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Abstract. This paper establishes the first theorem relating resilience, time complexity and authenti-
cation in distributed computing. We study consensus algorithms that tolerate Byzantine failures and
arbitrary long periods of asynchrony. We measure the ability of processes to reach a consensus deci-
sion in a minimal number of rounds of information exchange, as a function of (a) their ability to use
authentication and (b) the number of actual process failures in those rounds, as well as of (c) the total
number of failures tolerated and (d) the system constellation. The constellations considered distinguish
different roles of processes, such that we can directly derive a meaningful bound on the time complexity
of implementing robust general services using several replicas coordinated through consensus. To prove
our theorem, we establish certain lower bounds and we give algorithms that match these bounds. The
algorithms are all variants of the same generic asynchronous Byzantine consensus algorithm, which is
interesting in its own right.

1 Introduction

1.1 Context

We establish a theorem on the complexity of the consensus problem in a general distributed frame-
work composed of three kinds of processes [21]: proposers, acceptors and learners (Fig. 1). Basically,
the problem consists for the learners to decide on a common value among those proposed by the
proposers, using acceptors as witnesses that help ensure the agreement. Every learner is supposed
to eventually learn a value (liveness) that is the same (proposed) value for all learners (safety) [2].
Measuring the complexity of learning a decision in this framework automatically derives a mea-
sure of the complexity of state machine replication, a general technique to build robust distributed
services using consensus [19,31].

We study consensus algorithms that tolerate Byzantine failures of processes. A Byzantine failure
can either correspond to a crash or a malicious behavior (by default, a failure means a Byzantine
failure). A process is malicious if it deviates from the algorithm assigned to it in a way that is
different from simply stopping all activities (crashing). Besides process failures, the algorithms we
consider also tolerate arbitrarily long periods of asynchrony, during which the relative speeds of
processes and communication delays are unbounded. Such algorithms are sometimes called asyn-
chronous [6,21]. We assume however that the duration of the asynchronous periods and their number
of occurrences are both finite, otherwise consensus is known to be impossible [14]. Processes that
do not fail are called correct processes, and they can eventually communicate among each other in
a timely manner. The model assumed here, called the eventually synchronous model [12], matches
practical systems like the Internet which are often synchronous and sometimes asynchronous.

Whereas it is important to tolerate periods of asynchrony and as many failures as possible, it is
also important to optimize algorithms for favorable, and most frequent, situations where the system
is synchronous and very few processes fail. The question we address here is how fast a decision can
be learned in these favorable situations. In other words, we explore the best-case complexity of
asynchronous Byzantine consensus.



Clearly, it is never possible to learn a decision in one round of information exchange (we say
communication round) and yet ensure agreement despite possible Byzantine failures. However, as
conjectured in [21], and as we show in this paper, under some very favorable situations, which
are actually quite common in practice, learning can be achieved in two communication rounds: we
call this very fast learning and a proposer from which a value can be learned very fast is called
a privileged proposer. Furthermore, there are algorithms (e.g., [6]) where, in certain, slightly less
favorable situations, a decision is learned after three communication rounds by all correct learners:
we call this fast learning. More precisely, let Π be the set of proposers; similarly, we denote the set
of acceptors with Γ and the set of learners with Λ. Fix a consensus algorithm A and a value Q,
such that 1 ≤ Q ≤ |Γ | = Na.

Definition 1 (Q-favorable runs). A run r of A is Q-favorable if (1) r is synchronous, and (2)
at most Q acceptors are faulty in r.

Definition 2 ((Very) fast learning).

– A proposer p achieves very fast (resp. fast) learning despite the failure of Q acceptors in A, if
in every Q-favorable run r of A in which p is correct, and only p proposes a value, every correct
learner l learns a value proposed by p in two (resp. three) communication rounds of r.

– (Privileged proposer). If proposer p can achieve very fast learning despite the failure of Q ac-
ceptors in A, then p is called privileged proposer. We denote by Πpriv the set that contains all
privileged proposers of A.

– Consensus algorithm A is said to achieve very fast learning despite the failure of Q acceptors,
if Πpriv 6= ∅.

The theorem we give in this paper, establishes the general tight bound on the resilience of
consensus algorithms that achieve very fast learning despite the failure of Q acceptors. In addition,
it establishes the tight lower bound on the resilience of what we call gracefully degrading consensus
algorithms.

Definition 3 (Graceful degradation). For any F > Q, a consensus algorithm A is said to be
(Q,F ) gracefully degrading if:

– A achieves very fast learning despite the failure of Q acceptors (i.e., Πpriv 6= ∅), and
– every proposer p ∈ Πpriv achieves fast learning despite the failure of F acceptors in A.

Definition 3 features F , one of the two consensus resilience thresholds we define below. For
convenience, we say that a (Q,F ) gracefully degrading consensus algorithm A achieves fast learning
despite the failure of F acceptors (in addition to achieving very fast learning despite the failure of
Q acceptors)1.

Our theorem is general in the sense that it accounts for three classes of parameters that can vary
independently: (1) different consensus resilience thresholds, (2) different system constellations, as
well as (3) the ability of processes to use authentication primitives (public-key cryptography) [30]
to achieve very fast (fast) learning. More precisely:

1 Furthermore, for presentation simplicity, instead of saying very fast (resp. fast) learning despite the failure of Q
(resp. F ) acceptors, we sometimes simply say very fast (resp. fast) learning, when Q and F are obvious from the
context. We make use of the same simplification for (Q, F ) graceful degradation vs. graceful degradation.
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1. We distinguish two resilience thresholds: M and F [21]; M denotes the maximum number of
acceptor malicious failures despite which consensus safety is ensured (consensus algorithms in
eventually synchronous model remain safe despite crash-only failure of any number of acceptors);
F denotes the maximum number of acceptor failures despite which consensus liveness is ensured.
Particularly interesting is the case where M > F : consensus safety should be preserved despite
M acceptor malicious failures, but liveness is guaranteed only if the number of acceptor failures
is at most F .
In the literature, the special case where M = F is usually considered. There are several ad-
vantages of distinguishing these two thresholds. First, we highlight the influence on the lower
bounds of (1) the malicious behavior of the processes and (2) the process’ non-responsiveness.
In the boundary case, where M = 0, the acceptor failure model becomes non-Byzantine, i.e.,
crash failure model. Hence, the bounds derived for the general case of parameters M and F
bridge the gap between Byzantine and crash failure models, by establishing a result that is
applicable to both. Furthermore, this approach allows for more flexibility in the construction
of practical hybrid [32] algorithms. For example, if we want to tolerate a certain, yet relatively
small, number of Byzantine failures in a system that is more prone to crash failures, this ap-
proach requires fewer processes than if every expected failure is modeled as a Byzantine failure
(when M = F ).

2. We distinguish two system constellations: C1 and C2; C1 is the constellation where at least one
privileged proposer might not be an acceptor, or there are at least two privileged proposers
(Fig. 1(a)); C2 is the constellation where there is exactly one privileged proposer, which is also
one of the acceptors (Fig. 1(b)). More formally, the system is in constellation C1 if (Πpriv\Γ 6=
∅) ∨ (|Πpriv| > 1), and in constellation C2 if (|Πpriv| = 1) ∧ (Πpriv ⊂ Γ ). We are interested in
the case Πpriv 6= ∅, where C1 = C2. As we show in this paper, the choice of a constellation
has a clear impact on the optimal resilience of consensus algorithms that can achieve very fast
learning and their ability to be gracefully degrading.

3. Finally, we also distinguish the case where the processes are allowed to use authentication to
achieve very fast (resp. fast) learning (i.e., to use authentication in the first two (resp. three)
communication rounds) from the case where they are not. In both cases, we are indifferent
to whether processes use authentication in runs that do not enable very fast or fast learning,
typically non-favorable runs with proposer failures and asynchronous periods. Roughly speaking,
authentication allows the recipient of the message to validly claim to a third party that it
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received the message from the original sender of the message [30]. Authentication is a major
source of overhead [24,27], and hence, we would typically like to avoid using authentication for
(very) fast learning.

1.2 Theorem

We show that there is a consensus algorithm that:

1. Achieves very fast learning despite the failure of Q acceptors in constellation C1 if and only if
the total number of acceptors in the system (Na) is such that Na > 2M + F + 2Q. In addition,
there is a (Q,F ) gracefully degrading consensus algorithm that:
– achieves fast learning despite the failure of F acceptors using authentication, given the same

total number of acceptors, Na.
– achieves fast learning despite the failure of F acceptors without using authentication, if and

only if Na is also greater than 2F + M + min(M,Q).
2. Achieves very fast learning despite the failure of Q acceptors in constellation C2 with (resp.

without) authentication if and only if Na > 2(M − 1) + F + 2Q (resp. Na > max(2(M − 1) +
F + 2Q, 2M + F + Q)). In addition, there is a (Q,F ) gracefully degrading consensus algorithm
that:
– achieves fast learning despite the failure of F acceptors using authentication, given the same

total number of acceptors, Na.
– achieves fast learning despite the failure of F acceptors without using authentication, if and

only if Na is also greater than 2F + (M − 1) + min(M − 1, Q).

Note that the scope of our theorem are consensus algorithms, and these inherently satisfy
the general consensus solvability lower bound of Na > 2F + M [21]. To help better understand
some of the parameters, let us illustrate them through some specific interesting cases and focus
on constellation C1 where authentication does not impact the optimal resilience of algorithms that
can achieve very fast learning.

1. F = M . Here we consider consensus algorithms that are correct when at most F = M ac-
ceptors fail. At one extreme, very fast learning (resp. graceful degradation) is possible without
authentication when no acceptor fails, i.e., when Q = 0, if and only if Na > 3F ; i.e., less than
one-third of the total number of acceptors can fail. At the other extreme, very fast learning is
possible without authentication when the maximum possible number of acceptors fail (Q = F )
if and only if Na > 5F ; i.e., less than one-fifth of the total number of acceptors can fail.

2. F = 3 and M = 1. Here we consider consensus algorithms that are correct when at most F = 3
acceptors fail, out of which at most M = 1 acceptors are malicious. For such algorithms, when
for example Q = 1 acceptor fails, very fast learning is possible only if Na ≥ 2M +F +2Q+1 = 8.
However, with Na = 8 acceptors, graceful degradation is possible only with authentication. To
achieve graceful degradation without authentication, Na ≥ 2F + M + min(M,Q) + 1 = 9
acceptors are required.

3. F = 2, M = 3. Here we consider consensus algorithms that are correct when at most F = 2
acceptors fail and possibly only safe when at most M = 3 acceptors are malicious (i.e., these
algorithms are correct when there are at most 2 failures, and they are safe but may not be live
when there are 3 malicious failures). For such algorithms, when for example Q = 1 acceptor
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fails, very fast learning is possible only if Na ≥ 2M + F + 2Q = 11. At the same time, the same
number of acceptors allows graceful degradation without authentication (because Na is greater
than 2F + M + min(M,Q) = 8).

In short, the theorem expresses, in a general and precise way, a fundamental trade-off between
the resilience and the complexity of asynchronous Byzantine consensus. Two sides of complexity are
considered: the communication complexity (sometimes called latency), which depicts the number of
rounds of information exchange before a decision is learned, as well as the authentication complexity,
considered a major overhead factor [24,27].

1.3 Proof Overview: Lower Bounds

The necessary parts of our theorem consist of a set of lower bounds. We prove these bounds
using indistinguishability arguments that simultaneously exploit the (temporary) asynchrony of the
network and the Byzantine failures of the processes, in order to contradict the ability to achieve
very fast learning (resp. graceful degradation). For example, to show that very fast learning despite
the failure of Q acceptors is impossible given an insufficient number of acceptors, we first construct
two Q-favorable runs in which exactly one privileged proposer proposes a value and in which some
learner l learns two distinct values very fast (i.e., within two communication rounds). Second,
we exhibit two asynchronous runs with Byzantine failures that are respectively indistinguishable
at l from the two Q-favorable synchronous runs, and hence l learns distinct values in the two
asynchronous runs. Third, we make use of asynchrony and Byzantine failures in a way that the
two asynchronous runs are indistinguishable to any learner distinct from l. This helps us build an
eventually synchronous run in which Agreement is violated. Assuming that the processes can use
authentication in effect restrict the range of the possible Byzantine behavior that we can exploit in
the proof.

1.4 Proof Overview: The DGV Algorithm

The sufficiency parts of our theorem are shown by exhibiting algorithms that match the correspond-
ing lower bounds. Interestingly, these algorithms can all be viewed as variants of the same generic
algorithm, which we call “Distributed consensus à Grande Vitesse” (DGV). DGV is parameterized
by F , M and Q as well as by the underlying constellation considered (C1 vs. C2). The algorithm
constitutes an appealing building block to implement robust yet efficient distributed services on
the Internet. Basically, DGV allows very fast learning in Q-favorable runs, and, at the same time,
gracefully degrades to allow fast learning when the conditions are slightly less desirable, i.e., in
F -favorable runs. As DGV matches the lower bounds stated in our theorem, it is the first optimal
algorithm in terms of both time-complexity and resilience, in all runs in which the system is syn-
chronous, at most F acceptors fail and exactly one correct proposer proposes a value. Such favorable
runs constitute most of the runs encountered in the steady-state of various practical distributed
applications.

Intuitively, the privileged proposer commences the DGV by proposing a value. In every Q-
favorable (resp. F -favorable) run, correct learners learn the decision value in two (resp. three)
communication rounds, using acceptors as intermediators. If some correct learner does not learn a
value within a certain period of time, another proposer px is elected. This process tries to impose
its estimate of the decision value, based on the acceptors estimates up to that point of execution.

5



In DGV, it is guaranteed that if some decision value v was learned at time t, no proposer can
successfully impose a value other than v after time t. To achieve this, the value that acceptors
can indeed accept is carefully selected on the basis of the acceptors estimates up to that point of
the execution, such that no value that may have been learned is missed. In certain cases, potential
disputes on which value should be accepted may arise, but these are solved by detecting the existence
of the malicious acceptors that cause these disputes. DGV is composed of two parts: (1) a Locking
module and (2) an Election module. In short, the Locking module ensures consensus safety whereas
the Election module ensures consensus liveness under eventual synchrony assumption. The key
element of DGV is its choose() function, within the Locking module, that determines which value
should be accepted by an acceptor at a given point of execution. Variants of DGV are obtained
mainly by slightly changing the implementation of this function.

1.5 Roadmap

In Section 2 we discuss related work. In Section 3 we recall the consensus problem and we define
the model we consider in this paper. In Section 4 we show the necessary part of our consensus
theorem, by establishing and proving certain lower bounds, for both constellations (C1, followed by
C2). In Section 5 we give the algorithms that match these lower bounds, as variants of our generic
DGV algorithm.

2 Related Work

In the following, we first recall the historical context of asynchronous Byzantine consensus and its
solvability and complexity bounds. Later, we compare our DGV algorithm with previous Byzantine
consensus algorithms.

Solvability Bounds. Byzantine consensus was introduced by Pease, Shostak and Lamport [26] in
a synchronous model of distributed computation, where they established that more than two-
third of correct processes is necessary and sufficient to solve the problem if processes do not use
authentication. The same bound was extended in [4] to the asynchronous case, even if processes can
use authentication. In the general framework of [21], which we consider in this paper, this translates
into Na > 3F and M = F . In that framework, and for the more general case where M 6= F , it is
not very difficult to extend the proof of [4] and show that Na > 2F +M is a necessary and sufficient
condition to solve asynchronous Byzantine consensus [21].

Synchronous Complexity. In [8, 13], it was shown that any synchronous Byzantine consensus al-
gorithm needs t + 1 communication rounds to reach consensus, where t is the number of failures
tolerated. The bound is given considering the case where all processes must simultaneously reach a
decision. If the decision does not need to be reached simultaneously, then early decision is possible
and min(f +2, t+1) rounds are needed for deciding [9,17] in runs where f ≤ t processes are faulty.
These bounds depict worst case complexity.

Asynchronous Complexity. The model with arbitrarily long asynchronous periods, called the even-
tually synchronous model, was first introduced by Dwork, Lynch and Stockmeyer in [12] (as
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we mentioned in the introduction, algorithms in this model have been sometimes called asyn-
chronous [6, 21]). Clearly, there can be no worst-case lower bound for such algorithms. For asyn-
chronous algorithms with crash failures, it was established that f + 2 rounds are needed to achieve
consensus in synchronous runs with f failures [11].2

Best-Case Complexity. The above bounds were established in a restricted framework where all
processes play the same role. In [21], Lamport motivated the study of consensus complexity bounds
in the general framework with distinct proposers, acceptors and learners because of the ability of
this framework to better match the practical use of consensus within state machine replication
protocols [19,31]. He conjectured a fundamental tight bound on the maximum resilience to achieve
very fast learning in asynchronous Byzantine consensus. Recently, and concurrently with this paper,
Lamport proved his conjecture for non-Byzantine failures in [22]. Our theorem generalizes that
conjecture, which we thus prove for the Byzantine case as well. Our generalization goes in two
directions. First, we consider graceful degradation, i.e., the possibility of fast learning in a run
r, if very fast learning cannot be achieved in r. Second, we also consider the impact of using
authentication [30]. By doing so, we highlight the fact that Lamport’s conjecture [21] holds only if
very fast learning with authentication is precluded. In many systems, the use of authentication is
far more expensive than several rounds of communication [24,27]. It is thus of primary importance
to state the precise impact of authentication on the number of communication rounds needed to
achieve consensus.

Asynchronous Byzantine Consensus Algorithms. Certain Byzantine consensus algorithms are syn-
chronous (e.g., [28]), or assume that a subset of the system is synchronous [7]. The first asynchronous
Byzantine consensus algorithm was given by Castro and Liskov in [6]. The algorithm, called Practi-
cal Byzantine Fault Tolerance (PBFT), considered the special case where M = F and Na = 3F +1.
In PBFT, fast learning is achieved in synchronous runs where up to F = M acceptors are malicious
(i.e., what we call F -favorable runs in this paper), in which the leader is correct. Very fast learning,
which is possible in their setting for Q = 0, was not considered. Our DGV algorithm enables very
fast learning if the leader is correct, the run is synchronous and up to Q acceptors fail (i.e., in
Q-favorable runs). However, if Q′ acceptors fail, where Q < Q′ ≤ F , DGV degrades gracefully and
features the same complexity as PBFT (i.e., fast learning).

Modular Asynchronous Consensus Algorithms. A deconstruction of the Paxos algorithm, similar
to the decomposition of DGV we give in this paper, was given in [3] for the non-Byzantine case.
Our decomposition makes it possible to have a reusable Locking module (capturing consensus
safety properties), that can be combined with different Election algorithms (providing consensus
liveness), in the same vein as [10]. For instance, our Election module can easily be shifted to
the level of proposers or implemented by a deterministic scheduler. In comparison, in PBFT, the
techniques used for ensuring safety were incorporated into the liveness providing part (the leader
change algorithm). By introducing a pair of additional messages in certain (non-favorable) runs of
DGV which, by the way, do not critically degrade the performance of the algorithm in these runs,
we make the safety providing part of the algorithm (i.e., Locking module) independent from the
liveness providing part of the algorithm (i.e., Election module). In practical implementations, one
might of course consider removing these additional messages.
2 Notice that our lower bounds and algorithms consider the time-complexity in synchronous runs in which privileged

proposer is correct. If we make no assumptions on the correctness of privileged proposers, then some synchronous
runs might require f + 2 rounds to achieve consenus.
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Asynchronous Byzantine Consensus Algorithms with Very Fast Learning. A few asynchronous
Byzantine consensus algorithms in which very fast learning is achieved have been recently pro-
posed. Namely, Kursawe’s optimistic Byzantine Agreement [18], Martin and Alvisi’s FaB Paxos
(Fast Byzantine Paxos) [25], the oracle-based protocol by Friedman, Mostefaoui and Raynal [15],
and Lamport’s algorithm [23]. Kursawe’s algorithm considers the specific case of M = F and
Na = 3F + 1, and achieves very fast learning when no acceptor fails (Q = 0). It does not consider
graceful degradation to allow fast learning if some acceptor actually fails (which is feasible in this
case). Developed concurrently with this paper, Martin and Alvisi’s FaB Paxos algorithm is simple
and elegant: it considers constellation C1 and the case where M = F = Q, assuming the optimal
number of acceptors in this setting (Na = 5F +1), and achieves very fast learning despite F acceptor
failures. This algorithm does not match the lower bound in constellation C2, nor does it adapt to
the general case where M 6= F 6= Q, in constellation C1. The oracle-based randomized protocol by
Friedman et al. considers the case where M = F and Q = 0 in constellation C1, and achieves very
fast learning with Na = 5F +1 acceptors (more than it is required by our lower bound). Lamport’s
algorithm achieves very fast learning in constellation C1.

To summarize, while certain algorithms, for some special values of Q, for the special case where
M = F and in constellation C1 were suggested in the literature, our DGV algorithm is the first
generic one with respect to M , F and Q, that delivers optimal performance. Furthermore, even for
the special case where M = F , we are not aware of any solution that handles the case where Q 6= 0
in constellation C2. In this case, the optimal consensus resilience in constellation C2 is better than
that in constellation C1, which is particularly interesting. In addition, no algorithm is gracefully
degrading, i.e., no algorithms combines very fast and fast learning. Achieving both properties is not
trivial, especially when handling the general values of M , F and Q, and precluding authentication.

3 Preliminaries

In this paper we address the consensus problem, as defined in [21], in a distributed system composed
of three sets of processes: (1) the set of proposers Π = {p1, p2, ..., pNp}, (2) the set of acceptors
Γ = {a1, a2, ..., aNa}, and (3) the set of learners Λ = {l1, l2, ..., lNl

} [20, 21]. In this problem,
every proposer starts with a proposal value. Proposers may never propose a value, or may propose
several times. Learners need to learn the same proposal value. Acceptors act as witnesses to help
learners agree. On proposing a value, a proposer communicates with acceptors, and learners learn
a value on receiving appropriate messages from the acceptors. More precisely, in every run of
a consensus algorithm, only proposers propose values and learners learn values, such that the
following properties hold:

– (Validity:) If a learner learns a value v, then some proposer proposes v3;
– (Agreement:) No two learners learn different values;
– (Termination:) If a correct proposer proposes a value, then eventually, every correct learner

learns a value.

Processes may fail by arbitrarily deviating from the algorithm assigned to them. When a process
fails by crashing, i.e., simply stop its execution, we say that it has crashed, and if it deviates from
3 Our statement is imprecise for presentation simplicity. In fact, it is impossible to ensure that a malicious proposer,

on proposing a value, will not pretend that it has proposed a different value. A more precise definition of Validity
would be: if a learner l learns a value v in run r, then there is a run r′ (possibly different from r) such that some
proposer proposes v in r′, and l cannot distinguish r from r′.
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the algorithm in a way different from crashing, we say that it is malicious. We consider consensus
algorithms that provide safety properties, i.e., Validity and Agreement, despite at most M malicious
acceptors. In other words, safety properties of consensus are preserved regardless of the number of
acceptor that crashed, as long as the number of malicious acceptors is at most M . On the other
hand, consensus algorithms are required to provide liveness, i.e., Termination, only if the total
number of acceptor failures is at most F . In the case where M ≥ F , Validity and Agreement have
to be preserved in all runs in which at most M acceptors fail. However, Termination is guaranteed
only if the number of actual acceptor failures is at most F . Finally, any number of learners might
fail by crashing. As in [21], we assume that learners are not malicious.

Every pair of processes is connected by a bi-directional channel that may duplicate, delay or
lose messages, or may deliver them out of order. However, channels do not alter messages. We
assume that every message m that is sent is unique and has a m.sender field that is supposed to
contain a unique identifier of the sending process. We assume a computationally bounded adversary
as well as standard cryptographic techniques in the design of Byzantine consensus algorithms [6].
We consider public-key cryptography [30] (PKC), message authentication codes [33] and message
digests [29], where D(m) denotes a digest of the message m and 〈m〉σp denotes m, accompanied
by D(m) digitally signed by process p. PKC is usually considered pretty expensive [24, 27]. As
a consequence, and as pointed out in the introduction, we distinguish the case where processes
can always use PKC (we say use authentication), from the case where the processes can only use
authentication when fast (or very fast) learning was not achieved.

To circumvent the impossibility of fault-tolerant consensus in an asynchronous system [14], we
make the following eventual synchrony assumptions [12]: in any run, there is a bound ∆c and a
time GST (Global Stabilization Time), such that any message sent by a correct process to a correct
process at time t′ ≥ GST is received by time t′ + ∆c. Processes do not need to know the values of
∆c and GST . We also assume an upper bound ∆auth on the local computation time required for
authentication. We assume all other local computations to require negligible time.

Assume that every process starts consensus with some estimate of ∆c and ∆auth (the bounds on
message transmission delay and local computations). We say that a run of the consensus algorithm
is synchronous if: (1) all correct processes have the same estimates of ∆c and ∆auth, say δc and
δauth, respectively, (2) δc ≥ ∆c and δauth ≥ ∆auth, and (3) GST = 0. Roughly speaking, in a
synchronous run, no correct process times out waiting for messages from another correct process.

4 Lower Bounds

To precisely state the lower bounds underlying our theorem, we assume full information protocols
in a round-by-round eventually synchronous model [16]. In each round, the processes send messages
to all processes, receive messages in that round, update their states and move to the next round,
such that the following properties hold. Denote by alive(k) the set of processes that complete round
k. There is a round K such that for every round k′ ≥ K, every message sent by a correct process
in alive(k′) to another correct process in alive(k′) is delivered in round k′. A synchronous run is
then simply a run in which K = 1. In our lower bounds, we assume that there are always at least
two proposers and at least two learners.

First we prove the lower bounds for constellation C1. Recall that the system is in constellation
C1 if: (a) there is a single privileged proposer that is not an acceptor (constellation C1a), or (b)
there is more than one privileged proposer (regardless of whether they are also acceptors or not
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- constellation C1b). Then we will consider constellation C2, where there is a single privileged
proposer, that is also an acceptor.

4.1 Constellation C1

Consider the case with a single privileged proposer that is not an acceptor (constellation C1a).

Proposition L.1. Let A be an algorithm that achieves very fast learning despite the failure of Q
acceptors, such that Πpriv = {pl}, pl /∈ Γ . Then, Na > 2Q + F + 2M .

In more details, proposition L.1. states the following: Let A be an algorithm and let there be ex-
actly one proposer (pl) such that the following holds: in every Q-favorable run of A in which only
pl proposes and pl is correct, every correct learner learns the value proposed by pl by round 2. If pl

is not an acceptor, then Na > 2Q + F + 2M .

Proof L.1. Suppose by contradiction that Na ≤ 2Q + F + 2M . We divide the set of acceptors
into five sets, Q1, Q2, F1, M1 and M2, where the first two sets are of size at most Q, the third
set is of size at most F , and the last two sets are of size at most M , respectively. Without loss of
generality we assume that each of these five set consists of only one process. If a set has more than
one process, we simply modify the runs so that all processes inside a set receive the same set of
messages, and if they fail, they fail at the same time, in the same way; the proof also holds if any of
the bounds Q, F or M is 0. Assume there are two learners l1 and l2, and there are two proposers:
the privileged proposer pl, and proposer px.

Suppose pl is correct and proposes a value at the beginning of round 1. If a proposal value
is learned in round 2, then the only possible communication pattern is the following (remember
that on proposing a value, the proposer communicate with acceptors, and learners learn a message
on receiving appropriate messages from the acceptors): (Round 1) proposer pl sends messages to
all acceptors; (Round 2) every acceptor forwards the message received in the first round to every
process. Learners on receiving a sufficient number of messages from acceptors learn a value.

We only consider the cases where pl proposes 0 or 1 at the beginning or round 1 (as this is
sufficient to prove the lower bound). Let m1 and m0 be the authenticated messages, sent by pl in
round 1, when pl is correct and proposes 1 or 0, respectively. We say that an acceptor ai plays 1
(resp. 0) to some acceptor or learner qj in round k of some run r, if qj cannot distinguish at round
k, the run r from some run in which (1) ai has received m1 (resp. m0) from pl in the first round,
and (2) ai is correct. It is important to note that, due to the cryptographic assumptions we make,
ai can play 1 (or 0) only if ai has received m1 (resp. m0) from pl. (If pl is faulty then pl may send
m1 to ai even if pl proposed 0, and thus, ai may play 1.)

A Q-favorable partial run is a prefix of a Q-favorable run. From our assumption, in every Q-
favorable run in which only pl proposes, the correct learners learn the proposal value (of pl) by
round 2. Consider the following two Q-favorable partial runs, R1 and R2 (The message patterns of
the first two rounds of these runs are illustrated in Figure 2).

R1: All processes except l1 and Q1 are correct. Proposer pl proposes 1 in round 1, Q1 crashes
before sending any message in round 2, and learner l1 receives round 2 messages from all acceptors
except Q1. From our assumption on A, l1 learns 1 at the end of round 2, and then, l1 crashes before
sending any message in round 3.

10



Q1

pL

Q2

F1

M1

L1

M2

learn 1

propose(1)

(a) Run 1

Q1

pL

Q2

F1

M1

L1

M2

learn 0

propose(0)

(b) Run 2

Q1

pL

Q2

F1

M1

L1

M2

propose(0) by pX

(c) Run 3

Q1

pL

Q2

F1

M1

L1

M2

learn 1

propose(0) by pX

(d) Run 4

Q1

pL

Q2

F1

M1

L1

M2

propose(0) by pX

learn 0

(e) Run 5

 

 

Byzantine fault

Delayed message

Process crash

Learning a value

Sender plays 1

Sender plays 0 

(f) Legend

Fig. 2. Illustration of proof L.1: lower bound on very fast learning, constellation C1a - case with a single privileged
proposer that is not an acceptor
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R2: All processes except l1 and Q2 are correct. Proposer pl proposes 0 in round 1, Q2 crashes
before sending any message in round 2, and learner l1 receives round 2 messages from all acceptors
except Q2. From our assumption on A, l1 learns 0 at the end of round 2, and then, l1 crashes before
sending any message in round 3.

We now construct three runs that are not Q-favorable.

R3: All processes are correct except (1) the proposer pl, which is malicious, (2) acceptor F1, which
crashes before sending any message in round 2, and (3) l1 which crashes before sending any message
in round 3. In round 1, proposer pl sends m0 to the acceptors Q1 and M1, and m1 to the rest of
the acceptors. Acceptor F1 crashes such that no process receives round 2 message from F1, and l1
crashes such that no process receives any round 3 message from l1. From round 2, acceptors Q1

and M1 play 0 to all processes, and Q2 and M2 play 1 to all processes. In round 3, correct proposer
px proposes 0. Since a correct proposer proposes, eventually correct learner l2 learns some value
v ∈ {0, 1}, say at round K.

R4: All processes are correct except (1) the proposer pl and the acceptor M1, which are malicious,
and (2) learner l1 which crashes before sending any message in round 3. In round 1, proposer pl

sends m0 to acceptor Q1, both m1 and m0 to M1, and m1 to the rest of the acceptors. In round
2 and higher rounds, acceptor Q1 plays 0 to all processes, acceptors Q2, F1 and M2 play 1 to all
processes. However, malicious acceptor M1 plays 1 to learner l1 and plays 0 to all other processes.
(M1 can do so because it has received both m1 and m0.) Learner l1 receives round 2 message from
all acceptors except Q1. Clearly, at the end of round 2, l1 cannot distinguish R4 from R1 (because
it receives the same set of messages from the acceptors in round 2 of both runs), and hence, learns
1. Then learner l1 crashes before sending any message in round 3. In round 3, correct proposer px

proposes 0. Up to round K, all non-crashed (i.e., processes that are correct or malicious) processes
receive messages from all other non-crashed processes distinct from F1 (i.e., all messages sent by F1

are lost up to round K). At the end of round K, no correct process distinct from F1 can distinguish
R4 from R3 (because every non-crashed acceptor different from F1 plays identical values in both
runs), and hence, learner l2 learns v ∈ {0, 1} at round K. All non-crashed processes receive messages
from all other non-crashed processes (including F1) in rounds higher than K.

R5: All processes are correct except (1) the proposer pl and the acceptor M2, which are malicious,
and (2) learner l1 which crashes before sending any message in round 3. In round 1, proposer pl

sends m1 to acceptor Q2, both m1 and m0 to M2, and m0 to the rest of the acceptors. In round
2 and higher rounds, acceptor Q2 plays 1 to all processes, acceptors Q1, F1 and M1 play 0 to all
processes. However, malicious acceptor M2 plays 0 to learner l1 and plays 1 to all other processes.
(M2 can do so because it has received both m1 and m0.) Learner l1 receives round 2 message
from all acceptors except Q2. Clearly, at the end of round 2, l1 cannot distinguish R5 from R2
(because it receives the same set of messages from the acceptors in round 2 of both runs), and
hence, learns 0. Then learner l1 crashes before sending any message in round 3. In round 3, correct
proposer px proposes 0. Up to round K, all non-crashed processes receive messages from all other
non-crashed processes distinct from F1 (i.e., all messages sent by F1 are lost up to round K.) At
the end of round K, no correct process distinct from F1 can distinguish R5 from R3 (because every
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non-crashed acceptor different from F1 plays identical values in both runs), and hence, learner l2
learns v ∈ {0, 1} at round K. All non-crashed processes receive messages from all other non-crashed
processes (including F1) in rounds higher than K.

Clearly, either R4 or R5 violates consensus Agreement : l2 decides v in both runs, but l1 decides 1
in R4 and 0 in R5. However, in both runs, at most M acceptors are faulty: a contradiction with
the requirement that A does not violate Validity and Agreement if M processes are faulty. 2

Remarks (L.1). In round 3 of R3, the proposal by px is required to ensure that l2 decides in R3.
If px does not propose then the only (possible) proposal in the run is by the malicious proposer
pl, and hence, the Termination property does not require any learner to decide. Secondly, for ease
of presentation we state in the proof that pl sends two messages (m1 and m0) to M1 in round 1
of R4. In fact, pl may sends a single message such that M1 can recover both m1 and m0 from it.
Since both pl and M1 are malicious in R4, they collude to achieve this. (A similar argument holds
for messages from pl to M2 in round 1 of R5.)

Now we sketch the proof of the same bound in the case of constellation C1b, i.e. where there
are two (or more) privileged proposers. The proof is similar to proof L.1., however, it contains few
subtle differences that we point out in the sketch. We will refer to this proof as to proof L.2.

Proposition L.2. Let A be any algorithm that achieves very fast learning despite the failure of Q
acceptors, such that |Πpriv| > 1. Then, Na > 2Q + F + 2M .

In more details, proposition L.2. states the following: Let A be an algorithm and let there be at
least two proposers (pv and pw) such that the following holds: in every Q-favorable run of A in
which exactly one correct proposer out of pv and pw proposes, every correct learner learns a value
by round 2. Then Na > 2Q + F + 2M .

Proof L.2 (sketch). We split the proof into two cases: (a) where at least one of the proposers pv

and pw is not an acceptor and (b) where both pv and pw are also acceptors.
Consider the case (a). Without loss of generality, assume that pv is not an acceptor. The proof

of proposition L.2. is trivially obtained from the proof L.1. by having the proposer pv playing the
role of proposer pl, while proposer pw does not propose in runs R1-R5.

Consider now the case (b). We distinguish three exhaustive subcases with respect to the values
of parameters M and Q: (b.1) M > 0; (b.2) Q > 0, M = 0 and (b.3) M = Q = 0. Consider the
case (b.1), where M > 0. We modify the proof L.1. as follows. Each run in proof L.1., R1 to R5,
is modified to get five new runs, R1’ to R5’ (the message patterns of the first two rounds of these
runs are illustrated in Figure 3). To get run Ri’ from Ri (1 ≤ i ≤ 5), in round 1, we remove the
propose by proposer pl and add propose(1) by pv and propose(0) by pw, and we define m1′ to be
the message sent by pv (on proposing 1) and m0′ to be the message sent by pw (on proposing 0).
In all runs, sets M1 and M2 contain M − 1 acceptors each. In addition to proposing, pv (resp. pw)
acts in the same way as the acceptors that belong to the set M2 (resp. M1). In round 1 of Ri’, an
acceptor receives m1′ if it receives m1 in Ri (and similarly for m0′). (Thus M1 receives messages
from both pv and pw in round 1 of R4.) Acceptors play 1 on receiving m1′ and play 0 on receiving
m0′.
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Fig. 3. Illustration of proof L.2: lower bound on very fast learning, constellation C1b - case with two privileged
proposers/acceptors, M > 0
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Recall that, in R3’, we assume that all processes are correct, as in R3 of proof L.1. In addition,
in R3’ we assume that the remaining round 1 messages sent by pv and pw (and not delivered by
the end of round 1), are delivered at the end of round 2 (and similarly in runs R4’ and R5’). These
do not influence the correctness of the proof. The rest of the proof remains the same as proof L.1.4

Consider now the subcase (b.2), where Q > 0, M = 0. In this case the proof can be derived from
proof L.1. in similar fashion as in the case (b.1), except that now sets Q1 and Q2 would contain
Q − 1 acceptors each, and, in addition to proposing, pv (resp. pw) acts in the same way as the
acceptors that belong to the set Q2 (resp. Q1). Case (b.3) is not particularly interesting as in this
case the bound 2M + F + 2Q is strictly less than the consensus solvability bound 2F + M . 2

Now we prove the rest of part 1 of the theorem. This establishes the bound on the number of
acceptors required for gracefully degrading algorithms that achieve fast learning without authenti-
cation in constellation C1a (the proof can be migrated to constellation C1b in the similar way proof
L.2 is derived from proof L.1). We refer to this proof as proof L.3. Clearly, any gracefully degrading
algorithm that achieves fast learning without authentication has a restricted authentication pattern:

1. The messages sent from the privileged proposer to acceptors in round 1, and the messages sent
from the acceptors to the learners in round 2, may or may not be authenticated (we allow that
authentication can be used to achieve very fast learning), and

2. The messages exchanged among acceptors in round 2, and the messages sent from acceptors to
the learners in round 3, are not authenticated.

In this proof we use indistinguishability arguments, that exploit the fact that a malicious process
can claim that it received a different value from a correct process than the one the correct process
actually sent. This is possible, as we assume that the messages that are used for fast, but not for
very fast learning, are not authenticated. In addition, we exploit the asynchrony of the network
and the fact that malicious processes can cooperate.

Proposition L.3. Let A be any (Q,F ) gracefully degrading algorithm, that satisfies restricted
authentication pattern, such that Πpriv = {pl}, pl /∈ Γ . Then, Na > 2F + M + min(M,Q).

In more details, proposition L.3. states the following: Let A be an algorithm and let there be ex-
actly one proposer (pl) such that the following holds: in every Q-favorable run of A in which only
pl proposes and pl is correct, every correct learner learns the value proposed by pl by round 2.
If (a) pl is not an acceptor, (b) A satisfies the restricted authentication pattern and (c) in every
F -favorable run of A in which only pl proposes and pl is correct, every correct learner learns the
value proposed by pl by round 3, then Na > 2F + M + min(M,Q).

Proof L.3. First, we consider the case where M ≥ Q. Suppose, by contradiction, that Na ≤
2F + M + Q. We divide the set of acceptors into five sets, F1, F2, MQ1, Q1 and Q2, where the
first two sets are of size at most F , the third set is of size at most M − Q, and the last two sets
are of size at most Q. Without loss of generality, we assume that each of these five sets consists of
only one process. (If a set has more than one process, we just modify the runs so that all processes

4 We can however slightly simplify the proof L.2: proposer px may be removed. Recall that, in R3, proposal by
correct proposer px was introduced to ensure that l2 eventually learns a value. However, in R3′ both pv and pw

are correct and propose a value, and hence, even without the proposal of px, l2 is required to learn a value.
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inside a set receive the same set of messages, and if they fail, they fail at the same time, in the
same way. The proof also holds if any of Q, F or M −Q is 0.) We assume at least two learners, l1
and l2, and two proposers: the potentially malicious privileged proposer pl, and the proposer px.

We only consider the cases where pl proposes 0 or 1 (as this is sufficient to prove the lower
bound). Let m1 and m0 be the authenticated messages sent by pl in round 1, when pl is correct
and proposes 1 or 0, respectively. We say that an acceptor ai plays 1 (resp. (0) to some process
aj in round 2 of some run r if aj cannot distinguish, at round 2, run r from some run in which
(1) ai has received m1 (resp. m0) from pl in the first round, and (2) ai is correct. Furthermore, we
say that an acceptor ai plays a tuple (f1, f2,mq1, q1, q2) to some process aj in round 3 of some run
r if aj cannot distinguish, at round 3, the run r from some run in which (1) ai has received the
value f1 from F1, f2 from F2, mq1 from MQ1, q1 from Q1 and q2 from Q2 in round 2, and (2) ai is
correct. Here, ai receives a value xj (0 or 1) from Xj means that Xj played xj to ai in round 2 and
ai received this message during the round 2. If correct acceptor ai does not receive any message
from Xj in round 2, ai plays ′−′ in place of xj in round 3.

A Q-favorable partial run is a prefix of a Q-favorable run. Similarly, a F-favorable partial run
is a prefix of a F -favorable run. From our assumption, in every Q-favorable run in which only
the correct privileged proposer pl proposes, the correct learners learn the proposal value (of pl) by
round 2. Furthermore, in every F -favorable run in which only the correct privileged proposer pl

proposes, the correct learners learn the proposal value (of pl) by round 3. Keeping in mind that A
satisfies restricted authentication pattern, consider the following runs: a F -favorable partial run R1
and a Q-favorable partial run R2. (The patterns of the messages exchanged in the initial rounds of
runs are depicted in Figure 4.)

R1: All processes, except F1 and l1, are correct. Proposer pl proposes 1 in round 1, F1 crashes
before sending any message in round 2, and learner l1 receives round 3 messages from all acceptors,
except from F1. From our assumption on A, l1 learns 1 at the end of round 3, and then l1 crashes
before sending any message in round 4.

R2: All processes, except l1 and Q1, are correct. Proposer pl proposes 0 in round 1, Q1 crashes
before sending any message in round 2, and learner l1 receives round 2 messages from all acceptors,
except from Q1. From our assumption on A, l1 learns 0 at the end of round 2, and then, l1 crashes
before sending any message in round 3.

We now construct three non-favorable runs.

R3: All processes are correct except (1) the proposer pl, which is malicious, (2) acceptor F2, which
crashes after sending the round 3 message to l1, and (3) l1 which crashes before sending any message
in round 4. In round 1, the proposer sends m1 to the acceptors F2, MQ1, Q1 and Q2, and m0 to
F1. In round 2, messages sent from F2 to F1, MQ1 and Q1 and messages sent from F1 to F2 are
lost (this is possible as F2 crashes). All other messages of round 2 are delivered by the end of round
2, except for the message sent from F1 to Q2, that is delivered in round 3. Note that, in round
3, F1 plays (0,−, 1, 1, 1), F2 plays (−, 1, 1, 1, 1), MQ1 plays (0,-,1,1,1), Q1 plays (0,−, 1, 1, 1) and
Q2 plays (-,1,1,1,1). Note that, at the end of round 2, F2 and Q2 cannot distinguish R3 from R1,
so, in round 3 they send the same messages as in round 3 of run R1, including those they send to
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Fig. 4. Illustration of proof L.3: lower bound on gracefully degrading algorithms that use authentication to achieve
very fast learning, but do not use authentication to gracefully degrade to achieve fast learning - constellation C1a
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l1. Learner l1 crashes such that no process receive any round 4 message from l1. In round 4, the
correct proposer px proposes 0. Since a correct proposer proposes, eventually a correct learner l2
learns some value v ∈ {0, 1}, say at round K.

R4: All processes are correct except (1) the proposer pl and the acceptors MQ1 and Q1, which
are malicious, and (2) learner l1 which crashes before sending any message in round 4. In round
1, proposer pl sends m0 to acceptor F1, and m1 to F2, MQ1, Q1 and Q2. All messages in round
2 are delivered as in R3. From round 3 up to round K, all non-crashed processes receive messages
from all other non-crashed processes distinct from F2. Only round 3 message from F2 to l1 is de-
livered, and the delivery of all other messages sent by F2 up to round K, is delayed until round
K + 1. Furthermore, in round 3, malicious acceptors MQ1 and Q1 play (−, 1, 1, 1, 1) instead of
(0,−, 1, 1, 1) (as if they had received the same round 2 messages as in R1) to l1 (this is possible as
messages exchanged among acceptors in round 2 are not authenticated), and to all other processes
play according to the algorithm from that point on. Learner l1 upon receiving round 3 messages
from F2, (M −Q)1, Q1 and Q2, learns 1, as l1 cannot distinguish R4 from R1 (because l1 receives
the same set of messages from the acceptors in round 3 of both runs). Then learner l1 crashes before
sending any message in round 4. In round 4, the correct proposer px proposes 0. Up to round K,
all non-crashed processes receive messages from all other non-crashed processes distinct from F2

(i.e., all messages sent by F2 up to round K are delayed until round K + 1). At the end of round
K, no correct process can distinguish R4 from R3 (because every acceptor different from F2 plays
identical values in both runs). Hence, learner l2 learns v ∈ {0, 1} at round K. All correct processes
receive messages from all other correct processes (including F2) in rounds higher than K.

R5: All processes are correct except (1) the proposer pl and the acceptors MQ1 and Q2, which are
malicious, and (2) the learner l1 which crashes before sending any message in round 3. In round
1, proposer pl sends m1 to acceptor Q1, m0 to all other correct acceptors and both m0 and m1
to MQ1 and Q2. In round 2, acceptor Q1 plays 1 to all processes, acceptors F1 and F2 play 0 to
all processes. However, the malicious acceptors MQ1 and Q2 play 0 to learner l1 and play 1 to all
other processes. All round 2 messages are delivered as in R3. Furthermore, in round 3, Q2 plays
(−, 1, 1, 1, 1) and MQ1 plays (0,−, 1, 1, 1) (as per algorithm).5 Learner l1 receives round 2 message
from all acceptors except Q1. Clearly, at the end of round 2, l1 cannot distinguish R5 from R2
(because l1 receives the same set of messages from the acceptors in round 2 of both runs), and
hence, learns 0. Then learner l1 crashes before sending any message in round 3. In round 4, the
correct proposer px proposes 0. From round 3 up to round K, all non-crashed processes receive
messages from all other non-crashed processes distinct from F2 (i.e., all messages sent by F2 up to
round K are delayed until round K +1.) At the end of round K, no correct process can distinguish
R5 from R3 (because every acceptor different from F1 plays identical values in both runs), and
hence, learner l2 learns v ∈ {0, 1} at round K. All non-crashed processes receive messages from all
other non-crashed processes (including F2) in rounds higher than K.

5 The absence of authentication is exploited also in this point of the proof, where Q2 is allowed to play (−, 1, 1, 1, 1)
in round 3, although Q2 falsely claims that it received 1 from a correct acceptor F2 in round 2. If the messages
exchanged among acceptors were authenticated in round 2 this would not be possible.
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Clearly, either R4 or R5 violates Agreement : l2 decides v in both runs, but l1 decides 1 in R4
and 0 in R5. However, in both runs, at most M acceptors are malicious: a contradiction with the
requirement that A does not violate Validity and Agreement if M acceptors are malicious.

In the case where Q > M , again we divide the set of acceptors, this time into four sets F1 and
F2, of size at most F , and M1 and M2, of size at most M . To prove the lower bound in this case, we
can use similar runs we used in case where M ≥ Q, where acceptor M1 plays the role of acceptor
Q1 and M2 the role of Q2, and where acceptor MQ1 does not exist. 2

Now, we prove part 2 of the theorem, for constellation C2.

4.2 Constellation C2

First, we sketch the proof of the lower bound on the number of acceptors required for very fast
learning, even with authentication, in constellation C2. We refer to this proof as proof L.4.

Proposition L.4. Let A be any algorithm that achieves very fast learning despite the failure of Q
acceptors, such that Πpriv = {pl} ⊂ Γ . Then, Na > 2Q + F + 2M − 2.

In more details, proposition L.4. states the following: Let A be an algorithm and let there be ex-
actly one proposer (pl) such that the following holds: in every Q-favorable run of A in which only
pl proposes and pl is correct, every correct learner learns the value proposed by pl by round 2. If pl

is an acceptor, then Na > 2Q + F + 2M − 2.

Proof L.4 (sketch). The proof is again a simple modification of proof L.1. However, if we try to
directly apply that proof, since pl is now an acceptor, in run R4 (and R5) M + 1 acceptors are
faulty, and in run R3 F acceptors are crash-stop faulty and one acceptor is malicious. Hence, from
the property of A, Agreement need not hold in R4 and R5, and Termination need not hold in R3.
Consequently, we cannot show the desired contradiction. Thus we modify proof L.1, such that M1

and M2 have only M − 1 acceptors each, and F1 has F − 1 acceptors.
Suppose by contradiction that Na ≤ 2Q+F +2M −2. Then, we can divide the set of acceptors,

that are distinct from pl, into five sets, Q1, Q2, F1, M1 and M2, where the first two sets are of
size at most Q, the third set is of size at most F − 1, and the last two sets are of size at most
M−1, respectively. In the runs, pl acts as proposer, as well as an acceptor (sending messages to the
learner and other acceptors from round 2). For each run, in round 1, pl receives the same message
as processes in M1, and in higher rounds, plays the same value as the processes in M1. We continue
as in the proof of L.1 to obtain a contradiction. The diagrams depicting the runs are presented
in Figure 5. Notice that, since M1 and M2 are each of size at most M − 1, in runs R24 and R25
run at most M acceptors are faulty, and in run R23 at most F acceptors are faulty (pl being the
additional faulty acceptor). 2

Now, we prove another bound on the possibility of very fast learning in constellation C2, with
a restriction that authentication cannot be used for very fast learning. We refer to this proof as
proof L.5.

Proposition L.5. Let A be any algorithm that achieves very fast learning despite the failure of Q
acceptors without using authentication, such that Πpriv = {pl} ⊂ Γ . Then, Na > 2M + F + Q.
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Fig. 5. Illustration of proof L.4: lower bound on the possibility of very fast learning in constellation C2
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In more details, proposition L.5. states the following: Let A be an algorithm and let there be ex-
actly one proposer (pl) such that the following holds: in every Q-favorable run of A in which only pl

proposes and pl is correct, every correct learner learns the value proposed by pl by round 2, without
using authentication. If pl is an acceptor, then Na > 2M + F + Q.

Proof L.5. Suppose by contradiction that Na ≤ Q + F + 2M . Then, we can divide the set of
acceptors, that are distinct from pl, into four sets, Q1, F1, M1 and M2, where the first set is of size
at most Q, the second set is of size at most F −1, and the last two sets is of size M . In the following
we say that an acceptor ai plays 2 in a run if no process different from ai can distinguish this run
from some run in which ai does not receive any message in round 1. We now construct five partial
runs to derive a contradiction. The runs are depicted in Figure 6; we give short descriptions below.

R31 and R32: Runs R1 and R2 are Q-favorable partial runs in which correct proposer pl proposes
1 and 0 respectively, and l1 receives messages from all acceptors except Q1 in round 2. From the
property of A, it follows that l1 learns 1 and 0, respectively, at the end of round 2. Subsequently,
l1 crashes before sending any message in round 3.

R33: In run 3, every process except pl, l1 and F1 is correct. Malicious proposer pl sends m1 to M2,
m0 to M1, and does not send messages to F1 and Q1. F1 and pl crash before sending any message
in round 2. (Note that at most F acceptors crash.) From round 2, M1 plays 0, M2 plays 1, and Q1

plays 2. Proposer px proposes 0 in round 3. From the Termination property of A, it follows that
learner l2 decides some value v ∈ {0, 1}, say at round K.

R34: Every process except M1 and l1 are correct. Proposer pl proposes 1 and sends m1 to all
acceptors, of which, the message to Q1 is lost. From round 2 onwards, pl, M2 and F1 play 1 to all
processes, Q1 plays 2 to all processes, and malicious acceptor M1 plays 1 to l1 and 0 to all other
processes. At the end of round 2, l1 cannot distinguish R34 from R31, and hence, learns 1, and
then crashes before sending any message in round 3. Proposer px proposes 0 in round 3. However,
from round 3 to round K, all messages send by pl and F1 are lost. At the end of round K, learner
l2 cannot distinguish R34 from R33, and hence, learns v.

R35: This run is similar to R34, except that pl proposes 0, and instead of M1, M2 is malicious: it
plays 0 to l1 and plays 1 to all other processes. Learner l1 cannot distinguish R35 from R32, and
hence learns 0, and then crashes. As in R34, at the end of round K, l2 cannot distinguish R35 from
R33 and decides v.

Clearly, either R34 or R35 violates consensus Agreement : l2 decides v in both runs, but l1 decides
1 in R34 and 0 in R35. However, in both runs, at most M acceptors are faulty: a contradiction with
the requirement that A does not violate Validity and Agreement if M processes are faulty. 2

It is easy to see that runs R34 and R35 in proof L.5 cannot be constructed when authentication
is used in the first communication round (for very fast learning): M1 cannot play 1 as well as play 0
on receiving only message m1 from correct proposer pl (and similarly for M2 in R35). To circumvent
this problem in the presence of authentication, we need to assume that pl is malicious in R34 and
R35, and hence (to maintain the upper bound M on the number of malicious acceptors), M1 and
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Fig. 6. Illustration of proof L.5: lower bound on the possibility of very fast learning without authentication in
constellation C2
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M2 each contains M −1 acceptors. This gives us a lower bound of Q+F +2M −2 on Na. However,
this bound is strictly weaker than the bound Na > 2M + F + 2Q− 2, shown by proof L.4.

Finally we show how to modify proof L.3 to prove the rest of part 2 of the theorem, i.e., to prove
the bound on the number of acceptors required for gracefully degrading algorithms that achieve
fast learning without authentication (in addition to achieving very fast learning with or without
authentication) in constellation C2. We refer to this proof to proof L.6.

Proposition L.6. Let A be any (Q,F ) gracefully degrading algorithm, that satisfies restricted
authentication pattern, such that Πpriv = {pl} ⊂ Γ . Then, Na > 2F + M − 1 + min(M − 1, Q).

In more details, proposition L.6. states the following: Let A be an algorithm and let there be ex-
actly one proposer (pl) such that the following holds: in every Q-favorable run of A in which only pl

proposes and pl is correct, every correct learner learns the value proposed by pl by round 2. If (a)
pl is an acceptor, (b) A satisfies the restricted authentication pattern and (c) in every F -favorable
run of A in which only pl proposes and pl is correct, every correct learner learns the value proposed
by pl by round 3, then Na > 2F + M − 1 + min(M − 1, Q).

Proof L.6 (sketch). Basically, the proof relies on proof L.3 and we show how it can be reused in
constellation C2, in a similar way we reused proof L.1 in proof L.4. Namely, we use the runs similar
to runs R1-R5 of proof L.3; we only change the size of acceptors sets. Again, we distinguish two
cases: (1) the case where M ≥ Q + 1, and (2) the case where M < Q + 1. In the case (1), where
M ≥ Q + 1, we adapt proof L.3 in the following way: the size of the set F2 is now at most F − 1
(instead of at most F ) and the size of the set MQ1 is now at most M −Q− 1 (instead of at most
M − Q). Finally, one additional proposer/acceptor plays the roles of both the privileged proposer
pl and the acceptor that belongs to the set F2 in proof L.3.

In the case (2), where Q + 1 > M , again we divide the set of acceptors, this time into four
sets: F1, of size at most F , F2, of size at most F − 1, and M1 and M2, of size at most M − 1. To
prove the lower bound in this case, we can use similar runs we used in proof L.3, where acceptor
M1 plays the role of acceptor Q1 and M2 the role of Q2, and where acceptor MQ1 does not exist.
In addition, as in the case (1), where M ≥ Q + 1, one additional proposer/acceptor plays the roles
of both the privileged proposer pl and the acceptor that belongs to the set F2 in proof L.3. 2

5 The DGV Algorithm

To prove the sufficiency part of our theorem, we describe here algorithms that match our lower
bounds. Our algorithms are all variants of the same Byzantine consensus algorithm, which we call
the DGV algorithm.

In the following, we first detail one variant of the algorithm, denoted by DGVAlg.1, that matches
the lower bounds of part 1 of the theorem, for constellation C1 in the case of a single privileged
proposer (i.e., in what we call in Section 4 constellation C1a). In fact, the variant we consider here
also matches the interesting case of constellation C2, where all proposers are acceptors and authen-
tication is not used for very fast learning. Namely, we show that:

Proposition Alg.1. There is a consensus algorithm A that achieves very fast learning despite the
failure of Q acceptors without using authentication, in the case Πpriv = {pl}, pl /∈ Γ (i.e., in the
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case C1a of constellation C1), whenever Na > 2M + F + 2Q. This matches the bound established
by proposition L.1 from Section 4.

In addition, A is a gracefully degrading algorithm that:
(a) achieves fast learning using authentication when Na ≤ 2F + M + min(M,Q).
(b) achieves fast learning without using authentication when Na > 2F + M + min(M,Q). This

matches the bound established by proposition L.3 from Section 4.

Furthermore, DGVAlg.1 matches the lower bounds of our theorem in the special case of contel-
lation C2 where all proposers are also acceptors. In other words:

DGVAlg.1 also achieves very fast learning despite the failure of Q acceptors without using authen-
tication, in the case Πpriv = {pl},Π ⊂ Γ , whenever Na > max(2(M − 1) + F + 2Q, 2M + F + Q).
This matches the bound established by combining propositions L.4 and L.5 from Section 4.

In addition, in this case DGVAlg.1 gracefully degrades and:
(a) achieves fast learning using authentication when Na ≤ 2F + (M − 1) + min(M − 1, Q).
(b) achieves fast learning without using authentication when Na > 2F +(M−1)+min(M−1, Q).

This matches the bound established by proposition L.6 from Section 4.

This special case of constellation C2, where all proposers are acceptors, is of particular practical
interest in state-machine replication that uses multiple consensus instances. Basically, in DGVAlg.1,
in a single consensus instance consi, there is only one privileged proposer pl. However, roughly
speaking, if pl, for example, fails during consi and any other correct proposer px is elected as a
leader at time t, given that the run is synchronous after time t, px completes instance consi and at
the same time can be used as the privileged proposer in subsequent consensus instances (despite the
fact that the original privileged proposer pl failed). Later, in Section 5.7 we, interestingly, simplify
DGVAlg.1 to obtain the lower bound matching algorithms in the general case of constellation C2

(i.e., one that covers the cases where some proposer is not an acceptor).
In particular, DGVAlg.1 assumes Na ≥ max(2M + F + 2Q, 2F + M) + 1 acceptors (resp.

Na ≥ max(2(M−1)+F +2Q, 2F +M, 2M +F +Q)+1) in constellation C1 (resp. C2). It adaptively
uses authentication for graceful degradation if necessary, i.e., in case Na ≤ 2F + M + min(M,Q)
(resp. Na ≤ 2F + (M − 1) + min(M − 1, Q)) in constellation C1 (resp. C2); otherwise, it provides
graceful degradation without using authentication. As we discuss in the following, it is not difficult
to modify DGVAlg.1 to obtain an algorithm DGVAlg.2 that achieves the following:

Proposition Alg.2. There is a consensus algorithm A that achieves very fast learning despite the
failure of Q acceptors without using authentication, in the case |Πpriv| > 1 (i.e., the case C1b of
constellation C1), whenever Na > 2M +Q+2F . This matches the bound established by proposition
L.2 from Section 4.

In addition, A is a gracefully degrading algorithm that:
(a) achieves fast learning using authentication when Na ≤ 2F + M + min(M,Q),
(b) achieves fast learning without using authentication when Na > 2F + M + min(M,Q).

Basically, DGVAlg.2 matches the lower bounds of our theorem in the case of constellation C1 in
which there is more than one privileged proposer (i.e., what we call constellation C1b in Section 4).
Note that DGVAlg.1 and DGVAlg.2 jointly match the lower bounds in constellation C1 in general.
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We prove proposition Alg.1 (and show how proposition Alg.2 can be derived) by proving the
correctness of DGVAlg.1 in Section 5.6. Finally, in Section 5.7, we describe DGV variants that match
the lower bounds from part 2 of our theorem, in constellation C2 in general, and highlight how DGV
can be efficiently adapted to the special case where Q = F .

5.1 Overview

DGV is composed of two parts: (1) a Locking module and (2) an Election module. In short, the
Locking module ensures consensus safety whereas the Election module ensures consensus liveness
under eventual synchrony assumption. The key element of DGV is its choose() function, within the
Locking module, that determines which value should be accepted by an acceptor at a given point
in time. The pseudocodes of Locking and Election modules are given in Section 5.5, in Figures 9
and 10, respectively.

The algorithm proceeds in a sequence of views (Fig. 7). A view is a time frame in which some
pre-determined proposer is the leader. A leader is the only proposer whose messages are considered
by the acceptors within a view. DGV is based on the rotating coordinator paradigm [12], where
the leader of the view number w is pk, for k = w mod Np. The algorithm starts in the initial view,
InitV iew, which is a constant known to all processes (e.g., InitV iew = 0). Privileged proposer
pInit (where Init = 0 for Initview = 0), is the leader of InitV iew.

A view leader executes the Locking module of DGV, which consists of two phases: READ and
WRITE phase. Basically, the READ phase makes sure that, if any value was learned by some
learner in some previous view, it will be proposed in the new view. This is determined by the key
part of the READ phase, the choose() function. Since the algorithm starts in InitV iew, if pInit

proposes in the InitV iew, pInit skips the READ phase and executes only the WRITE phase. In
the WRITE phase, the leader tries to impose to learners its estimate of the decision value, with the
intermediation of acceptors. Basically, the WRITE phase allows very fast learning in Q-favorable
runs and at the same time provides graceful degradation, to allow fast learning in F -favorable runs.
In other words, if a correct privileged proposer pInit proposes at the very beginning of the algorithm,
it achieves very fast (resp. fast) learning in a Q-favorable (resp. F -favorable) run. If there is more
than one privileged proposer (proposition Alg.2), it is not difficult to obtain a variant of DGV where
we allow any privileged proposer (px) to achieve very fast (resp. fast) learning, provided that px is
the only proposer that actually proposes a value in a Q-favorable (resp. F -favorable) run. This is
done by setting InitV iew to −1 and by allowing acceptors to accept a value from any privileged
proposer px in InitV iew.

A view leader that is suspected of not making any progress is changed on the basis of timeouts
within the Election module of the algorithm. As soon as the acceptors initialize the algorithm, they
start a timer that is permanently stopped as soon as they hear from at least one correct learner
that it had learned a value. Otherwise, upon expiration of the timer, the acceptor suspects the
leader. If b(Na + M)/2 + 1c correct acceptors suspect the current leader, the leader is (eventually)
changed. The set of b(Na + M)/2 + 1c acceptors is a non-malicious majority set, i.e., every set of
size b(Na + M)/2 + 1c, for every run r, always contains a majority of non-malicious acceptors in
r.6

In the following, we describe the WRITE phase of the Locking module.

6 We prove this statement in Section 5.6 (Lemma 2).
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Fig. 7. Communication pattern and structure of DGV

5.2 WRITE Phase

In the first communication round, the leader sends the PRE-PREPARE message to all acceptors,
including the proposal value v and the view number w, together with the WriteProof , set of
authenticated messages that certifies the proposal value v. We come back to the generation of this
set in Section 5.4. For the time being, it is enough to assume that the acceptors can check the
validity of the WriteProof . In InitV iew, WriteProof = nil.

Every acceptor ai, if it is in view w, upon reception of the PRE-PREPARE message from the
leader with the valid WriteProof , adds the PRE-PREPARE message to its set Kai (for simplicity,
we say that: (a) ai pre-prepares v in w and (b) Kai := (v, w)). Acceptors pre-prepare a value at most
once in the particular view. Then, acceptors begin the second communication round by echoing the
PRE-PREPARE message to learners, within a PREPARE message, with the same value and the
view number. The Writeproof set does not have to be echoed. Furthermore, acceptors send the
PREPARE message, to all other acceptors. If Na ≤ 2F +M+min(M,Q) in the case of constellation
C1 or Na ≤ 2F +(M −1)+min(M −1, Q) in the case of constellation C2, the PREPARE messages
exchanged among the acceptors are authenticated.

Upon reception of Na − Q PREPARE messages from different acceptors, with the same value
v and view number w, a learner learns v. Upon reception of Na − F PREPARE messages from
different acceptors, with the same value v and view number w, that furthermore match the value
and the view number in Kai and the current view of the acceptor, acceptor ai adds these PREPARE
messages to its set Pai . For simplicity, we say that: (a) ai prepares v in w and (b) Pai := (v, w)
(when we say that ai accepts v in w, we mean that ai pre-prepares or prepares v in w). Then,
ai sends a COMMIT message (third communication round) containing v and w to all learners.
Upon reception of Na −F COMMIT messages with the same v and view number w from different
acceptors, learner learns v, unless it had already learned a value.

5.3 Changing Leader

Upon initialization, acceptors trigger the timer SuspectT imeout, that is initially equal to some value
InitT imeout, conveniently chosen with respect to the estimates of ∆c and ∆auth. If SuspectT imeout
expires, the acceptor suspects the current leader. If a sufficient number of acceptors suspect the
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current leader, then the leader is changed. Basically, the leader of the view is changed if it is faulty,
or if the run is not synchronous. This is done within the Election module of DGV.

When an acceptor suspects the leader, it sends the signed VIEW-CHANGE message to the
leader of the next view, doubles the SuspectT imeout and triggers it again. If the new leader is
not elected until the expiration of SuspectT imeout, the acceptors send signed VIEW-CHANGE
messages to the next leader, and so on. When some proposer pj receives b(Na + M)/2 + 1c VIEW-
CHANGE messages from different acceptors, with valid signatures and the same view number w,
such that w mod Np = j, pj becomes the leader (we say pj is elected). A leader uses a set of
received signed VIEW-CHANGE messages as the view proof (V iewProofw), the proof that it is a
legitimate leader of the view w. The new leader sends to all acceptors the NEW-VIEW message
containing the view number and the view proof. Upon reception of a valid NEW-VIEW message
for a higher view, an acceptor updates its view number and view proof, and updates the value for
future timeouts (line 17, Fig. 10). The values for SuspectT imeout are chosen in such way that all
acceptors trigger the same timeout value after sending a VIEW-CHANGE message for a particular
view number.

SuspectT imeout is stopped when the acceptor receives the confirmation from some learner that
it learned a value. When a learner learns a value v, it sends (periodically) the signed DECISION
message that contains a value v to all acceptors and learners (for presentation simplicity, we use
authenticated DECISION messages from learners, to enable acceptors to halt Locking and Election
modules. The authentication can be avoided in this case by using a variation of consistent broadcast
of [4], as we show in Appendix A). When an acceptor receives a DECISION message from some
learner, it stops permanently the SuspectT imeout and halts Locking and Election modules. Learn-
ers that do not learn a value for some time, start to periodically query acceptors for the DECISION
message, using DECISION-PULL message. Upon reception of such a query, an acceptor, if it has
received a signed DECISION message from some learner, forwards the DECISION message to all
learners. Upon reception of a correctly signed DECISION message that contains a value v, a learner
learns v if it did not already learn a value. Note that a learner can learn a value on the basis of a
DECISION message that is correctly signed by some learner, because learners are assumed not to
be malicious.

5.4 READ Phase and choose() function

Upon being elected, a new leader of view w, pw, sends a 〈NEW −V IEW, w, V iewProofw〉 message
to all acceptors, where V iewProofw is the proof, based on authenticated messages, that pw is a
legitimate, elected leader of w. Upon reception of the NEW-VIEW message for view w, sent by pw,
an acceptor ai, if it is in wai ≥ w, replies to pw with the signed NEW-VIEW-NACK message that
includes the valid proof, V iewProofwai

, of the fact that it is in wai ≥ w, (where V iewProofwai
, is

view proof ai received from the leader of wai).
Else, ai updates its view number (wai) to w, and its view proof (V iewProofwai

) to V iewProofw.
If Na−M−2F > M or PREPARE messages in the WRITE phase are authenticated, then ai replies
with the signed NEW-VIEW-ACK message, containing its sets Kai and Pai . Else, if Na−M−2F ≤
M and authentication is not used in WRITE phase, ai sends a 〈SIGN − REQ, vai , wai〉 message
to the set of acceptors from which ai received 〈PREPARE, vai , wai〉 messages from the set Pai

(when Na − M − 2F ≤ M , acceptors have to keep track of PREPARE messages they have sent).
Upon reception of SIGN-REQ message, acceptors respond with a signed SIGN-ACK message that
contains a signed PREPARE message corresponding to request SIGN-REQ if they have sent that
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PREPARE message. As liveness has to be guaranteed only if at most F acceptors fail, in this case,
a non-malicious acceptor ai is guaranteed to obtain Na − 2F ≥ M + 1 SIGN-ACK messages. The
acceptor ai includes the Na − 2F received signed SIGN-ACK messages in the NEW-VIEW-ACK
message that it sends to the leader of the new view. The pair (vai , wai) reported by Pai in the
NEW-VIEW-ACK message sent by ai is considered valid by the leader of the new view, only if it
is accompanied with a matching, valid set of Na− 2F signed SIGN-ACK messages. This technique
is a generalization of what is known as a “lazy” proof obtaining (LPO) technique [5].

Upon reception of Na − F valid NEW-VIEW-(N)ACK messages, if there is any valid NEW-
VIEW-NACK message, the leader updates its view number and aborts its current proposal. If the
leader did not receive any NEW-VIEW-NACK message, adds Na − F received NEW-VIEW-ACK
messages to the set WriteProof . We define the candidate values of the WriteProof in the following
way:

Definition 4 (Candidate values). We say that a value v is Candidate-2 or Candidate-3 value
in the set WriteProof , with the cardinalities S2

v and S3
v , respectively, if:

- (Candidate-2) S2
v ≥ Na − Q − M − F different Kai sets of NEW-VIEW-ACK messages in

the WriteProof contain the value v (Kai = (v, ∗)).
- (Candidate-3) S3

v ≥ Na − 2F −M different valid Pai sets of NEW-VIEW-ACK messages in
the WriteProof contain the value v, associated7 with the same view number w (Pai = (v, w)).

Finally, a new leader pw chooses the value that it is going to propose to acceptors using the
choose() function, which we give in Figure 8.

The function choose() has two input parameters: (1) v, the initial proposal value of pw and the
Writeproof , set of the Na−F valid NEW-VIEW-ACK messages for view w. The main idea behind
choose() is that, if a value v2 (resp. v3) was learned by some learner in some previous view w2 (resp.
w3) upon reception of Na−Q (resp. Na−F ) 〈PREPARE, v2, w2〉 (resp. 〈COMMIT, v2, w2〉) mes-
sages, then v2 (resp. v3) will certainly be the candidate-2 (resp. candidate-3) value in Writeproof
of view w (and every subsequent view). This is true as out of Na−Q (resp. Na−F ) acceptors that
sent the same PREPARE (resp. COMMIT ) message to learners, there are at least Na−Q−M −F
(resp. Na − 2F − M) non-malicious acceptors whose NEW-VIEW-ACK messages will be part of
the Writeproof .

However, it may happen that there are multiple candidate values in the Writeproof . We say
that the candidate-2 value v2 is associated with a view number view2, where view2 is the M + 1st

highest view number associated to v2 in Kai sets of the NEW-VIEW-ACK messages that belong
to the Writeproof . In addition, we say that the candidate-3 value v3 is associated with a view
number view3, if for at least Na − 2F −M valid Pai sets of the NEW-VIEW-ACK messages that
belong to the Writeproof Pai = (v3, view3). If there is more than one candidate value in the
Writeproof happens, a candidate value with the highest associated view number will be selected.
If there are multiple candidate values associated with the same (highest) view number, choose()
is finely tuned to always return a value that was learned in some previous view (if any), rather
than some other candidate value. For details on how this is obtained, we refer the reader to the
correctness proof of this DGV variant given in Section 5.6. In any case, if some value v was learned
by some learner in some previous view, choose() will never return a value different than v (to ensure
Agreement). Informally, when there is a dispute between two (or even more) candidate values with

7 We say that the view number w and the value v are associated if there is some set K∗ or P∗, such that Kai = (v, w)
or Pai = (v, w). Note that one value can be associated with multiple view numbers and vice versa.
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1:choose(v, WriteProof) returns(v, view) is {
2: view2, view3 := −1; v2, v3 := nil; flag := true
3: sort all (if any) candidate-3 values by their associated view no.; let w3 be the highest among those view no.
4: if ∃ a single candidate-3 value v′

3 associated with w3 then v3 := v′
3; view3 := w3

5: elseif ∃ more than one such a value then flag := false; abort
6: endif
7: if there is a single candidate-2 value v′ then v2 := v’;
8: elseif there are two candidate-2 values v′ and v′′ then
9: order sets K′

∗ and K′′
∗ , that contain v′ and v′′, respectively, by descending view numbers

10: let view′ and view′′ be the view numbers of M +1st highest view number associated to v′ and v′′, respectively.
11: if view′ > view′′ then v2 := v’ elseif view′′ > view′ then v2 := v”;
12: else % view’=view”
13: if NEW-VIEW-ACK sent by leader of view view′ = view′′ is in Writeproof then abort
14: elseif S2

v′ ≥ Na −Q− F −M + 1 then v2 := v′ elseif S2
v′′ ≥ Na −Q− F −M + 1 then v2 := v′′ endif

15: endif
16: endif
17: endif
18: if v2 6= nil then view2 := M + 1st highest view number associated to v2 in K∗ sets endif
19: if view2 > view3 then return(v2, view2) elseif view3 > view2 return(v3, view3) else
20: if view2 = view3 6= −1 and (v2 = v3 or (v2 6= v3 and S3

v3 > M ) or PREPARE messages authenticated)
21: then return(v3, view3)
22: elseif view2 = view3 6= −1 and v2 6= v3 and S3

v3 ≤ M and PREPARE messages not authenticated then
23: if system constellation is C1 then flag := false; abort
24: else % system constellation is the case of C2 (all proposers are also acceptors)
25: if NEW-VIEW-ACK sent by leader of view view2 = view3 is in Writeproof then abort
26: else case
27: ((S3

v3 ≥ Na −M − 2F + 1 and S2
v2 < Na −Q−M − F + 1) or S3

v3 = M): return(v3, view3)
28: (S3

v3 < Na −M − 2F + 1 and S2
v2 ≥ Na −Q−M − F + 1): return(v2, view2)

29: (M > S3
v3 ≥ Na −M − 2F + 1 and S2

v2 ≥ Na −Q−M − F + 1): flag := false; abort
30: endif
31: endif
32: endif
33: endif
34: return(v,⊥)
}

Fig. 8. Choose() function

29



the same associated view number w, where one of the candidate values was actually learned in some
previous view, either: (a) a leader of w was malicious (in case this proposer is also an acceptor),
or (b) the Writeproof contains malicious acceptors. In case (a), if the Writeproof contains the
message from the leader of w, choose() aborts. If this is not the case, we exploit the fact that one
malicious acceptor (leader of view w) is out of the Writeproof so we adapt our calculations with
respect to this (e.g., a candidate-2 value that was actually learned will have a cardinality of at
least Na −Q−M −F + 1 in the Writeproof , see lines 13-14, Fig. 8). In case (b), where malicious
acceptor is not necessarily the leader of the disputed view w, choose() aborts again.

When choose(v,Writeproof) aborts (lines 5, 13, 23, 25 and 29, Fig. 8), we are sure that the
Writeproof contains at least one malicious acceptor. Therefore, a new leader can wait for one
additional NEW-VIEW-ACK message (Na − F + 1st), when it invokes choose() on every possible
valid Writeproof , i.e. on every subset of received NEW-VIEW-ACK messages of size Na − F . If
choose aborts on every such subset, new leader waits for another NEW-VIEW-ACK message and
so on. Termination is guaranteed in presence of Na − F correct acceptors as choose() never aborts
when the Writeproof consists of NEW-VIEW-ACK messages sent only by the correct acceptors.

Upon finding a Writeproof for which choose() returns a value v, the new leader sends the PRE-
PREPARE message to all acceptors, in the same way as the leader of InitV iew, except that this
time WriteProof 6= nil. An acceptor checks the Writeproof (as mentioned in Section 5.2) using
the same choose() function and accepts the PRE-PREPARE message if the proposed value v can
be extracted from the WriteProof . Then the WRITE phase continues as described in Section 5.2.

5.5 Modularizing DGV

We distinguish two main parts of the DGV algorithm. One is the Locking part of the algorithm,
described in Figure 9, which consists of the READ and the WRITE phase. This part of the
algorithm captures the Safety properties of the algorithm - Validity and Agreement. The two phases
of the Locking part are explained in Section 5.

Note that at lines 34 and 37 in the Locking module (Fig. 9), in the WRITE phase, acceptors
and learners can wait for b(Na +M)/2+1c instead of Na−F PREPARE and COMMIT messages,
respectively, when the PREPARE messages exchanged among acceptors in the WRITE phase are
authenticated (line 32, Fig. 9. The set of b(Na + M)/2 + 1c acceptors is a non-malicious majority
set, i.e., every set of size b(Na + M)/2 + 1c, for every run r, always contains a majority of non-
malicious acceptors in r. This optimization of DGV makes it possible to have, in the described
case, fast learning in the synchronous run in which a privileged proposer is correct, despite the
failure of Na − b(Na + M)/2 + 1c ≥ F acceptors.

The second part of the algorithm is the Election module, which is described in Figure 10. The
Election module, under the assumption of an eventually synchronous system, provides liveness.
This part of the algorithm elects new leaders on the basis of timeouts.

In Figure 11 we give the simple wrap-up algorithm. Upon entering a view in which proposer pj

is a leader (this is done within a Election module of the algorithm, pj executes the Locking module
of the algorithm. We assume that privileged proposer proposes in the Initview due to an external
event. To achieve (very) fast learning privileged proposer should propose at the very beginning of
the algorithm.
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at every proposer pj:
propose(v,w, V iewProofw) is
1: WriteProof := nil
2: if (w 6= Initview) then
% READ phase
3: send to all acceptors 〈NEW − V IEW,w, V iewProofw〉
4: wait until reception of N − F valid signed

〈NEW − V IEW − (N)ACK,w, Kai , Pai , proofPai
, V iewProofwai

, wai〉 messages,
where ∀Kai = (∗, view < w) and ∀Pai = (∗, view < w)

5: WriteProof := set of Na − F received 〈NEW − V IEW − (N)ACK〉 messages
6: if received any valid 〈NEW − V IEW −NACK〉 message then
7: w := highest valid wai from WriteProof
8: V iewProofw := V iewProofwai

corresponding to view w
9: return
10: else choose(v, WriteProof) endif
11: end

% WRITE phase
12: send to all acceptors 〈PRE − PREPARE, v,w,WriteProof〉

at every acceptor aj:
% READ phase
13:upon reception of 〈NEW − V IEW,w, V iewProofw〉 from pi

14: if (waj < w) and (V iewProofw matches w) then
15: waj := w; V iewProofviewaj := V iewProofw

16: proofPaj
:= nil

17: if (2F + M + min(M, Q) < Na ≤ 2F + 2M in constellation C1) or
(2F + M − 1 + min(M − 1, Q) < Na ≤ 2F + 2M in constellation C2) then % LPO

18: send 〈SIGN −REQ, Paj .v, Paj .w〉 to all acceptors whose 〈PREPARE, v, w〉 message is in Paj

19: upon reception of Na − 2F signed 〈SIGN −ACK〉 messages that correspond to sent 〈SIGN −REQ〉
20: proofPaj

:= set of received signed 〈SIGN −ACK〉 messages
21: endif
22: send signed 〈NEW − V IEW −ACK,w, Kaj , Paj , proofPaj

, nil, nil〉 to pi

23: else
24: send signed 〈NEW − V IEW −NACK,w, nil, nil, nil, proofaj , waj 〉 to pi

25:upon reception of 〈SIGN −REQ, v, w〉 from ai % LPO
26: if 〈PREPARE, v, w〉 already sent then send 〈SIGN −ACK〈PREPARE, v, w〉σaj

〉 to ai endif

% WRITE phase
27:upon reception of 〈PRE − PREPARE, v,w,WriteProof, fresh〉 from pi, with a valid WriteProofw

28: if (waj = w) and (w mod Np = i) and 〈PRE − PREPARE, ∗,w, ∗, ∗〉 received for the 1st time and
((waj = InitV iew) or (v matches choose(v, WriteProof))) then

29: Kaj := received 〈PRE − PREPARE〉 message {Kaj := (v, w)}
30: m := 〈PREPARE, v,w〉
31: send m to all learners
32: if (Na ≤ 2F + M + min(M, Q) in constellation C1) or

(Na ≤ 2F + M − 1 + min(M − 1, Q) in constellation C2) then m := 〈m, 〈m〉σaj
〉

33: send m to all acceptors
34:upon reception of Na − F signed 〈〈PREPARE, v,w〉, . . .〉 matching Kaj , w = waj

35: Paj := set of received 〈PREPARE〉 messages {Paj := (v, w)}
36: send to all learners 〈COMMIT, v,w〉

at every learner lj:
37:upon reception of Na −Q 〈PREPARE, v,w〉 or Na − F 〈COMMIT, v,w〉 with the same v,w
38: if lj has not yet learned a value then learn(v) endif

Fig. 9. Pseudocode of the DGV Locking module
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at every learner lj :
1:upon learning a value v
2: periodically send signed 〈DECISION, v〉 to all acceptors and all other learners

3:upon reception of a valid signed 〈DECISION, v〉
4: if lj has not yet learned a value then learn(v) endif

5:upon value not learned
6: wait some preset time; send 〈DECISION − PULL〉 to all acceptors;

at every acceptor aj :
7:upon initialization
8: SuspectT imeout := InitT imeout
9: trigger(SuspectT imeout)

10:upon expiration of (SuspectT imeout)
11: SuspectT imeout := SuspectT imeout ∗ 2
12: NextV iewaj := NextV iewaj + 1; NextLeader = NextV iewaj mod Np

13: send to pNextLeader 〈V IEW − CHANGE, NextV iewj〉σaj

14: trigger(SuspectT imeout)

15:upon reception of a valid 〈NEW − V IEW,w, V iewProofw〉, such that w > waj ;
16: NextV iewaj := w
17: SuspectT imeout := InitT imeout ∗ 2w

18:upon reception of a valid 〈DECISION, v〉 from some learner;
19: stop(SuspectT imeout)

20:upon reception of a 〈DECISION − PULL〉 from some learner lj
21: if received a valid signed 〈DECISION, v〉 then
22: forward 〈DECISION, v〉 to lj
23: endif

at every proposer pj :
24:upon reception of b(Na + M)/2 + 1c signed 〈V IEW − CHANGE, NextV iewai〉 with the same NextV iewai

25: if (NextV iewai mod Np = j) and (NextV iewai > wpj ) then
26: V iewProofwpj

:= ∪ received signed 〈V IEW − CHANGE, NextV iewai〉
27: wpj := NextV iewi

28: send to all proposers signed 〈NEW − V IEW, wpj , V iewProofwpj
〉

29:upon reception of a valid signed 〈NEW − V IEW,w’, V iewProofw’〉, such that w′ > wpj

30: wpj := w’
31: V iewProofwpj

:= V iewProofw’

Fig. 10. Pseudocode of the DGV Election module

at every process PRj :
1: wPRj := InitV iew := NextV iewaj := 0 {Initialization}
2: V iewProofwP Rj

:= nil

3:upon(wpj mod Np = j) and (wpj 6= InitV iew)
4: propose(v, wpj , V iewProofwpj

) {propose() can be invoked also due to an external event}

Fig. 11. Pseudocode of the DGV Wrap-Up algorithm
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5.6 DGV Correctness

In this section, we prove the correctness of the DGV variation described in Section 5 (DGVAlg.1,
i.e., we prove proposition Alg.1. First, we give few definitions.

Definition 5 (Value learned in a view). We say that a value v is Learned-2 or Learned-3 in
view w, if there is a learner l that eventually learns a value by receiving (respectively):

– (Learned-2) 〈PREPARE, v, w〉 messages from Na −Q different acceptors.
– (Learned-3) 〈COMMIT, v, w〉 messages from Na − F different acceptors.

Definition 6 (Pre-prepares). We say that an acceptor ai pre-prepares a value v in view w,
if it eventually adds a 〈PRE − PREPARE, v, w, ∗, ∗〉 message to its Kai set, i.e., if eventually
Kai := (v, w) (line 29, Fig. 9).

Definition 7 (Prepares). We say that an acceptor ai prepares a value v in view w, if it eventually
adds a Na−F different signed 〈PREPARE, v, w〉 messages to its Pai set, i.e., if eventually Pai :=
(v, w) (line 35, Fig. 9).

Definition 8 (Accepts). We say that an acceptor ai accepts a value v in view w, if it pre-prepares
or prepares v in view w.

It is trivial to see that if a learner learns a value, it was Learned-2 or Learned-3 in some view.
Note that if non-malicious acceptor ai prepared a value v in view w, it follows that ai pre-prepared
a value v in view w.

We proceed with the correctness proof by proving two simple, yet crucial lemmas.

Lemma 1. Na − F ≥ b(Na + M)/2 + 1c.

Proof. Our algorithm assumes Na > 2F + M (general bound on solvability of consensus). If
Na = 2F + M + 1, then Na − F = F + M + 1, while b(Na + M)/2 + 1c = bF + M + 3/2c =
F + M + 1. Therefore, Na −F = b(Na + M)/2 + 1c. On the other hand, if Na > 2F + M + 1, then
Na ≥ 2F + M + 2 ⇒ 2Na − 2F ≥ Na + M + 2. As Na + M + 2 ≥ 2b(Na + M)/2 + 1c, we conclude
that Na − F ≥ b(Na + M)/2 + 1c.

Lemma 2. – (a) Two sets, A and B, each containing at least b(Na + M)/2 + 1c acceptors,
intersect in at least one non-malicious acceptor.

– (b) Set A of Na − F acceptors and set B of b(Na + M)/2 + 1c acceptors, intersect in at least
one non-malicious acceptor.

– (c) Two sets, A and B, each containing at least Na − F acceptors, intersect in at least one
non-malicious acceptor.

– (d) Set A of Na −Q different acceptors and set B of b(Na + M)/2 + 1c acceptors, intersect in
at least one non-malicious acceptor.

– (e) Set A of Na −Q different acceptors and set B of Na − F different acceptors intersect in at
least Na −Q−M − F non-malicious acceptors.

– (f) Every set of at least b(Na + M)/2 + 1c acceptors is a non-malicious majority.
– (g) Every set of at least Na −Q−M − F acceptors contains at least M + 1 acceptors.
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Proof. (a). From the inequality Na + M + 1 ≤ 2b(Na + M)/2 + 1c, it is obvious that A and B
intersect in at least M + 1 acceptors. As at most M acceptors are malicious, we conclude that A
and B intersect in at least one non-malicious acceptor.

(b),(c). Follow directly from Lemma 1 and part (a) of the lemma.

(d). Q ≤ F ⇒ Na − Q ≥ Na − F . Applying part (b) of the lemma, we conclude that A and B
intersect in at least one non-malicious acceptor.

(e). Sets A and B intersect in at least (Na − Q) + (Na − F ) − Na = Na − Q − F acceptors, out
of which are at most M malicious. Therefore, A and B intersect in at least Na − Q − M − F
non-malicious acceptors.

(f). Straightforward from part (a) of the lemma.

(g). In constellation C1: Na ≥ 2M + F + 2Q + 1 ⇒ Na −Q−M − F ≥ M + Q + 1 ≥ M + 1.
In constellation C2: Na ≥ 2M + F + Q + 1 ⇒ Na −Q−M − F ≥ M + 1.

Lemma 3. If two values v and v′ are Learned-2 in view w, then v = v′.

Proof. Suppose v 6= v′. From Def. 5, a set X of at least Na −Q acceptors sent 〈PREPARE, v, w〉
messages and a set Y of at least Na − Q acceptors sent 〈PREPARE, v′, w〉 messages. As sets X
and Y intersect in at least Na−2Q acceptors, out of which at least Na−2Q−M are non-malicious,
and Na ≥ 2Q + 2M + F + 1, we have Na − 2Q − M ≥ 1. That is, there exists a non-malicious
acceptor that has sent different PREPARE messages in the same view: a contradiction.

Lemma 4. If v is Learned-2 in view w, and a set of at least Na−F acceptors sent the 〈PREPARE, v′, w〉
message, then v = v′.

Proof. Suppose v 6= v′. From Def. 5, a set X of at least N − Q acceptors sent 〈PREPARE, v, w〉
messages in the view w. Let Y be the set of at least Na−F acceptors that sent 〈PREPARE, v′, w〉.
As sets X and Y intersect in at least one non-malicious acceptor ai (Lemma 2(d,g)), we conclude
that ai sent different PREPARE messages in the same view: a contradiction.

Lemma 5. If v is Learned-2 in view w, and v′ is Learned-3 in the same view w, then v = v′.

Proof. This Lemma is a simple corollary of the Lemma 4.

Lemma 6. If two values v and v′ are Learned-3 in view w, then v = v′.

Proof. Suppose v 6= v′. From Def. 5, a set X of at least Na − F acceptors sent 〈COMMIT, v, w〉
messages and a set Y of at least Na − F acceptors sent 〈COMMIT, v′, w〉 messages. As sets X
and Y intersect in at least one non-malicious acceptor ai (Lemma 2(c)), we conclude that ai sent
different COMMIT messages with the same view number: a contradiction.

Lemma 7. No two different values can be learned in the same view.

Proof. Follows directly from Lemmas 3, 5 and 6.
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Lemma 8. If choose(v,WriteProof) in view w′ returns (v, w) and v is a candidate value in
Writeproof , then at least one non-malicious acceptor ai pre-prepared the value v in a view higher
or equal to w.

Proof. Assume choose(v,Writeproof) in view w′ returns v, w where v is a candidate-3 value in the
Writeproof . From Definition 4, it follows that a set X of at least Na − 2F −M acceptors reported
a valid P∗ = (v, w). A P∗ set is valid if: (a) PREPARE messages exchanged among acceptors are
signed, (b) PREPARE messages are not signed, but P∗ is accompanied with a “lazy” proof of
Na − 2F signed SIGN-ACK messages (when Na ≤ 2F +2M) and (c) PREPARE messages are not
signed, but Na ≥ 2F + 2M + 1. We prove that in each of these three exhaustive cases, there is a
set Y of at least Na − F acceptors that sent 〈PREPARE, v, w〉 messages.
Case (a): P∗ sets reported by the acceptors from set X contain signed PREPARE messages from
Na −F acceptors. Applying Lemma 2(f) and Lemma 1, we conclude that a set Y contains at least
one non-malicious acceptor ai that pre-prepared v in view w.
Case (b): Every P∗ set is basically accompanied with Na − 2F signatures. As Na ≥ 2F + M + 1 ⇒
Na − 2F ≥ M + 1 we conclude that at least one of these signatures comes from a non-malicious
acceptor ai that pre-prepared v in view w.
Case (c): A cardinality of set X is S3

v ≥ Na − 2F −M ≥ M + 1, i.e., at least one of the P∗ sets is
reported by the non-malicious acceptor ai that pre-prepared v in view w.

Assume now that w is a candidate-2 value in the Writeproof . This implies (Definition 4) that
there exists a set X of at least Na − Q − M − F acceptors that reported that they pre-prepared
v, out of which a set Y of at least M + 1 acceptors pre-prepared v in the view higher or equal to
w (note that Lemma 2(g) implies that the set X contains at least M + 1 acceptors). As there are
at most M malicious acceptors, we conclude that the set Y contains at least one non-malicious
acceptor that pre-prepared the value v in a view higher or equal to w.

Lemma 9. (Validity) If a learner learns a value v, then some proposer proposed v.

Proof. If a learner learns v in w, v was pre-prepared by Na − Q > M acceptors or prepared by
Na − F > M acceptors in view w, i.e. at least one non-malicious acceptor accepted v in w.

We prove the following statement using induction on view numbers: if a non-malicious acceptor
accepts v, then v was some proposer proposed v.
Base Step: We prove that if a non-malicious acceptor accepted v in Initview, then some proposer
proposed v.

As non-malicious acceptors accept only values proposed by pInit, we conclude that v was pro-
posed by some proposer.

Remark: Again, we highlight that it is impossible to ensure that a malicious proposer PInit, on
proposing a value, will not pretend that it has proposed a different value. A more precise definition
of Validity would be: if a learner l learns a value v in run r, then there is a run r′ (possibly different)
such that some proposer proposes v in r′, and l cannot distinguish r from r′. Proof that corresponds
to this Validity definition follows the same footsteps as this proof.

Inductive Hypothesis (IH): For every view w, k > w ≤ Initview, if a non-malicious acceptor
accepted v in w, then some proposer proposed v.
Inductive Step: We prove the statement is true for the view k. In view k acceptor accept only values
returned by choose(∗,Writeproof), where Writeproof is valid. If choose(∗,Writeproof) returns
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a candidate value v, by Lemma 8, some non-malicious acceptor accepted v in view w,w < k, and
by IH, v was proposed by some proposer. If choose(∗,Writeproof) returns v in line 34, Figure 8,
then v is initial proposal value of the leader of k. We conclude (with the same remark as in the
Base Step) that v was proposed by some proposer.

Lemma 10. After sending a NEW-VIEW-ACK message for view w, a non-malicious acceptor
cannot accept a value v with view number w′ < w.

Proof. It is not difficult to see that this lemma holds, as non-malicious acceptor aj accept a value
v with view number w′ only if aj is in view lower or equal to w′. As aj already replied with a
NEW-VIEW-ACK message for view w > w′ and thus is in view waj ≥ w > w′, aj cannot accept v.

Lemma 11. If w is the lowest view number in which some value v is Learned-2, then no non-
malicious acceptor ai pre-prepares any value v′, v′ 6= v in any view higher than w.

Proof. We prove this lemma by induction on view numbers.
Base Step: First, we prove that no non-malicious acceptor ai can pre-prepare any value different
from v in view w + 1. A non-malicious acceptor ai in w + 1 pre-prepares a value v′ only if the
choose() function on the valid WriteProof of view w + 1 returns v′. Therefore, it is sufficient to
prove that for any valid Writeproof , choose(*,Writeproof) returns v.

Assume, without loss of generality, that v was Learned-2 by learner l in view w. Then (Def. 5, 6),
a set X of at least Na −Q acceptors pre-prepared v in w. As the valid WriteProof of view w + 1
consists of NEW-VIEW-ACK messages from a set Y of Na − F acceptors, there is a subset Z of
the set X ∩ Y , of cardinality SZ ≥ Na − Q − F − M , that contains only non-malicious acceptors
(Lemma 2(e)). By Lemma 10, every acceptor ai ∈ Z pre-prepared v in w, before replying with
the NEW-VIEW-ACK message to the leader of view w + 1. In the meantime, no acceptor from Z
pre-prepared any other value, as this would mean that it would be in the higher view then w + 1
when replying with NEW-VIEW-ACK for w + 1, which is impossible. Therefore, ∀ai ∈ Z, (Kai =
(v, w)) ∈ WriteProof . As SZ ≥ Na−Q−F −M , v is the candidate-2 value in Writeproof of view
w+1, with M +1st highest view number (that exists, as follows from Lemma 2(g)) equal to w. Note
that, in the case the size of Z equals Na−Q−F−M and v was Learned-2 by l in view w, then every
acceptor aj , out of F acceptors whose NEW-VIEW-ACK messages are not in the WriteProof , is
non-malicious and aj pre-prepared v in w, before aj replied with the NEW-VIEW-ACK for view
w + 1 (if aj replied to the NEW-VIEW message for view w + 1 at all).

If v is the only candidate-2 value in the WriteProof , then v2 := v (line 7, Fig. 8) and view2 := w
(line 18, Fig. 8).

If there is another candidate-2 value v′8 with its M + 1st view number view′ < w (chosen as in
lines 9-10, Fig. 8, again v2 := v and view2 := w (line 11, Fig. 8). As it is impossible that view′ > w
in the valid Writeproof of view w + 1 (line 4, Fig. 9), we now consider the case where view′ = w.
In this case, it is not difficult to see that the leader of view w is faulty. Indeed, there is a set of
at least Na − Q − F − M ≥ M + 1 acceptors (Lemma 2(g)) that accepted v in the view w, and
another set of at least M + 1 acceptors that accepted v′ in the view w, which implies that there
are two non-malicious acceptors which accepted different values in w, i.e., the leader of view w is
malicious. From the choose() function, if this case (view′ = w) occurs, the valid Writeproof does
not contain the NEW-VIEW-ACK message from the leader of view w (line 13 of Fig. 8). In this

8 This case is not possible in constellation C1.
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case, the size of the set Z is at least SZ = S2
v ≥ Na−Q−F −M +1, as we are sure that the NEW-

VIEW-ACK message from at least one malicious acceptor (the leader of view w) is not included
in the WriteProof . As there are no two non-intersecting subsets of size Na − Q − F − M + 1 in
the set of size Na − F (if Na − F ≥ 2(Na − Q − M − F + 1) then Na ≤ 2M + F + 2Q − 2, which
would contradict our assumptions on the number of acceptors), v2 := v at line 14, Fig. 8).

If there is no candidate-3 value v′, or if there is such a value with the associated view number
view′ < w, or if v′ = v, then choose() returns v, w (lines 19-20, Fig. 8). Again, it is not possible
that view′ > w, so we discuss the case where view′ = w and v′ 6= v. There are three exhaustive
possibilities: (a) PREPARE messages exchanged among acceptors are authenticated, (b) PREPARE
messages exchanged among acceptors are not authenticated and the cardinality of the candidate-3
value is S3

v′ ≥ M+1 and (c) PREPARE messages exchanged among acceptors are not authenticated
and S3 ≤ M .
In case (a), digital signatures from the sets P∗ that contain v′, certify that Na−F different acceptors
sent 〈PREPARE, v′, w〉 message. Due to Lemma 4, v′ = v, a contradiction.
In case (b), existence of at least M + 1 P∗ sets that contain v′, i.e., including at least one that is
sent by a non-malicious acceptor, certifies that Na−F different acceptors sent 〈PREPARE, v′, w〉
message. Similarly as in the case (a), we reach a contradiction.
Consider case (c). If constellation is C1, then the Writeproof is not valid (line 23, Fig. 8). Consider
now constellation C2. As in this case, P∗ sets are accompanied with “lazy” proofs, every valid Pai

set is certified with at least Na−2F ≥ M +1 signatures, including at least one signature from non-
malicious acceptor. In other words, there are two distinct non-malicious acceptors that accepted
different values in w, i.e., the leader of view w is malicious. From the choose() function, if this case
occurs, the valid Writeproof does not contain the NEW-VIEW-ACK message from the leader of
view w (lines 25, Fig. 8). In this case, the size of the set Z is at least SZ = S2

v ≥ Na−Q−F −M +1,
as we are sure that the NEW-VIEW-ACK message from at least one malicious acceptor (the leader
of view w) is not included in the WriteProof . Again, there are three exhaustive subcases: (1)
S3

v′ < Na − M − 2F + 1, (2) Na − M − 2F + 1 ≤ S3
v′ < M and (3) S3

v′ = M . In case (1), choose()
returns v (line 28, Fig. 8). In case (2), Writeproof is not valid (line 29, Fig. 8). In case (3), as there
are at most M − 1 messages in the Writeproof are from the malicious acceptors (as the message
from the malicious leader of view w is not in the Writeproof), one non-malicious acceptor ai sent
Pai that contains v′. Similarly as in the case (a), we conclude that, due to Lemma 4, v = v′ - a
contradiction.

Inductive Hypothesis (IH): Assume that no non-malicious acceptor ai can pre-prepare any value
different from v in any view from w + 1 to w + k. We prove that no non-malicious acceptor ai can
pre-prepare any value different from v in the view w + k + 1.

Inductive Step: Again, it is sufficient to prove that any choose() function on any valid Writeproof
of view w + k + 1 returns v. From Lemma 2(e), there is a set Z of size at least Na − Q − M − F ,
that contains only non-malicious acceptors, such that every acceptor in Z pre-prepared v in w
and its NEW-VIEW-ACK message is part of the WriteProof of view w + k + 1. In fact, as the
set Z contains only non-malicious acceptors, applying IH yields that ∀ai ∈ Z ∃wi ≥ w, (Kai =
(v, wi)) ∈ WriteProof . Therefore, v is the candidate-2 value and the M +1st highest view number
associated with v in Z is wv ≥ w. Therefore, choose(*, Writeproof) in view w + k + 1 can only
return a value with associated view number w′ ≥ w. The sets K∗ and P∗ in the valid WriteProof
of view w + k + 1 contain only values with associated view numbers up to w + k (line 4, Fig. 9).
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Let choose(*, Writeproof) return (v′, w′ ≤ w + k). If w′ > w, then v′ = v because, by IH a value
pre-prepared by any non-malicious acceptor in view w′, such that w < w′ ≤ w + k can be only v,
and by Lemma 8, in order for choose(*,WriteProof) to return (v′, w′), one non-malicious acceptor
must have pre-prepared v′ in w′. Now we consider the case where w′ = w = wv and v′ 6= v (it is
not difficult to see that v = v′ results in choose() returning v).

If v′ is another candidate-2 value, then we conclude that there exists one non-malicious acceptor
aj that accepted v′ 6= v in some view higher or equal to w (as w′ is the M +1st highest view number
associated to v′). From IH, we know that this view can not be higher than w, so we conclude that
aj accepted v′ in view w. As we know that every acceptor from the set Z accepted v in w and as
Z contains only non-malicious acceptors, we conclude that the leader of view w was malicious. In
this case, from the modified choose() function, the valid Writeproof does not contain the NEW-
VIEW-ACK message from the leader of view w (lines 13 of Fig. 8). In this case, the size of the set
Z is at least SZ = S2

v ≥ Na −Q−M − F + 1, as we are sure that the NEW-VIEW-ACK message
from at least one malicious process (the leader of view w) is outside the WriteProof . As there are
no two non-intersecting subsets of size Na −Q−M −F + 1 in the set of Na −F acceptors, v2 := v
(at line 14, Fig. 8).

Assume v′ 6= v is a candidate-3 value with associated view number w′ = w. Here we use the
same reasoning as in the Base step, which is repeated here for completeness. Again, there are three
exhaustive possibilities: (a) PREPARE messages exchanged among acceptors are authenticated,
(b) PREPARE messages exchanged among acceptors are not authenticated and the cardinality of
the candidate-3 value is S3

v′ ≥ M + 1 and (c) PREPARE messages exchanged among acceptors are
not authenticated and S3 ≤ M .
In case (a), digital signatures from the sets P∗ that contain v′, certify that Na−F different acceptors
sent 〈PREPARE, v′, w〉 message. Due to Lemma 4, v′ = v, a contradiction.
In case (b), existence of at least M + 1 P∗ sets that contain v′, i.e., including at least one that is
sent by a non-malicious acceptor, certifies that Na−F different acceptors sent 〈PREPARE, v′, w〉
message. Similarly as in the case (a), we reach a contradiction.
Consider case (c). If constellation is C1, then the Writeproof is not valid (line 23, Fig. 8). Consider
now constellation C2. As in this case, P∗ sets are accompanied with “lazy” proofs, every valid Pai

set is certified with at least Na−2F ≥ M +1 signatures, including at least one signature from non-
malicious acceptor. In other words, there are two distinct non-malicious acceptors that accepted
different values in w, i.e., the leader of view w is malicious. From the choose() function, if this case
occurs, the valid Writeproof does not contain the NEW-VIEW-ACK message from the leader of
view w (lines 25, Fig. 8). In this case, the size of the set Z is at least SZ = S2

v ≥ Na−Q−F −M +1,
as we are sure that the NEW-VIEW-ACK message from at least one malicious acceptor (the leader
of view w) is not included in the WriteProof . Again, there are three exhaustive subcases: (1)
S3

v′ < Na − M − 2F + 1, (2) Na − M − 2F + 1 ≤ S3
v′ < M and (3) S3

v′ = M . In case (1), choose()
returns v (line 28, Fig. 8). In case (2), Writeproof is not valid (line 29, Fig. 8). In case (3), as there
are at most M − 1 messages in the Writeproof are from the malicious acceptors (as the message
from the malicious leader of view w is not in the Writeproof), one non-malicious acceptor ai sent
Pai that contains v′. Similarly as in the case (a), we conclude that, due to Lemma 4, v = v′ - a
contradiction.

Lemma 12. If w is the lowest view number in which some value v is Learned-3, then no non-
malicious acceptor ai pre-prepares any value v′, v′ 6= v in any view higher than w.
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Proof. We prove this lemma by induction on view numbers.
Base Step: First, we prove that no non-malicious acceptor ai can pre-prepare any value different
from v in view w + 1. A non-malicious acceptor ai in w + 1 pre-prepares a value v′ only if the
choose() function on the valid WriteProof of view w + 1 returns v′. Therefore, it is sufficient to
prove that for any valid Writeproof , choose(*,Writeproof) returns v.

Assume, without loss of generality, that v was Learned-3 by learner l in view w. Then (Def. 5, 6),
a set X of at least Na − F acceptors pre-prepared v in w. As the valid WriteProof of view w + 1
consists of NEW-VIEW-ACK messages from a set Y of Na − F acceptors, there is a non-empty
subset Z of the set X∩Y (Lemma 2(c))that contains only non-malicious acceptors with cardinality
SZ = S3

v ≥ Na − 2F − M . By Lemma 10, every acceptor ai ∈ Z pre-prepared and prepared v in
w, before replying with the message NEW-VIEW-ACK to the leader of view w + 1. Therefore,
∀ai ∈ Z, (Pai = (v, w)) ∈ WriteProof , i.e. v is the candidate-3 value. In a valid Writeproof there
are no two candidate-3 values with the same view number (line 5, Fig. 8). As w is the highest view
number that can appear in the WriteProof of w + 1, it follows that the v3 := v, view3 = w at line
4, Figure 8.

Similarly there cannot be a candidate-2 value v′ 6= v, with M + 1st highest associated view
number w′ > w in the valid Writeproof of view w+1. Let v2 be the candidate-2 value selected by the
lines 7-17 of Figure 8, with associated view number view2 (line 18, Fig. 8). If there is no such a value,
or if view2 < w, or if v2 6= v, view2 = w and S3

v > M , or if PREPARE messages exchanged among
acceptors are authenticated, or if, finally, v2 = v, then choose(*,Writeproof) returns (v, w) (lines
19-21, Fig. 8). Now we consider the only possible case left, the case where: (a) PREPARE messages
exchanged among acceptors are not authenticated, (b) view2 = w, (c) v2 6= v and (d) SZ = S3

v ≤ M .
If system constellation is C1, then the Writeproof is not valid. Consider now constellation C2. As
in this case, P∗ sets are accompanied with “lazy” proofs, every valid Pai set is certified with at
least Na − 2F ≥ M + 1 signatures, including at least one signature from non-malicious acceptor.
Furthermore, as v2 is a candidate-2 value with associated view number view2 = w, there are at
least M + 1 (Lemma 2(g)) acceptors, out of which at least one is non-malicious, that accepted
v2 6= v in w. In other words, there are two distinct non-malicious acceptors that accepted different
values in w, i.e., the leader of view w is malicious. From the choose() function, if this case occurs,
the valid Writeproof does not contain the NEW-VIEW-ACK message from the leader of view w
(line 25, Fig. 8). In this case, the size of the set Z is at least SZ = S3

v ≥ Na − Q − F − M + 1, as
we are sure that the NEW-VIEW-ACK message from at least one malicious acceptor (the leader
of view w) is not included in the WriteProof . From the lines 27-29, Figure 8 it is not difficult to
see that, in this case, either choose(*,Writeproof) returns (v, w) (line 27), or the Writeproof is not
valid (line 29).
Inductive Hypothesis (IH): Assume that no non-malicious acceptor ai pre-prepares any value dif-
ferent from v in any view from w + 1 to w + k. We prove that no non-malicious acceptor ai can
pre-prepare any value different from v in view w + k + 1.

Inductive Step: Again, it is sufficient to prove that any valid Writeproof of view w+k+1 witnesses
v. As in the Base step, we can argue that there is a set Z containing at least SZ = S3

v ≥ Na− 2F −
M non-malicious acceptors that pre-prepared and prepared v in w and whose NEW-VIEW-ACK
message is part of the WriteProof of view w +k +1. The sets K∗ and P∗ in the valid WriteProof
of view w + k + 1 contain only values with associated view numbers up to w + k (line 4, Fig. 9).
Assume choose(∗,Writeproof) returns (v′, w′ ≤ w + k). If w′ > w then v′ = v because, by IH a
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value pre-prepared by any non-malicious acceptor in view w′, w < w′ ≤ w + k can be only v, and
by Lemma 8, in order for choose(∗,WriteProof) to return v′, w′, one non-malicious acceptor must
have pre-prepared v′ in a view higher or equal to w′. On the other hand, it is not possible that
w′ < w, as the presence of the messages sent by the acceptors from the set Z in the Writeproof
guarantees that v will be the candidate-3 value with an associated view number higher than or
equal to w. Therefore, choose(∗,WriteProof) will always return a value with the associated view
number w′ ≥ w. Finally, if w′ = w, we can use similar reasoning as in the Base Step and conclude
that there can not be more than one candidate-3 values with the associated view number w in the
valid WriteProof , nor some candidate-2 value v′ 6= v with associated view number w′ = w can be
selected before candidate-3 value v. Hence, we conclude that the choose(∗,WriteProof) returns v.

Lemma 13. If w is the lowest view number in which some value v is learned, then no non-malicious
acceptor ai pre-prepares any value v′ 6= v in any view higher than w.

Proof. Follows directly from Lemmas 7, 11 and 12.

Lemma 14. (Agreement) No two different values can be learned.

Proof. Follows from Lemma 13 and the fact that if some value v′ is learned in view w some non-
malicious acceptor pre-prepared v′ in w.

Lemma 14 proves Agreement.

To help prove liveness (i.e., the Termination property) and the show that DGV allows very
fast (resp. fast) learning, we identify three Weak Termination properties of the Locking part of our
algorithm.

– Very Fast Weak Termination (VFWT) If (a) run r is synchronous, (b) a correct privileged
proposer pk is the only proposer that proposes a value (for a sufficiently long time) in r and (c)
at most Q acceptors are faulty, then every correct learner learns a value in two communication
rounds.

– Fast Weak Termination (FWT) If (a) run r is synchronous, (b) a correct privileged proposer
pk is the only proposer that proposes a value (for a sufficiently long time) in r and (c) Q′,
where Q < Q′ ≤ F acceptors are faulty, then every correct learner learns a value in three
communication rounds.

– Eventual Weak Termination (EWT) If (a) run r is eventually synchronous, (b) a correct proposer
pk proposes a value at time t, after GST (t > GST ), with the highest view number out of all
proposals invoked up to time t, (c) no proposer proposes a value after t with a higher view
number (for a sufficiently long time) and (d) at most F acceptors are faulty, then every correct
learner eventually learns a value.

The notion of ”sufficiently long time” in the case of VFWT, means that no proposer other than
pk proposes before Na − Q correct acceptors receive the PRE-PREPARE message from pInit. In
the synchronous run in which up to Q acceptors are faulty, this time (∆c) is bounded and correctly
estimated by every acceptor. In the case of FWT, ”sufficiently long time” means that no proposer
other than pk proposes before Na − F correct acceptors receive the Na − F PREPARE messages
that correspond to PRE-PREPARE message sent by pInit. In the synchronous run in which up
to F acceptors are faulty, this time (2∆c) is bounded and correctly estimated by every acceptor.
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Finally, in the case of EWT, ”sufficiently long time” means that either no proposer proposes the
value before Na−Q correct acceptors receive the PRE-PREPARE message from the pk, or Na−F
correct acceptors receive each Na − F PREPARE messages corresponding to pk’s proposal.

Lemma 15. The Locking module, from Figure 9, satisfies Very Fast Weak Termination.

Proof. As the run is synchronous, correct acceptors receive the PRE-PREPARE message from the
correct privileged proposer within a known time period (i.e., ∆c). As no other proposer proposes
for a sufficiently long time, i.e. until Na − Q correct acceptors receive PRE-PREPARE message,
Na−Q correct acceptors pre-prepare leader’s proposal and send a PREPARE message to learners.
Again, as the run is synchronous, every correct learner receives Na−Q PREPARE messages within
2∆c after the value was proposed, when it learns a value,. Therefore, every correct learner learns a
value in two communication rounds after the correct proposer proposed a value.

Lemma 16. The Locking module, from Figure 9, satisfies Fast Weak Termination.

Proof. The proof is analogous to that of Lemma 15.

Using the VFWT property of the Locking part, we can prove that DGV provides very fast learning.

Lemma 17. DGV algorithm achieves very fast learning.

Proof. To prove this lemma, it is sufficient to prove that if the run is Q − favorable and the
privileged proposer pInit (p0) is correct and proposes a value, then all correct learners learn the
value proposed by pInit within two communication rounds.

To prove this, we recall the assumption that pInit proposes immediately after the initialization
of the algorithm. From line 2, Figure 9, we see that when the correct pInit proposes, it skips the
READ phase and directly sending the PRE-PREPARE message to the acceptors. As the run is
synchronous, all messages sent among correct processes are delivered within a correctly estimated
(by every correct process) bound on the message transmission delay (∆c). This guarantees that no
correct acceptor receives PRE-PREPARE message after ∆c and that the timers at acceptors are
set according to ∆c (i.e., no acceptor times out at t = ∆c). In other words, as the pInit proposes
immediately after initialization of the algorithm, no correct acceptor will suspect the leader at ∆c

and all correct acceptors will receive a PRE-PREPARE message before any other proposer proposes
(with a valid view proof), i.e., no other proposer proposes for a sufficiently long time. From the
V FWT property of the Locking module we conclude that all the correct learners learn a value
within two communication rounds, i.e., DGV achieves very fast learning.

Lemma 18. DGV is gracefully degrading algorithm.

Proof. To prove this lemma, it is sufficient to prove that in every F -favorable run in which privileged
proposer pInit (p0) is correct and proposes a value, every correct learner learns a value proposed by
pInit within three communication rounds. The proof is analogous to that of Lemma 17.

We proceed with few more lemmas to prove Termination.

Lemma 19. If a valid Writeproof consists only of NEW-VIEW-ACK messages sent by non-
malicious acceptors, choose(∗,Writeproof) never aborts.
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Proof. It is sufficient to prove that if choose(∗,Writeproof) aborts, then the Writeproof contains
a NEW-VIEW-ACK message from at least one malicious acceptor. First, consider the case where
choose(∗,Writeproof) aborts with flag = true (in lines 13 and 25, Figure 8). We consider the
following two exhaustive subcases:

Case (a): choose() aborts in line 13, as there are two candidate-2 values v′ and v′′ 6= v′ with the
same M +1st highest associated view number w and the leader of the view w is in the Writeproof .
Therefore, in Writeproof there are (at most) three acceptors: aw, the leader of the view w, ai, that
claims it received v′ from aw in view w, and aj , that claims that it received v′′ from aw in view w.
It is not difficult to see that at least one of these acceptors is malicious.

Case (b): choose() aborts in line 25, as there is a candidate-2 value v2 with the M + 1st highest
associated view number w, and a candidate-3 value v3 with the same associated view number w
and the leader of the view w is in the Writeproof . Similarly as in the case (a), in Writeproof
there are (at most) three acceptors: aw, the leader of the view w, ai, that claims it received v2 from
aw in view w, and aj , that claims it received v3 from aw in view w. It is not difficult to see that at
least one of these acceptors is malicious.

Consider now the case where choose(∗,Writeproof) function with flag = false (lines 5,23 and
29 of Fig. 8. We consider the following three exhaustive subcases:

Case (a): flag = false because there is more than one candidate-3 value (line 5). In this case, there
are two acceptors ai and aj that claim that a set A of Na − F acceptors accepted a value v and
a set B of Na − F acceptors accepted a value v′ 6= v in the same view w. As Na > 2F + M , the
sets A and B intersect in at least one non-malicious acceptor, so either acceptor ai or acceptor aj

is malicious.

Case (b): flag = false because there is a candidate-2 value v2 and a candidate-3 value v3, with the
same associated view number, such that v2 6= v3 and S3

v3
≤ M in constellation C1, where PREPARE

messages exchanged among acceptors are not authenticated (line 23). In this case, the bound on the
number of acceptors is Na ≥ 2F +M+Q+1, where M > Q (otherwise S3

v3
≥ Na−2F−M ≥ M+1).

In the WriteProof , there is a set A of at least Na −Q−M −F ≥ F +1 acceptors that claim they
accepted v2. Also, there is a set B of at least Na −M − 2F ≥ Q + 1 acceptors that claim that they
received (independently of each other) v3 from Na − F acceptors. Therefore, every acceptor from
the set B claims that some acceptor from A sent v3 to it. Obviously, there is at least one malicious
acceptor in the set A ∪B.

Case (c): flag = false because there is a candidate-2 value v2, with cardinality S2
v2
≥ Na − Q −

M−F +1 and a candidate-3 value v3, with cardinality S3
v3
≥ Na−M−2F +1 and M > S3

v3
, where

v2 and v3 6= v2 have the same associated view number w, in constellation C2, in the case PREPARE
messages exchanged among acceptors are not authenticated and the NEW-VIEW-ACK message
from the (malicious) leader of view w is not in the WriteProof (line 29). In this case, the bound
on the number of acceptors is Na ≥ 2F + M + Q, where M − 1 > Q (otherwise, if M − 1 ≤ Q,
Na ≥ 2F + 2M − 1 and S3

v3
≥ Na −M − 2F + 1 yields S3

v3
≥ M). In Writeproof , there is a set A

of at least Na −Q−M −F + 1 ≥ F + 1 acceptors that claim they accepted v2. Also, there is a set
B of at least Na −M − 2F + 1 ≥ Q + 1 acceptors that claim that they received (independently of
each other) v3 from Na − F acceptors. Therefore, every acceptor from the set B claims that some
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acceptor from A sent v3 to it. Obviously, there is at least one malicious acceptor in the set A ∪B.

For the EWT property of the Locking module to hold, malicious acceptors need to be prevented
from sending false, but valid NEW-VIEW-NACK messages. To satisfy this, it is sufficient to guar-
antee that no acceptor can have a valid view proof of the view number that has not been proposed.9

We call this property the No-Creation property of the view proofs.

Lemma 20. The Locking module, from Figure 9, satisfies Eventual Weak Termination, given that
the view proofs satisfy the No-Creation property.

Proof. As (a) the run is eventually synchronous, (b) a correct proposer pk proposes at time t after
GST , with a highest view number among all proposals up to t, (c) no proposer other than pk

proposes the value for a sufficiently long time, we conclude that Na − F correct acceptors receive
the NEW-VIEW message from pk, complete the LPO subprotocol (if necessary) and reply with the
NEW-VIEW-ACK message to pk which eventually receives all messages from correct acceptors.
By Lemma 19, the choose(vpk

,Writeproof) does not abort and returns v. Furthermore, as the
No-Creation property of the view proofs holds, no malicious acceptor can reply with a valid NEW-
VIEW-NACK message to pk. Therefore, pk sends the PRE-PREPARE message containing the
proposal value v. As no other process proposes until (a) Na − Q correct acceptors receive PRE-
PREPARE message from pk or (b) Na − F correct acceptors receive each Na − F PREPARE
messages, we conclude that (a) at least Na − Q PREPARE messages or (b) at least Na − F
COMMIT messages are sent to every correct learner. Note that Na −Q correct acceptors from the
case (a) might not exist, as only Na−F ≤ Na−Q correct acceptors are guaranteed to exist. If there
are more than Q acceptor failures, Na − F COMMIT messages will be sent as there are at least
Na − F correct acceptors which pre-prepare pk’s proposal and no proposer other than pk proposes
a value for a sufficiently long time. As the run is eventually synchronous and PREPARE messages
in case (a) and COMMIT messages in case (b) are sent after GST, eventually every correct learner
lj receives Na −Q PREPARE messages or Na −F COMMIT messages, and thus, lj learns a value
if it did not learn some value before. Therefore, eventually every correct learner learns a value.

Lemma 21. View proofs generated in the Election module of the DGV algorithm satisfy the No-
Creation property.

Proof. To prove this lemma, we show that the way the view proofs are generated (lines 13,24-26,
Fig. 10) together with Lemma 2(f), guarantee that no process other than the leader of the view
w can generate a valid V iewProofw before the leader of w received all signed VIEW-CHANGE
messages from correct acceptors contained in V iewProofw. Note that a valid V iewProofw contains
VIEW-CHANGE messages from b(Na + M)/2 + 1c acceptors, i.e. from at least a majority of non-
malicious acceptors (Lemma 2(f)) and non-malicious acceptors send the VIEW-CHANGE message
for a view w only to the leader of the view w. By lines 26-27 of Figure 10 and lines 3-4 of Fig 11,
a correct proposer pk, leader of view w, will immediately propose the value upon reception of
necessary VIEW-CHANGE messages, so no acceptor can receive the view proof for the view w,
V iewProofw, before pk proposes the value. On the other hand, a malicious proposer might not
follow the algorithm. Note that, however, it is safe to make the assumption that the malicious
leader of the view w, pB, proposed the value as soon as some other (malicious) process generated
9 Under the notion of proposing, we consider only propose() invocations with the valid view proofs.
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the valid V iewProofw. This is reasonable, as we can not distinguish the case in which pB does not
invoke propose() from the case in which pB invokes propose() with a valid view proof, but pB does
not send any protocol message. As pB must receive the signed VIEW-CHANGE messages sent by
non-malicious acceptors before any other process receives them, we can safely argue that, if pB

had followed the algorithm, it could have had proposed. Therefore, we say that pB proposed but
did not send any protocol message. Therefore view proofs that we use in our algorithm satisfy the
No-Creation property.

Now we prove the Termination property. This requires the correct learners to learn a value, if
a correct proposer proposes and at most F acceptors are faulty, under the assumption of the even-
tually synchronous system. Note also that immediately after the initialization of the algorithm,
correct acceptors trigger the SuspectT imeout timer. After triggering the SuspectT imeout, no cor-
rect acceptor will stop its timer permanently until it receives a DECISION message from at least
one learner.

Lemma 22. (Termination) If a correct proposer proposes a value, then eventually, every correct
learner learns a value.

Proof. Suppose there is a single, correct proposer pk that proposes at time t, after GST, with with
a highest view number w among all proposals invoked up to t. Let δ′ be the upper bound on the
time interval required for the execution of the following sequence of operations (after GST): the
last acceptor sends the VIEW-CHANGE message necessary for V iewProofw, pk checks the signa-
tures and generates the V iewProofw, pk sends NEW-VIEW message to acceptors, pk completes
successfully the READ phase (including the possible LPO), pk generates the WriteProof and
chooses proposal value, pk sends PRE-PREPARE messages, acceptors receive the proposal, check
the Writeproof and proposal value, send PREPARE messages to all learners and acceptors and,
finally, all correct acceptors prepare the pk’s proposal. As we assume that there is an upper bound
on the time required for every local computation related to authentication, ∆auth, and that there
is an upper bound ∆c on the message transmission delay after GST, such finite upper bound δ′

exists (actually, it is sufficient that δ′ > 7(∆c + ∆auth), as there are at most seven communication
rounds in the above described sequence of rounds, some of which involve local computations related
to authentication).

Suppose, by contradiction, that some correct learner never learns a value even if some correct
proposer proposes. We distinguish two cases: (a) when no correct acceptor receives a DECISION
message from any learner and (b) when some correct acceptor receives a DECISION message from
some learner.

We first consider case (a). First, we claim that, in this case, every correct acceptor goes through
an infinite number of views. Basically, we show that there will be an infinite number of new views
after GST, as the system is eventually synchronous.

Suppose that there is a finite number of views and let w be the highest view number among
them. Due to our assumption that no correct acceptor receives a DECISION message, no correct
acceptor stops its SuspectT imeout permanently. Therefore, SuspectT imeout keeps expiring and
being reset at every acceptor and, consequently, every correct acceptor issues VIEW-CHANGE
messages for an infinite number of views. As we assume that there are at least Na − F correct
acceptors, Na−F ≥ b(Na +M)/2+1c (Lemma 1) and as the messages among correct processes are
delivered in a timely manner after GST, there will be a view number w′ higher than w for which
some correct proposer sends a NEW-VIEW message. Therefore, every correct acceptor will accept
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the NEW-VIEW message for the view w′ unless it is already in the higher view than w′. In any
case, every correct acceptor will be in the higher view than w - a contradiction. Therefore, every
correct acceptor goes through an infinite number of views and the SuspectT imeout grows infinitely
at every correct acceptor.

Note that when an acceptor sends a VIEW-CHANGE message for a view w, it triggers a
timeout of duration InitT imeout ∗ 2w, where InitT imeout is the initial value of SuspectT imeout.
The value of InitT imeout is the same at every acceptor. Let tdelivery be the time at which all the
VIEW-CHANGE messages sent before GST that are not lost are delivered. The time tdelivery exists
as there is a finite number of VIEW-CHANGE messages sent before GST and as the messages that
are not lost are eventually delivered. Let t > max(GST, tdelivery) be the time where ∀ai ∈ C,wai >
dlog2(δ′/InitT imeout)e, where C is a set of correct acceptors. Let wmin = min{wai |ai ∈ C} and
NextV iewmax = max{NextV iewai |ai ∈ C} at time t. In other words, t is the time at which all
correct acceptors are in the view higher or equal to wmin, where InitT imeout ∗ 2wmin > δ′.

Let w be the lowest view number higher than NextV iewmax +1 in which some correct proposer
pk is the leader. As there is an infinite number of view changes, all correct acceptors will send a
VIEW CHANGE message for view w, at latest at tw = t + InitT imeout ∗ (2wmin+1 + . . . + 2w−1).
Furthermore, no correct acceptor will send any VIEW-CHANGE message for any view higher
than w before tw+1 = t + InitT imeout ∗ 2w. Note that for the time tw+1 − tw there will be no
proposer that proposes with a higher view number than the pk. Pk will propose at the latest right
after tw, when it receives b(Na + M)/2 + 1c VIEW-CHANGE messages. Note that tw+1 − tw =
InitT imeout ∗ (2wmin + . . . + 21 + 20 + 1) > InitT imeout ∗ 2wmin > δ′ Basically, pk will be the only
proposer that proposes a value for a period of time greater than δ′, with a highest view number of
all proposals up to tw. In other words, pk will propose at tw > GST , with a highest view number
up to tw, for a sufficiently long time. By the Eventual Weak Termination property of the Locking
module, every correct learner eventually decides - a contradiction.

Consider now the case (b) where some correct acceptor receives a DECISION message from
some learner. As a correct learner periodically sends a query to acceptors if it does not learn a value
and as, after GST, all messages sent among correct processes are delivered, a correct acceptor will
eventually forward a DECISION message to a correct learner that will thus learn a value.

As ai is correct and as after GST messages among correct processes are delivered within a
bounded of time, new leader can wait for additional NEW-VIEW-(N)ACK message if choose()
function detects a malicious acceptor within the WriteProof . After the reception of an additional
message the new leader invokes choose() function on every subset of size Na − F of the set of
received NEW-VIEW-ACK messages (e.g., in a set of Na − F + 1 NEW-VIEW-ACK messages,
there are Na−F +1 subsets of size Na−F ). If every choose() invocation aborts with flag = false
on every subset of received NEW-VIEW-ACK messages of size Na−F , the leader waits for another
NEW-VIEW-ACK message and so on.

5.7 DGV variants

First, we give the DGV variants that match the lower bounds for constellation C2. This is followed
by discussing DGV optimization in a special case of parameter values, namely Q = F .

Constellation C2. As we pointed out earlier the DGV variation DGVAlg.1 addressed a special case
of constellation C2, where all proposers are also acceptors and where authentication is not used for
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very fast learning. This variant is optimized for using in the state-machine replication in a model
where there can be more than one privileged proposer that is also an acceptor, but, for a single
consensus instance, there is only one privileged proposer/acceptor. However, to give a generic lower
bound matching solution for constellation C2 (part 2 of the theorem), we need to modify DGVAlg.1.
First, we give the general solution for constellation C2 in the case authentication is not used for
very fast learning. Namely we show that:

Proposition Alg.3. There is a consensus algorithm A that achieves very fast learning despite
the failure of Q acceptors without using authentication, in the case Πpriv = {pl} ⊂ Γ (i.e., in
constellation C2), whenever Na > max(2(M − 1) + F + 2Q, 2M + Q + F ). This matches the bound
established by combining propositions L.4 and L.5 from Section 4.

In addition, A is a gracefully degrading algorithm that:
(a) achieves fast learning using authentication when Na ≤ 2F + (M − 1) + min(M − 1, Q),
(b) achieves fast learning without using authentication when Na > 2F +(M−1)+min(M−1, Q).

This matches the bound established by proposition L.6 from Section 4.

Interestingly, to prove proposition Alg.3, we simplify the DGVAlg.1 in a way that we use very
fast learning techniques only in Initview. Namely,

1. Acceptors do not send PREPARE messages to learners in any view other than Initview.
2. Acceptors do not modify their Kai sets in a view other than InitV iew.

The rest of the algorithm stays the same (performance optimizations are possible). Practically,
these small changes significantly simplify the DGV variation DGVAlg.1 and, especially, its proof.
Basically, solving potential disputes among candidate values becomes a lot easier whenever there
is a candidate (namely candidate-3) value with associated view number higher than Initview).

Now we match the lower bound from part 2 of the theorem in the case authentication is used
in very fast learning. Namely we show that:

Proposition Alg.4. There is a consensus algorithm A that achieves very fast learning despite the
failure of Q acceptors (using authentication), in the case Πpriv = {pl} ⊂ Γ (i.e., in constellation
C2) whenever Na > 2(M − 1) + F + 2Q. This matches the bound established by proposition L.4
from Section 4.

To prove proposition Alg.4, we need to introduce two additional changes to DGVAlg.1. Namely,
in addition to changes (1) and (2), i.e., not using very fast learning techniques in any view other
than Initview, we introduce the following modifications:

– Privileged proposer pl = pInit authenticates (signs) its PRE-PREPARE message in Initview.
– We simplify and somewhat modify the choose() function.

Note that for simplicity, we give a variant of DGV that satisfies proposition Alg.4, but does not
gracefully degrade. The DGVAlg.4 variant that allows graceful degradation, both with and without
using authenticated messages for (very) fast learning (with respect to the number of available ac-
ceptors) can be obtained by merging the original DGVAlg.1 choose() function we gave in Section 5.4
in Figure 8 with the variant of choose() function we give below.

46



The choose() function for DGVAlg.4 variant is given in Figure 12. Note that this special variant
of DGV assumes Na > max(2F + M, 2(M − 1) + F + 2Q). This special case is interesting only in
the cases where Q = 0, 1, as for Q ≥ 2, 2(M − 1) + F + 2Q > 2M + F + Q and, according to part 2
of the lower bound theorem, DGV variant that does not use authentication for very fast learning
(i.e., DGVAlg.3) is feasible.

1: choose(v, WriteProof) returns(v, view) is {
2: view2, view3 := −1; v2, v3 := nil

3: sort all (if any) candidate-3 values by their associated view no.; let w3 be the highest among those view no.
4: if ∃ a candidate-3 value v′

3 associated with w3 then v3 := v′
3; view3 := w3 endif

5: if there is a single candidate-2 value v′ then v2 := v’;
6: elseif there are two candidate-2 values v′ and v′′ then
7: if NEW-VIEW-ACK sent by the privileged proposer pInit is in Writeproof then abort
8: elseif S2

v′ ≥ Na −Q− F −M + 1 then v2 := v′ elseif S2
v′′ ≥ Na −Q− F −M + 1 then v2 := v′′

9: endif
10: endif
11: if v2 6= nil then view2 := Initview endif

12: if view2 > view3 then return(v2, view2) elseif view3 > view2 return(v3, view3) else return(v,⊥) endif

Fig. 12. DGVAlg.4: Constellation C2, matching the lower bound when authentication is used for very fast learning -
choose() function

We sketch the correctness proof for the DGVAlg.4 variant. If the value was learned in Initview
it will be reported by Na − Q − M − F acceptors in any WriteProof . First, as the inequality
Na −Q−M − F ≥ M + 1 does not hold in this case, we need to show that Na −Q−M − F > 0.
From Na > max(2F +M, 2(M −1)+F +2Q), we have Na−Q−M −F > max(F −Q,M +Q−2).
As F ≥ Q, we conclude Na −Q−M − F > 0. Therefore, if a value was learned in Initview it will
certainly be a candidate-2 value in every Writeproof as at least Na − Q − M − F acceptors will
report it and non-malicious acceptors do not change their Kai set in any view w > Initview. If the
value v is learned in w > Initview we can use the similar reasoning as in Lemma 12, Section 5.6
to conclude that every choose(∗,Writeproof) in any view w′ > w must return v. It is also not
difficult to see that if the value is learned in view w > Initview it was accepted by at least one
non-malicious acceptor in w. However, this is not true for Initview.

Therefore, we show that if v was learned in Initview non-malicious acceptors accept only v in
every w > Initview. The proof uses induction on view numbers, but we prove here only the Base
Step. If v is the only candidate-2 value in Writeproof of Initview +1 than choose(∗,Writeproof)
returns v. If there is another candidate-2 value, obviously privileged proposer pInit is malicious
and the valid Writeproof does not contain a message sent by pInit. Therefore, in this case, in
valid Writeproof S2

v ≥ Na − Q − M − F + 1 and as there cannot be two candidate-2 values with
cardinalities of at least Na −Q−M − F + 1 (as this would contradict Na > 2(M − 1) + F + 2Q),
choose(∗,Writeproof) returns v. Therefore, Agreement cannot be violated.

One may argue that Validity can be violated as a set of malicious acceptors can make up a
(single) candidate-2 value from a ”thin“ air. However, this is not the case. To see this, consider the
case where pInit is not malicious. In this case, as pInit authenticates the PRE-PREPARE message,
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malicious acceptors cannot forge this signature and, therefore, cannot make up a candidate-2 value.
On the other hand if pInit is malicious, any value that malicious acceptors can make up, pInit could
have had proposed, without non-malicious acceptors distinguishing these cases.

Q=F. When Q = F , fast learning does not provide any additional guarantees with respect to the
very fast learning. Therefore, in every WRITE phase of any DGV variant PREPARE messages
exchanged among acceptors in Initview are not necessary. In the case of DGV variants DGVAlg.1

and DGVAlg.2, this extends to WRITE phase in every view. The algorithm becomes much simpler
as the WRITE phase of the Locking module consists always of only 2 communication rounds,
regardless of the other algorithm parameters, namely M and F .

Acknowledgements

We are very grateful to Lorenzo Alvisi, Gildas Avoine, Leslie Lamport, Jean-Philippe Martin and
Piotr Zielinski for their very helpful comments.

References

1. Marcos Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam Toueg. Consensus with Byzantine failures
and little system synchrony. Technical Report 2004-008, Université Denis Diderot, Laboratoire d’Informatique
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consensus. DI/FCUL TR 03–25, Department of Informatics, University of Lisbon, August 2003.
8. D. Dolev and H.R. Strong. Authenticated algorithms for Byzantine agreement. SIAM Journal on Computing,

12(4):656–666, 1983.
9. Danny Dolev, Ruediger Reischuk, and H. Raymond Strong. Early stopping in Byzantine agreement. Journal of

the ACM, 37(4):720–741, 1990.
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A Removing authentication from DECISION messages

In Section 5.3, we argued that the signing of the DECISION message that learners send upon
learning a value can be avoided. A DECISION message permanently stops the SuspectT imeout,
and, thus, the Election at an acceptor module. The idea is to use the generalized consistent broad-
cast (GCB) subroutine [1, 4]. GCB has three primitives: (1) gcBcast(v), (2) gcDeliver(v) and (3)
gcWeakDeliver(v). GCB has the following properties:

– (Validity) If a correct learner gcBcasts v, then all correct acceptors gcDeliver v.
– (No Creation) If some learner gcWeakDelivers v, then v was gcBcasted by some learner.
– (Relay) If a correct acceptor gcDelivers v, then all correct acceptors eventually gcDeliver v.
– (Priority) If a correct acceptor gcDelivers v, then all correct learners eventually gcWeakDeliver

v.

Implementation of the general consistent broadcast is given in Figure 13. It is slightly modified
(generalized with respect to M and F and constellation where learners and acceptors are distinct)
from the implementation of [1]. Every message sent within the GCB subroutine is retransmitted
periodically, to circumvent our assumption on unreliable channels, i.e., to implement virtual reliable
channels.

at every learner lj :
1: to gcBcast(v):
2: send 〈INIT, v〉 to all acceptors

3: upon reception of 〈READY, v〉 from M + 1 different acceptors
4: if no value already gcWeakDelivered then gcWeakDeliver(v)

at every acceptor aj :
5: upon reception of 〈INIT, v〉 from some learner
6: if no 〈ECHO, ∗〉 message already sent then send 〈ECHO, v〉 to all acceptors

7: upon reception of 〈ECHO, v〉 from b(Na + M)/2 + 1c different acceptors
8: if no 〈ECHO, ∗〉 message already sent then send 〈ECHO, v〉 to all acceptors
9: if no 〈READY, ∗〉 message already sent then send 〈READY, v〉 to all acceptors and learners

10: upon reception of 〈READY, v〉 from M + 1 different acceptors
11: if no 〈ECHO, ∗〉 message already sent then send 〈ECHO, v〉 to all acceptors
12: if no 〈READY, ∗〉 message already sent then send 〈READY, v〉 to all acceptors and learners

13: upon reception of 〈READY, v〉 from Na − F different acceptors
14: if no value already gcDelivered then gcDeliver(v)

Fig. 13. Implementation of a Generalized Consistent Broadcast

Having the implementation of GCB, Election module is modified to have every learner lj gcBcast
a value v, once lj learns v and, furthermore to have lj learn v, once that lj gcWeakDelivered v,
unless lj already learned a value. Furthermore, acceptor aj permanently stops its SuspectT imeout
once it gcDelivers some value.
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Proof of correctness of GCB is similar to the proof of consistent unique broadcast given in [1],
using Lemmas 1 and 2 from Section 5.6 to prove intersection of subsets of acceptors. We omit the
complete proof.
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