting the fact
that it writes into R1 later in that iteration.

It follows from the preceding two paragraphs that, at all times after T ,
min

1≤i≤4n+1
R1[i] < m ≤ max

1≤i≤4n+1
R0[i]. Any process that takes its final Scan

after T cannot decide 1.

Just as a randomized, wait-free consensus algorithm can be “derandomized”
to yield an obstruction-free algorithm, the algorithm of Theorem 4 could be used
as the basis of a randomized wait-free anonymous algorithm that solves binary
consensus using bounded space.

Theorems 6 and 7 can be extended to non-binary consensus using the follow-
ing proposition, which is proved using a fairly standard technique of agreeing on
the output bit-by-bit (see [17]).



Proposition 8. If there is an anonymous, obstruction-free algorithm for binary

consensus using a set of objects S, then there is an anonymous, obstruction-free

algorithm for consensus with inputs from the countable set D that uses |D| binary

registers and log |D| copies of S. Such an algorithm can also be implemented

using 2 log |D| registers and log |D| copies of S if |D| is finite.

Corollary 9. There is an anonymous, obstruction-free algorithm for consensus,

with arbitrary inputs, using binary registers. There is an anonymous, obstruction-

free algorithm for consensus with inputs from a finite set D that uses

(8n + 4) log |D| registers.

7 Obstruction-Free Implementations

We now give a complete characterization of the (deterministic) object types
that have anonymous, obstruction-free implementations from registers. We say
that an object is idempotent if, starting from any state, two successive invoca-
tions of the same operation (with the same arguments) return the same response
and leave the object in a state that is indistinguishable from the state a single
application would leave it in. (This is a slightly more general definition of idem-
potence than the one used in [5].) This definition of idempotence is made more
precise using the formalism of Aspnes and Herlihy [6]. A sequential history is a
sequence of steps, each step being a pair consisting of an operation invocation
and its response. Such a history is called legal (for a given initial state) if it is
consistent with the specification of the object’s type. Two sequential histories H

and H ′ are equivalent if, for all sequential histories G, H ·G is legal if and only if
H ′ ·G is legal. A step p is idempotent if, for all sequential histories H , if H · p is
legal then H ·p ·p is legal and equivalent to H ·p. An object is called idempotent
if all of its operations are idempotent. Examples of idempotent objects include
registers, sticky bits, snapshot objects and resettable consensus objects.

Theorem 10. A deterministic object type T has an anonymous, obstruction-

free implementation from binary registers if and only if T is idempotent.

Proof. (⇒) We assume n > 2. The special case n = 2 is deferred to the full
paper. Assume there is such an implementation of T . Let P, Q and R be distinct
processes. Let H be any legal history and let p = (op, res) be any step such
that H · p is legal. Let α be the execution of the implementation where some
process P executes the code for the sequence of operations in H , and then Q

executes op. Since the object is deterministic, Q must receive the result res for
operation op. Let β be the execution where P executes the code for the sequence
of operations in H , and then processes Q and R execute the code for op, taking
alternate steps. Since Q and R access only registers, they will take exactly the
same sequence of steps, and both will terminate and return res. Thus, H · p · p
must be legal also.

The internal state of P is the same at the end of α and β. The value stored
in each register is also the same at the end of these two runs. Thus any sequence
of operations performed by P after α will generate exactly the same sequence
of responses as they would if P executed them after β. It follows that, for any
history G, H · p ·G is legal if and only if H · p · p ·G is legal, so T is idempotent.



Do(op)

1 loop

2 t← GetTimestamp

3 (op′, t′)← Propose(op, t) to Con[i]
4 res ← result returned to op ′ if it is done after history

5 history ← history ·(op, res)
6 i← i + 1
7 if (op′, t′) = (op, t)
8 then return res

9 end if

10 end loop

Fig. 5. Obstruction-free implementation of an idempotent object from binary registers.

(⇐) Let T be any idempotent type. We give an anonymous, obstruction-free
algorithm that implements T from binary registers. The algorithm uses an un-
bounded number of consensus objects Con[1, 2, . . .], which have an obstruction-
free implementation from binary registers, by Corollary 9. The algorithm also
uses the GetTimestamp operation that accesses a weak counter, which can
also be implemented from binary registers, according to Theorem 3. These will
be used to agree on the sequence of operations performed on the simulated ob-
ject. All other variables are local. The history variable is initialized to an empty
sequence, and i is initialized to 1. The code in Fig. 5 describes how a process
simulates an operation op.

Obstruction-freedom: If, after some point of time, only one process takes
steps, all of its subroutine calls will terminate, and it will eventually increase i

until it accesses a consensus object that no other process has accessed. When
that happens, the loop is guaranteed to terminate.

Correctness: We must describe how to linearize all of the simulated oper-
ations. Any simulated operation that receives a result in line 3 that is equal to
the value it proposed to the consensus object is linearized at the moment that
consensus object was first accessed. All (identical) operations linearized at the
moment Con[i] is first accessed are said to belong to group i.

The following invariant follows easily from the code (and the fact that the
object is idempotent): At the beginning of any iteration of the loop by any
process P , historyP is equivalent to the history that would result from the the
first iP − 1 groups of simulated operations taking place (in order), where iP and
history

P
are P ’s local values of the variables i and history . Thus, the results

returned to all simulated operations are consistent with the linearization.

We must still show that the linearization point chosen for a simulated oper-
ation is between its invocation and response. Let D be an execution of Do(op)
in group i. The linearization point T of D is the first access in the execution to
Con [i]. Clearly, this cannot be after D completes, since D itself accesses Con [i].
Let D′ be the execution of Do(op′) that first accesses Con [i]. (It is possible that
D = D′.) Since D is linearized in group i, it must be the case that op = op′, and
also that the timestamps used in the proposals by D and D′ to Con [i] are equal.
Let t be the value of this common timestamp. Note that T occurs after D′ has
completed the GetTimestamp operation that returned t. If T were before D is



invoked, then the GetTimestamp operation that D calls would have to return
a timestamp larger than t. Thus, T is after the invocation of D, as required.

The algorithm used in the above proof does not require processes to have
knowledge of the number of processes, n, so the characterization of Theorem 10
applies whether or not processes know n. Since unbounded registers are idempo-
tent, it follows from the theorem that they have an obstruction-free implemen-
tation from binary registers, and we get the following corollary.

Corollary 11. An object type T has an anonymous, obstruction-free implemen-

tation from unbounded registers if and only if T is idempotent.

In the more often-studied context of non-anonymous wait-free computing,
counters (with separate increment and read operations) can be implemented
from registers [6], while consensus objects cannot be [18, 26]. The reverse is true
for anonymous, obstruction-free implementations (since consensus is idempotent,
but counters are not). Thus, the traditional classification of object types accord-
ing to their consensus numbers [18] will not tell us very much about anonymous,
obstruction-free implementations since, for example, consensus objects cannot
implement counters, which have consensus number 1.

If large registers are available (instead of just binary registers), the algorithm
in Fig. 5 could use, as a consensus subroutine, the algorithm of Theorem 7 instead
of the algorithm of Theorem 6. If the number of different operations that are
permitted on the idempotent object type is d and k invocations occur, then the
number of registers needed to implement each consensus object is O(n log(dk)),
by Proposition 8, and at most k consensus objects are needed. This yields the
following proposition.

Proposition 12. An idempotent object with a operation set of size d has an

implementation that uses O(kn log(dk)) registers in any execution with k invo-

cations on the object.

Acknowledgements We thank Petr Kouznetsov for helpful conversations. This
research was supported by the Swiss National Science Foundation (NCCR MICS
project) and the Natural Sciences and Engineering Research Council of Canada.

References

1. Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit. Atomic snap-
shots of shared memory. J. ACM, 40(4):873–890, 1993.

2. J. H. Anderson. Composite registers. Distributed Computing, 6(3):141–154, 1993.
3. D. Angluin. Local and global properties in networks of processors. In 12th ACM

Symp. on Theory of Computing, pages 82–93, 1980.
4. D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R. Peralta. Computation in

networks of passively mobile finite-state sensors. In 23rd ACM Symp. on PODC,
pages 290–299, 2004.

5. J. Aspnes, F. Fich, and E. Ruppert. Relationships between broadcast and shared
memory in reliable anonymous distributed systems. In Distributed Computing,

18th Intl Symp., pages 260–274, 2004.



6. J. Aspnes and M. Herlihy. Wait-free data structures in the asynchronous PRAM
model. In 2nd ACM SPAA, pages 340–349, 1990.

7. J. Aspnes, G. Shah, and J. Shah. Wait-free consensus with infinite arrivals. In
34th ACM Symp. on Theory of Computing, pages 524–533, 2002.

8. H. Attiya, A. Gorbach, and S. Moran. Computing in totally anonymous asyn-
chronous shared memory systems. Inf. and Computation, 173(2):162–183, 2002.

9. R. A. Bazzi and Y. Ding. Non-skipping timestamps for byzantine data storage
systems. In Distributed Computing, 18th Intl Conf., pages 405–419, 2004.

10. O. Berthold, H. Federrath, and M. Köhntopp. Project “anonymity and unobserv-
ability in the internet”. In 10th Conf. on Computers, Freedom and Privacy, pages
57–65, 2000.

11. S. C. Bono, C. A. Soghoian, and F. Monrose. Mantis: A lightweight, server-
anonymity preserving, searchable P2P network. Technical Report TR-2004-01-
B-ISI-JHU, Information Security Institute, Johns Hopkins University, 2004.

12. H. Buhrman, A. Panconesi, R. Silvestri, and P. Vitanyi. On the importance of
having an identity or, is consensus really universal? In Distributed Computing,

14th Intl Conf., volume 1914 of LNCS, pages 134–148, 2000.
13. T. D. Chandra. Polylog randomized wait-free consensus. In 15th ACM Symp. on

PODC, pages 166–175, 1996.
14. C. Drulă. The totally anonymous shared memory model in which the number of

proces ses is known. Personal communication.
15. O. Eğecioğlu and A. K. Singh. Naming symmetric processes using shared variables.

Distributed Computing, 8(1):19–38, 1994.
16. D. Goldschlag, M. Reed, and P. Syverson. Onion routing. Commun. ACM,

42(2):39–41, 1999.
17. R. Guerraoui and E. Ruppert. What can be implmented anonymously? Technical

Report 200496, School of Computer and Communications Sciences, EPFL, 2004.
18. M. Herlihy. Wait-free synchronization. ACM TOPLAS, 13(1):124–149, 1991.
19. M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization: Double-

ended queues as an example. In 23rd IEEE Intl Conf. on Distributed Computing

Systems, pages 522–529, 2003.
20. M. Herlihy and N. Shavit. The topological structure of asynchronous computability.

J. ACM, 46(6):858–923, 1999.
21. M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for concur-

rent objects. ACM TOPLAS, 12(3):463–492, 1990.
22. P. Jayanti and S. Toueg. Wakeup under read/write atomicity. In Distributed

Algorithms, 4th Intl Workshop, volume 486 of LNCS, pages 277–288, 1990.
23. R. E. Johnson and F. B. Schneider. Symmetry and similarity in distributed sys-

tems. In 4th ACM Symp. on PODC, pages 13–22, 1985.
24. S. Kutten, R. Ostrovsky, and B. Patt-Shamir. The Las-Vegas processor identity

problem (How and when to be unique). J. Algs, 37(2):468–494, 2000.
25. R. J. Lipton and A. Park. The processor identity problem. Inf. Process. Lett.,

36(2):91–94, 1990.
26. M. C. Loui and H. H. Abu-Amara. Memory requirements for agreement among un-

reliable asynchronous processes. In F. P. Preparata, editor, Advances in Computing

Research, volume 4, pages 163–183. JAI Press, Greenwich, Connecticut, 1987.
27. G. Neiger. Set-linearizability. In 13th ACM Symp. on PODC, page 396, 1994.
28. A. Panconesi, M. Papatriantafilou, P. Tsigas, and P. Vitányi. Randomized naming

using wait-free shared variables. Distributed Computing, 11(3):113–124, 1998.
29. M. K. Reiter and A. D. Rubin. Crowds: Anonymity for web transactions. ACM

Trans. on Inf. and System Security, 1(1):66–92, 1998.
30. S.-H. Teng. Space efficient processor identity protocol. Inf. Process. Lett.,

34(3):147–154, 1990.


