
How Fast Can Eventual Synchrony Lead

to Consensus?

Partha Dutta
EPFL, Switzerland

Rachid Guerraoui
EPFL, Switzerland

Leslie Lamport
Microsoft

9 March 2005

To appear in Proceedings of the 2005 International Conference on
Dependable Systems and Networks (DSN 2005).



Abstract

It is well known that the consensus problem can be solved in a distributed
system if, after some time TS , no process fails and there is some upper bound
δ on how long it takes to deliver a message. We know of no existing algorithm
that guarantees consensus among N processes before time TS +O(Nδ). We
show that consensus can be achieved by time TS + O(δ).

Contents

1 Introduction 1

2 Traditional Paxos 3

3 Round-Based Algorithms 4

4 The Modified Paxos Algorithm 5

5 The Modified B-Consensus Algorithm 10

6 Concluding Remarks 11



1 Introduction

Unbounded message delays and continual process failures make it impossible
to guarantee that a consensus algorithm will terminate [6]. Suppose there is
some time TS after which no process fails and messages are delivered within
a bounded length of time. How soon after time TS can an algorithm ensure
that all nonfaulty processes have reached consensus? It is this question that
we address.

We consider only omission (non-Byzantine) faults. We allow messages to
be lost and processes to fail by stopping, but messages may not be corrupted
and faulty processes may not perform incorrect actions. Byzantine faults
are discussed in the conclusion. A failed process can restart at any time.
Processes have timers that run at approximately the same rate after time
TS .

We say that the system is stable after time TS , and we let δ seconds be the
bound on message-delivery time after stability is reached. More precisely, we
assume that when the system is stable, a nonfaulty process will receive and
react to a message within δ seconds of when the message was sent. (Hence,
δ includes the time needed to process the message after it is received.) We
can therefore consider process actions to be instantaneous, processing time
being counted as message-delivery time or, for actions generated by timeout,
as part of the waiting time. We assume that a majority of the processes are
nonfaulty at time TS , and hence remain nonfaulty forever. (It obviously
doesn’t matter if processes fail after consensus has been reached, but we
assume for simplicity that they never fail after time TS .) We let N be the
number of processes and number them from 0 through N − 1.

Since consensus requires interprocess communication, and all messages
sent before TS might be lost, it must take at least O(δ) seconds after stability
to reach consensus. (For presentation simplicity, we write O(∗) for both
O(∗) and Ω(∗).) This paper shows how this bound can be achieved. More
precisely, we assume that all processes have (unsynchronized) local clocks
that, after time TS , have an error in their running rate of at most some
known value ρ ¿ 1. We describe an algorithm in which every process that
is nonfaulty at time TS decides by time TS + O(δ). Every process that
restarts after time TS decides within O(δ) seconds after it has restarted.
(Recall that we assume no process fails after time TS .)

The processes do not know when time TS has arrived; they have no way
of knowing that the system has become stable. However, we do assume that
the value of δ is known. Although consensus can be guaranteed even if δ is
not known [5], the following informal argument suggests that an algorithm

1



must know δ to achieve a time bound independent of the length of time
that elapses before stability (TS). A completely asynchronous, deterministic
algorithm cannot solve consensus [6]. To ensure progress, an algorithm must
use timeouts to keep from waiting forever for responses from failed processes.
To ensure that consensus is reached after stability, the timeout intervals
must be of length O(δ). If the value of δ is not known to the algorithm,
then the only way to ensure progress seems to be to set the timeouts based
on some guess γ of the value of δ, and to keep increasing γ until consensus
is reached [5]. The time needed to reach consensus after stability is then
O(γS), where γS is the value of γ at time TS . Since γ can grow without
bound until stability is reached, consensus cannot be achieved within O(δ)
seconds after stability. We therefore assume that δ is known.

In this paper, we measure the time required for all nonfaulty processes to
decide in a consensus algorithm; the time required for the processes to termi-
nate the algorithm might be higher. As processes never know if the system
has reached stability, an algorithm cannot terminate until every process
knows that all nonfaulty processes have reached a decision. Otherwise,
processes might terminate before time TS , and there could be a nonfaulty
process that has not decided because it has been unable to communicate
with any other process.

The problem of finding an algorithm that reaches consensus within O(δ)
can be solved with some simple modifications to the Paxos consensus al-
gorithm [3, 9, 10] if we assume that the bound on message-delivery time
that holds after TS also applies to messages sent before that time—in other
words, every message sent before time TS is either lost or delivered by time
TS + δ. Furthermore, if we assume that on restart, a process knows that it
has failed so that it can execute a special initialization procedure, then the
problem becomes simpler. Without these assumptions however, the problem
is hard because, even after time TS , an algorithm must cope with obsolete
messages either sent before TS by failed processes or sent by newly-restarted
processes. To our knowledge, all previous consensus algorithms require in
the worst case at least O(Nδ) seconds after stability to reach consensus.

Our primary solution is a round-based variant of the Paxos algorithm. In
Section 2 we briefly recall the Paxos algorithm and then point out why any
simple modification to Paxos does not decide within O(δ) seconds after TS .
In Section 3 we explain why typical round-based algorithms do not achieve
the desired performance either. Section 4 presents our modified version of
the Paxos consensus algorithm and its timing analysis. Section 5 briefly
outlines another solution based on an algorithm of Pedone, Schiper, Urbán,
and Cavin [14]. The concluding section briefly considers Byzantine failures.

2



2 Traditional Paxos

Before presenting our modified version, we describe the traditional Paxos
consensus algorithm. We omit many details that, while crucial to its cor-
rectness, are irrelevant to our discussion.

The Paxos algorithm assumes a leader-election procedure whose correct
operation is required only to ensure progress, not safety. Each process p
maintains a natural number mbal[p], called its ballot number, which it at-
taches as the field m.mbal to every message m it sends. (The variable mbal[p]
was called nextBal[p] in [9] and Commit in [3].) The initial value of mbal[p]
doesn’t matter; for later convenience we let it equal p. The process keeps
mbal[p] (and the rest of its state) in stable storage so it can restart after fail-
ure by simply resuming where it left off. Process p can execute the following
actions:

Start Phase 1 At any time, if p believes itself to be the leader, then it can
increase mbal[p] to an arbitrary value congruent to p mod N and send
a phase 1a message to every process (including itself).

Receive Phase 1a Message If p receives a phase 1a message m with m.mbal >
mbal[p] then it sets mbal[p] to m.mbal and sends a phase 1b message
to process m.mbal mod N .

Start Phase 2 If p receives a phase 1b message m with m.mbal = mbal[p]
from dN/2e different processes then it sends a phase 2a message to
every process.

Receive Phase 2a Message If p receives a phase 2a message m with m.mbal ≥
mbal[p] then it sets mbal[p] to m.mbal and sends a phase 2b message
to every process.

Decide If p receives phase 2b messages with the same mbal field from a
majority of processes then it decides on a value.

Reject Message If p receives a phase 1a or phase 2a message m with m.mbal <
mbal[p], it sends a rejected message containing mbal[p] to process
m.mbal mod N .

In a real implementation, once a process has decided, it would stop executing
the algorithm and simply respond to every message by announcing the value
it has decided upon. We ignore this optimization for now.

Suppose the leader-election procedure is guaranteed to choose a unique,
nonfaulty leader within O(δ) seconds after the system is stable, and the

3



leader spontaneously executes the Start Phase 1 action every O(δ) seconds.
The following plausible but incorrect argument shows that the Paxos al-
gorithm then guarantees consensus within O(δ) seconds after stability. By
time TS +O(δ), a single process q believes itself to be the leader and executes
the Start Phase 1 action. If the value of mbal[q] that q chooses is larger than
the value of mbal[p] for all other nonfaulty processes p, then consensus will
be reached after all the phase 1a, 1b, 2a, and 2b messages for ballot mbal[q]
are generated by and delivered to nonfaulty processes, which takes at most
4δ seconds. If mbal[q] is less than mbal[p] for some p, then q will receive a
rejected message from p within 2δ seconds and can then execute the Start
Phase 1 action with a larger value of mbal[q]. In this case, consensus will be
reached within 6δ seconds. Hence, consensus is reached within O(δ) seconds
after TS .

The argument that consensus is reached within 4δ or 6δ seconds after q
executes Start Phase 1 is fallacious. It assumes that no process receives a
message m with m.mbal greater than q’s final choice of mbal[q]. However,
there could be messages with higher mbal fields that were sent by processes
that have since failed, or by failed processes that just restarted. Receipt of
such a message could prevent the algorithm from succeeding with the current
value of mbal[q], forcing q to choose a larger value. Since there could be as
many as dN/2e − 1 such failed processes, it could take O(Nδ) seconds to
reach consensus after q first executes the Start Phase 1a action.

We will present a version of the Paxos algorithm that does achieve con-
sensus within O(δ) seconds of stability, without relying on any election al-
gorithm. However, we first discuss round-based consensus algorithms.

3 Round-Based Algorithms

There are several consensus algorithms that work roughly as follows [2, 5].
Processes execute a sequence of rounds. A process executing round i ignores
messages from lower-numbered rounds; if it receives a message from a higher-
numbered round j, then it begins executing round j. If consensus is not
reached in round i, then a timeout will cause some process to abort round
i and begin round i + 1. (Although aborting might be attributed to the
pronouncement of some oracle, such as a failure detector, the oracle’s imple-
mentation issues the pronouncement when a timeout occurs.) To ensure that
a round started after the system is stable succeeds in reaching consensus, a
timeout interval of O(δ) must be used.

In these round-based algorithms, the round number plays the same role

4



as the ballot number in the Paxos algorithm. The Paxos algorithm’s problem
of old messages with large ballot numbers can be avoided in round-based
algorithms by not allowing a process spontaneously to enter round i+1 until
it has learned that a majority of the processes have begun round i. This
ensures that whenever a majority of the processes are nonfaulty, if a round
i message has been sent, then there is a nonfaulty process executing round
i− 1 or higher. This implies that if i is the highest round being executed by
some nonfaulty process when the system becomes stable, no old messages
or restarted process can disrupt any round from i + 2 on.

Eliminating the problem of obsolete messages does not ensure that round-
based algorithms reach consensus within O(δ) seconds of stability. For round
i to succeed, most of these algorithms require that a coordinator, gener-
ally process i mod N , be nonfaulty. Since there could be dN/2e − 1 faulty
processes, they could require O(N) rounds to reach consensus, each round
taking O(δ) seconds. There is a round-based consensus algorithm by Moste-
faoui and Raynal [13] that relies on leader election, but considering that
algorithm simply shifts our problem to that of electing a leader within O(δ)
seconds of TS , in the presence of obsolete messages and process restarts.

There is one round-based algorithm that does not rely on a coordinator or
a leader—namely, the B-Consensus algorithm of Pedone et al. [14]. Section 5
outlines an approach to modifying that algorithm so it reaches consensus
within O(δ) seconds of stability.

The number of rounds required to achieve consensus after stability is
investigated in [4], which considers a round-based eventually synchronous
model and looks at the number of rounds needed to achieve consensus after
the first stable round is reached. However, the physical duration of a round
is not specified in [4]. In fact, if processes might restart after TS , then its
algorithm does not achieve consensus within a constant number of rounds.

4 The Modified Paxos Algorithm

We now refine the Paxos algorithm to achieve consensus within O(δ) seconds
after stability. Our new version has no explicit leader election. Instead, any
process can perform a Start Phase 1 action, under certain circumstances.
The basic idea is to keep a process from choosing ballot numbers that are
too large by emulating the way round-based algorithms avoid anomalously
high round numbers.

Define the session of a ballot number b to be bb/Nc and define process
p to be in session bmbal[p]/Nc. Similarly, the session of a message m is the

5



session of the ballot number m.mbal. We say that process p enters session s
when its session number changes from some t < s to s. We now modify the
Paxos algorithm so a process does not enter session s + 1 until a majority
of processes have entered session s. We also introduce timeouts and do
away with the leader-election procedure, making leader election implicit in
the Paxos algorithm itself. The use of timeouts makes the Reject action
unnecessary.

Each process maintains a session timer. Whenever a process enters a
new session, it resets its session timer so that if time TS has arrived, then it
will time out between 4δ and σ seconds later, for some σ ≥ 4δ with σ = O(δ).
This is possible because of our assumption that processes have timers with
a known bound ρ ¿ δ on their running rates after time TS . Session timers
are set initially to time out within σ seconds.

A process can execute the Start Phase 1 action whenever (i) its session
timer has timed out and (ii) it is either in session 0 or else has received a
message with its current session from a majority of the processes. Condition
(ii) means that, if mbal[p] ≥ N , then p has received a message m with
bm.mbal/Nc = bmbal[p]/Nc from a majority of processes. When p performs
the action, it chooses the new value of mbal[p] to increase its session number
by 1. In other words, it sets mbal[p] to (bmbal[p]/Nc+ 1)N + p. Since this
action increases p’s session number, it also resets the session timer.

We make two additional changes to the algorithm. First, we have a
process p send a phase 1a message to all other processes whenever it begins
a new session. Second, we require that a process send a phase 1a message
(with its current value of mbal[p]) if it has not sent a phase 1a or 2a message
within the past ε seconds, for an arbitrary positive ε = O(δ). Since the
Paxos algorithm works despite duplication of messages, it permits these
extra phase 1a messages. (Any phase 1a message m is treated as if it were
sent by process m.mbal mod N .)

Proof of Correctness

We now sketch a proof that every process that is nonfaulty at time TS decides
by time TS +O(δ). Let W be the set of processes that are nonfaulty at time
TS , let s0 be the maximum session number at time TS of all processes in W,
let τ be the maximum of 2δ + ε and σ, and let [Ta, Tb] be the time interval
from Ta through Tb.

1. At any time after TS , all messages sent before TS and all failed processes
have session number at most s0 + 1.

6



Proof : A Start Phase 1 action that advances a process session to s
cannot be executed until a majority of processes are in session s − 1,
and any majority of processes contains a process in W.

2. If at time T > TS process p sends a phase 1a message with its session
number s, then at some time in [T, T +τ ] a process will enter a session
t with t > s.

Proof : Every process q in W receives p’s phase 1a message by time
T + δ and sends a phase 1a message with session number at least s,
either then if q’s session number is less than s or else ε seconds later. By
T + ε + 2δ process p will receive phase 1a messages from every process
in W and will perform the Start Phase 1 action when its session timer
times out, if it has not already started a higher-numbered session.

3. At some time T3 in [TS , TS +ε+τ ], a process enters session s3 ≥ s0+1.

Proof : Let p be a process in W with session number s0 at time TS .
If no process in W enters a higher-numbered session by TS + ε, then
p must send a phase 1a message by that time. The result then follows
from step 2.

4. At some time T4 in [T3, T3 + τ ] some process executes Start Phase 1
to enter session s4 ≥ s0 + 2.

Proof : By steps 2 and 3, some process enters a session numbered at
least s0 +2 during [T3, T3 + τ ]. By step 1, it could only have done this
by executing Start Phase 1.

5. At some time T5 in [T4, T4 + τ ], some process p5 executes a Start
Phase 1 action to become the first process to enter session number
s5 ≥ s0 + 3.

Proof : Steps 2 and 4 imply that some process p5 enters a session
s5 ≥ s0 + 3 during [T4, T4 + τ ], and step 1 implies that it can do so
only by executing Start Phase 1.

6. At time T5 + δ

(a) Every process in W is in session s5.

(b) No process is in a session higher than s5.

(c) If a nonfaulty process is in session s5, then its session timer will
not time out before time T5 + 4δ.

(d) There is a process p6 such that

7



i. p6 entered session s5 during [T5, T5 + δ] and set its current
value of mbal[p6] by executing Start Phase 1.

ii. mbal[p] ≤ mbal[p6] for all nonfaulty processes p.

Proof : By steps 1 and 5, no process can enter a higher session before
first entering session s5.

(a) Step 5 implies that by time T5 +δ, every process nonfaulty at time
T5 has entered session s5, either by receiving a message from p5

or another process that entered session s5, or else by executing
Start Phase 1.

(b, c) Every process in session s5 entered during [T5, T5 + δ], so its
session timer was reset during that interval and will not time out
before T5 + 4δ. Hence, at time T5 + δ, no process is in a session
higher than s5.

(d) Let p6 be the process p with the largest value of mbal[p] at time
T5 + δ. It could only have acquired that value by executing Start
Phase 1.

7. By time T5 + 4δ, every process in W has sent a phase 2 b message m
with m.mbal = mbal[p6].

Proof : By steps 6 and 1, every process p that is nonfaulty at any
time in [T5, T5 + 4δ] has mbal[p] ≤ mbal[p6] throughout that period.
Hence, by T5 + 2δ every process in W receives p6’s phase 1a message;
by T5 +3δ process p6 receives phase 1b messages from every process in
W and sends a phase 2a message; and by T5 + 4δ every process in W
receives the phase 2a message and sends a phase 2b message.

8. Every process in W decides on a value by time T5 + 5δ.

Proof : By step 7 and the definition of the Decide action.

Adding things up, we see that every process nonfaulty at time TS has decided
by time TS + ε + 3τ + 5δ. With reasonably accurate timers, if processing
time is negligible compared with message-delivery time, then we can take
σ ≈ 4δ. By making ε ¿ δ, so τ = σ, we can make the decision time as early
as about TS + 17δ. It seems likely that this bound could be improved by a
more clever algorithm.

8



Process Restarts

We have just proved the result that every process that is nonfaulty at time
TS decides by time TS+O(δ). We also have to show that every process p that
restarts after time TS decides within O(δ) seconds of when it is restarted.
But this is a trivial consequence of the first result. The assumptions we have
made about time TS , and hence the first result, hold for all times T ′S > TS .
Substituting T ′S for TS in the first result shows that, if process p restarts at
time T ′S > TS , then it decides by time T ′S + O(δ).

We can a derive better bound on how long it takes a process that restarts
after TS to decide. It can be seen from our proof that any process that
restarts by time T5 decides by T5 + 5δ. From T5 on, a new session starts
every τ seconds and delivers the requisite phase 2b message within 5δ seconds
of its start.

As observed above, the decision time of a process that restarts after some
processes have already decided can be reduced by having those processes
periodically broadcast their decision.

Reducing Message Complexity

The message complexity of a consensus algorithm matters only when a sys-
tem executes a sequence of separate instances of the algorithm. The op-
eration of a well-designed system consists of long periods of stability, with
timely communication and no failures, punctuated by occasional process
or communication-network failures. We want to minimize the communica-
tion complexity during the stable periods and to prevent excessive message
sending from delaying recovery from failures.

In ordinary Paxos, phase 1 is executed in advance for all instances of the
algorithm, and all nonfaulty processes decide within 3 message delays when
the system is stable. By setting ε large enough and using the appropriate
acknowledgement messages, our modified version of Paxos can be made to
have this same behavior in the stable case. In the same way, the modified
algorithm can also be made to have the same behavior as normal Paxos in
the event of process failure, as long as communication between nonfaulty
processes is timely. Our modified algorithm will then send more messages
than ordinary Paxos only in the event of communication failure.

Our algorithm’s extra messages are the phase 1a messages it sends every
ε seconds. We can have it send fewer phase 1a messages by increasing the
value of ε, but this can increase how long it takes processes to decide after
the system becomes stable. We can also add acknowledgements of receipt of

9



phase 1a messages to other messages, so a process does not resend a phase 1a
message to another process that has already received it. However, fast re-
covery from communication failure requires periodically sending messages
to learn when communication has been restored. Frequent message sending
is an unavoidable cost of fast recovery.

5 The Modified B-Consensus Algorithm

The B-Consensus algorithm of Pedone et al. [14] is a leaderless round-based
algorithm using a message-delivery oracle. A round achieves consensus if
more than N/2 processes are nonfaulty and all messages sent in that round
are delivered by the oracle to all processes in the same order. We now
sketch a method for modifying this algorithm to reach consensus within
O(δ) seconds of stability.

We implement the message-delivery oracle as follows. All messages to be
delivered by the oracle are broadcast to all processes and are timestamped
with logical clocks [8]. This means that after a process receives a message
m, all messages it sends have timestamps greater than that of m. The oracle
delivers messages to a process in timestamp order, waiting 2δ seconds after
the message is actually received by the process before delivering it.

We first show that when the system is stable, if there are no restarts, then
the oracle delivers messages to all nonfaulty processes in the same order. A
message m sent when the system is stable will be received by every nonfaulty
process within δ seconds of when it was sent, after which every message sent
has a higher timestamp. Therefore, having a process wait 2δ seconds before
delivering m ensures that it has received every message with a timestamp
lower than that of m that was sent after stability was reached. This implies
that the oracle delivers the same set of messages to all processes in the same
timestamp order.

With restarts, messages sent by a newly restarted process may be de-
livered in different orders to different processes. However, delivery order
is significant only for messages received by a process in the current round.
As with other round-based algorithm, the B-Consensus algorithm does not
start round i + 1 until a majority of processes have reached round i. Hence,
if i is the highest round being executed by some nonfaulty process when the
system becomes stable, round i+2 will not be disrupted by a message from
a newly restarted process.

An analysis similar to the one for the modified Paxos algorithm shows
that within O(δ) seconds of stability, the system begins a round that no

10



obsolete message or restarting process can disrupt. That round succeeds
within O(δ) seconds. The actual maximum delay is about the same as for
the modified Paxos algorithm.

As described by Pedone et al., the B-Consensus algorithm requires that a
process execute all previous rounds before entering a new round. A nonfaulty
process could still be executing the first round when stability is reached.
Processes therefore have to keep retransmitting their messages from all pre-
vious rounds to ensure that such a process is brought up to date within O(δ)
seconds of stability. It is unreasonable to assume that such an arbitrarily
large set of messages could be delivered within δ seconds. However, the al-
gorithm is easily modified to allow a process to jump immediately to a later
round when it receives a message for that round, without having to execute
all previous rounds.

6 Concluding Remarks

Assuming that after time TS no process fails, a majority of processes are
nonfaulty, and every message is delivered within δ seconds of when it is sent,
we have presented a version of the Paxos consensus algorithm that reaches
agreement by time TS + O(δ). We have also sketched a version of the B-
Consensus algorithm of Pedone et al. that does the same. Finding such an
algorithm is nontrivial because we make no assumption about messages sent
before TS and we allow failed processes to restart from where they left off.
Although it must take O(δ) time after TS , there probably exist algorithms
that can reach consensus more quickly than these.

There are two natural ways in which we might extend our results—by
allowing processes to fail after TS , assuming a majority of processes remain
nonfaulty, and by allowing Byzantine failures, assuming that more than
2/3 of the processes are nonfaulty. In both cases, it is impossible to reach
agreement by time TS+O(δ). Even a perfectly synchronous system with only
crash failures requires O(F ) rounds, where F is the number of processes that
actually fail [7]. With Byzantine failures, a malicious process may continue
to be malicious after TS . If there are M malicious processes, it must therefore
take an asynchronous algorithm at least until time TS + O(Mδ) to reach
agreement. We now briefly consider how this bound might be achieved.

Castro and Liskov have published a version of the Paxos algorithm that
handles Byzantine faults and also solves the problem of anomalously high
ballot numbers [1, 12]. However, their algorithm rotates through leaders
until it finds a nonfaulty one, so it cannot ensure agreement before time

11



TS +O(Nδ). To reduce this to TS +O(Mδ), we would need some method of
rotating through leaders that skips faulty but non-malicious processes. We
do not know how to do this.

The third author has developed a version of Paxos that handles Byzan-
tine faults without requiring a leader. Like the algorithm of Pedone et al.,
it reaches agreement if certain messages arrive at all processes in the same
order. It should be possible to ensure that messages do arrive in the same
order when the system is stable, even with M Byzantine faults, by taking
O(Mδ) seconds to send a message. However, the algorithm ensures progress
only if more than 4/5 of the processes are nonfaulty. Lower-bound results
suggest that this many nonfaulty processes are required by any Byzantine
consensus algorithm that does not use a leader [11].

References

[1] M. Castro and B. Liskov. Practical byzantine fault tolerance and proactive
recovery. ACM Trans. Comput. Syst., 20(4):398–461, 2002.

[2] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distrib-
uted systems. J. ACM, 43(2):225–267, 1996.

[3] R. De Prisco, B. Lampson, and N. Lynch. Revisiting the paxos algorithm.
Theoretical Comput. Sci., 243:35–91, 2000.

[4] P. Dutta, R. Guerraoui, and I. Keidar. The overhead of consensus failure
recovery. IC Technical Report 200456, Ecole Polytechnique Fédérale de Lau-
sanne (EPFL), June 2004.

[5] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial
synchrony. J. ACM, 35(2):288–323, Apr. 1988.

[6] M. J. Fischer, N. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374–382, Apr. 1985.

[7] M. J. Fischer and N. A. Lynch. A lower bound for the time to assure interactive
consistency. Inf. Process. Lett., 14(4):183–186, June 1981.

[8] L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558–565, July 1978.

[9] L. Lamport. The part-time parliament. ACM Trans. Comput. Syst.,
16(2):133–169, May 1998.

[10] L. Lamport. Paxos made simple. ACM SIGACT News (Distributed Computing
Column), 32(4):18–25, Dec. 2001.

[11] L. Lamport. Lower bounds for asynchronous consensus. In A. Schiper, A. A.
Shvartsman, H. Weatherspoon, and B. Y. Zhao, editors, Future Directions in
Distributed Computing, volume 2584 of Lecture Notes in Computer Science,
pages 22–23. Springer, 2003.

[12] B. W. Lampson. The ABCDs of Paxos. http://research.microsoft.com/
lampson/65-ABCDPaxos/Abstract.html.

12



[13] A. Mostéfaoui and M. Raynal. Leader-based consensus. Parallel Processing
Letters, 11(1):95–107, Mar. 2001.

[14] F. Pedone, A. Schiper, P. Urbán, and D. Cavin. Solving agreement problems
with weak ordering oracles. In Proceedings of the 4th European Dependable
Computing Conference (EDCC-4), volume 2485 of Lecture Notes in Computer
Science, pages 44–61. Springer-Verlag, 2002.

13


