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2.1 INTRODUCTION

2.1.1 Motivation

The growing reliance, in our daily lives, on services provided by distributed appli-

cations (e.g., air-traffic control, public switched telephone networks, electronic

commerce, etc.) renders us vulnerable to the failures of these services. The challenge

of fault tolerance consists in providing services that survive to the occurrence of

failures.

The design and verification of fault-tolerant distributed applications is however

viewed as a difficult task. In recent years, several paradigms have fortunately

been identified which simplify this task. Key among these paradigms is state

machine replication [12, 15, 19]. The underlying idea is intuitively simple. In

short, every crucial service that needs to be made fault tolerant is replicated on

several computers that are supposed to fail independently. The presence of several

replicas ensures the high availability of the service. To preserve the consistency of

the service, invocations of its replicas, even if coming from different clients, are

then handled in such a way that they reach the replicas in the same order. The

abstraction that provides this guarantee is called the total order broadcast primitive.

Roughly speaking, this communication primitive ensures that messages broadcast

within a group of processes are delivered in the same order, despite concurrency

and failures.
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Implementing this abstraction is however very challenging. The motivation of

this work is precisely to address that challenge and to identify a set of abstractions

to build upon a total order broadcast algorithm that tolerates (1) Byzantine

(arbitrary) failures of processes and (2) asynchronous periods of the network

(i.e., network failures). (1) Basically, a Byzantine process may arbitrarily deviate

from the specification of its algorithm: intuitively, it can be malicious and act

against the algorithm assigned to it. Byzantine failures can be the most disruptive,

and there is anecdotal evidence that such failures do occur in practice. (2) Tolerating

asynchronous periods means in our context that messages should not be delivered

out of order by different processes during periods where the system is overloaded

and synchronous delays are not respected. Algorithms that tolerate such asynchro-

nous periods are sometimes called indulgent [11]. Being able to tolerate Byzantine

failures in an indulgent way is particularly important because an attacker can delay

the communication between nonfaulty processes during an arbitrary period of time.

2.1.2 Background

Our work follows the modular approach of Chandra and Toueg [5]. In their seminal

paper, Chandra and Toueg presented a total order broadcast algorithm based on

reliable broadcast and consensus modules. Consensus is itself based on a failure

detectormodule, together with reliable communication channels. Their layered archi-

tecture has two appealing properties. On the one hand, it enables the better under-

standing, verification, and implementation of the total order broadcast algorithm.

For example, one can optimize any of the two underlying modules, without changing

the total order broadcast algorithm, as long as the specifications of these modules do

not change. On the other hand, it helps clearly identify the assumptions under which

the safety and liveness properties of the algorithm are ensured. In particular, encap-

sulating synchrony assumptions underlying the (unreliable) failure detector module

enables to clearly show that safety does not rely on such assumptions, i.e., the ordering

of messages is not violated even during asynchronous periods of the network.

The approach of Chandra and Toueg was however devised for a crash-stop model

and adopting a similar approach in a Byzantine environment is rather challenging.

To see why, consider (1) their total order broadcast algorithm using consensus

and (2) their consensus algorithm using a failure detector.

1. The total order broadcast algorithm consists of a sequence of consensus

instances, each used to agree on a batch of messages to deliver. In a Byzantine

environment, an attacker can keep on proposing the same set of messages

creating the possibility for correct processes to keep on indefinitely deciding

on that very same set of possibly bogus messages, i.e., messages that no cor-

rect process has ever broadcast. Consequently, messages broadcast from

correct processes might never be delivered by any correct process.

2. The consensus algorithm relies on a failure detector module that provides

hints about crashed processes. In particular, this module prevents processes
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from indefinitely waiting for messages from crashed processes. Even if we

assume a perfect failure detector that accurately detects crashed processes

[5], Byzantine processes might, without crashing, stop sending messages

and hence block correct processes. In fact, as we discuss in the paper (Section

2.6), it is easy to see that the original notion of failure detector is meaningless

in a Byzantine environment.

Clearly, one cannot build a Byzantine-resilient total order broadcast algorithm

using the abstractions of [5], i.e., simply by changing the implementations of

those abstractions. The challenge here is to identify alternative abstractions that

fit a Byzantine model and devise algorithms that implement these abstractions

under realistic assumptions.

2.1.3 Contribution

This paper presents a total order broadcast algorithm based on a weak interactive

consistency and a reliable broadcast modules. The latter is itself based on a mute-

ness failure detector module together with reliable communication channels.

Weak interactive consistency is an agreement abstraction. As its name indicates,

this abstraction is weaker than the traditional interactive consistency abstraction [9].

Whereas the latter does not have any solution that tolerates asynchronous periods of

the system, the former does. It is in this sense close to the traditional consensus

abstraction. However, unlike consensus, where processes need to agree on exactly

one value, the processes need here to agree on a set of values (that contains at

least one value from a correct process): this difference is precisely what makes it

an adequate building block to simplify the task of ordering messages in a Byzantine

environment.

We give a weak interactive consistency algorithm that tolerates Byzantine fail-

ures and asynchronous periods using a muteness failure detector module. Roughly

speaking, this module generalizes the notion of crash failure detector to muteness

failures. These constitute a subset of Byzantine failures, which are induced by pro-

cesses from which correct processes stop receiving algorithmic messages. A major

challenge here is to precisely capture the relative flavour of this notion: muteness is

inherently dependent on a given algorithm. We define our muteness failure detector

module in terms of abstract axiomatic properties and we then address the imple-

mentability of this module in a partial synchrony model, i.e., basically, assuming

that the system can alternate between asynchronous and synchronous periods that

last for long enough for the algorithm to terminate.

Building our total order broadcast algorithm using a layered architecture enables

us to reason precisely about the correctness of our algorithm. In particular, we ident-

ify the assumptions under which the liveness of our algorithm is ensured and express

them in terms of precise properties of a muteness failure detector. As for safety, our

total order algorithm always preserves it (even during asynchronous periods), pro-

vided that the maximum number of Byzantine processes is less than one-third of

the total number of processes. Our layered architecture also enables us to optimize
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the algorithm in a modular way. We illustrate this by showing how our algorithm can

easily be optimized for steady state (nice periods of the system where the system is

synchronous and no failures occur, i.e., the most frequent in practice). We obtain a

communication pattern in steady state that is similar to that of a decentralized 3PC

[20]: three communication steps are sufficient for a message to be delivered. Further-

more, our weak interactive consistency abstraction inherently enables the grouping

of messages and their delivery in the forms of batches (just like a group commit in

transactional systems [10]).

2.1.4 Related Work

The idea of devising Byzantine-resilient group communication primitives (e.g., total

order broadcast) was pioneered in Rampart [17] and then further explored in

SecureRing [14]. In both systems, total-order broadcast algorithms rely on an under-

lying membership service. When a process is suspected to be faulty (even when the

suspicion is wrong and the process is just slow), a view change is triggered and the

suspected process is excluded from the new view. Preserving safety becomes proble-

matic because the assumption that a maximum number of Byzantine processes is

less than one-third of the total number of processes (i.e., in a given view) may

not be true after several exclusions. In our case, the algorithm is intrinsically

aware that suspicions might be wrong, and false suspicions are not turned into accu-

rate ones by excluding suspected processes. In short, Rampart [17] and SecureRing

[14] assume a reliable failure detection scheme, whereas we assume an eventually

reliable failure detection scheme: synchrony assumptions are only required to

hold eventually.

The approach of that described in Castro and Liskov [3] is closer to ours in the

sense that it also requires synchrony assumptions only eventually and only for live-

ness. The proposed message-ordering scheme is based on the idea of sequenced

views but with no exclusion of processes. In each view, only one process (the pri-

mary) is responsible for ordering client requests. Contrary to our approach, however,

the approach of Castro and Liskov [3] is monolithic. Agreement issues are not

encapsulated within any abstraction (e.g., weak interactive consistency) and, more

importantly, liveness requirements are not expressed through any abstract axiomatic

property (e.g., some form of muteness failure detector properties). Instead, liveness

relies on the use of time outs (scattered throughout the algorithm) to prevent correct

processes from being blocked by a Byzantine primary and on the following low-

level assumption on the sequencing of views: “there eventually is a view with a cor-

rect primary that other correct processes will not time out.” As we discuss in the

paper, expressing liveness requirements in an abstract and precise way is not trivial.

Interestingly, and even if the ordering scheme of the previous study [3] was primar-

ily devised with performance in minds (i.e., not modularity), we argue in Section 2.6

that our modular approach promotes effective and systematic optimizations that

enables us to reach comparable performance. In steady state, just like ours, the com-

munication pattern of the previous study [3] is that of a decentralized 3PC [20].
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As we pointed out, our scheme inherently gathers messages that can be delivered in

the form of batches. Hence, rather than hampering optimizations, our modulariza-

tion actually promotes them.

In Baldoni et al. [1], issues of moving from a crash-resilient to a Byzantine-

resilient consensus algorithm are considered and addressed in a systematic way.

Many of those issues are similar to those we address in this paper except for the

case of consensus. In particular, the authors make use of our muteness failure detec-

tion abstraction as a central mechanism to ensure the liveness of their consensus

algorithm. Moreover, weak-interactive consistency can be viewed as an answer to

the question opened by Baldoni et al. [1] about identifying a meaningful consensus-

like abstraction for a Byzantine context, e.g., weak-interactive consistency.

2.1.5 Roadmap

The rest of this chapter is organized as follows. Section 2.2 presents our system

model. Section 2.3 gives the specification of total order broadcast and presents an

algorithm that implements it using a reliable broadcast abstraction and our weak

interactive consistency abstraction. Section 2.4 describes how to implement weak

interactive consistency using muteness failure detectors. Section 2.5 discusses the

specification and implementation of these failure detectors. Section 2.6 concludes

Chapter 2 with a discussion about the modularity of our approach. For space limit-

ation, most correctness proofs have been omitted: they can be found in Ref. [6].

2.2 SYSTEM MODEL

2.2.1 Execution and Communication Model

We consider a distributed system composed of a set P ¼ {p1, p2, . . . , pN} of N

processes. Processes communicate by message passing via a fully connected net-

work composed of reliable point-to-point channels; i.e., if process p sends message

m to process q, and both q and p are correct, then q eventually receives m. These

channels are supposed to guarantee FIFO order and preserve the integrity of mess-

ages exchanged between correct processes; in particular, the content of messages

cannot be altered by some active intruder. Every message m contains a field

seq(m) such that seq(m) is a unique identifier composed of the sender’s identity

seq:id(m) and of a sequence number, e.g., the local clock of the sender.

2.2.2 Byzantine Failure Model

We assume a Byzantine failure model with message authentication [16]. In such a

model, either a process is correct and it executes the algorithm assigned to it, or it

is Byzantine. In this case, the processes can fail by crashing (i.e., prematurely

stop participating in the protocol) but can also behave maliciously. A Byzantine
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(we also say faulty or incorrect) process can for instance send garbled and mislead-

ing messages or can refuse to send expected messages. More generally, Byzantine

processes, also known as malicious processes, can exhibit arbitrary behaviors. In

contrast, a correct process executes an infinite number of steps and respects the

specification of the algorithm assigned to it.

There exist however limits to the power of malicious processes: thanks to

message authentication, a malicious process cannot impersonate correct processes.

Message authentication relies on the following signature unforgeability assumption:

if a correct process p does not send a signed message m, then no correct process ever

receives a message m signed by p. We assume that every correct process signs each

of its messages before sending it.1 In addition, we assume that the maximum number

of Byzantine processes among the N servers is f , N=3. There is no restriction on

the number of Byzantine clients.

2.3 TOTAL ORDER BROADCAST

We first give below the properties of total order broadcast, then we describe the

underlying abstractions, and finally we present the actual algorithm making use of

those abstractions.

2.3.1 Specification

Total order broadcast is defined through two primitives: A_deliver and A_broadcast.

The semantics of these primitives are captured by the following properties:

. Validity. If a correct process A_broadcasts a message m, then eventually some

correct process A_delivers m.

. Agreement. If a correct process A_delivers some message m, then eventually

all correct processes A_deliver m.

. Integrity. For every message m, every correct process p A_delivers m at most

once. Furthermore, if the sender of m, say q, is correct, then no correct process

A_delivers m unless q has previously A_broadcast m.

. Total order. If two correct processes p and q, both A_deliver two messages m

and m0, then p A_delivers m before m0 iff q A_delivers m before m0.

Basically, all messages broadcast by a correct process are eventually delivered by

all correct processes (validity), all correct processes agree on the set of messages

they deliver (agreement), no spurious message is ever associated to a correct process

(integrity), and all correct processes additionally agree on the delivery order of

messages (total order). The specification that we consider is similar to the traditional

1Signature unforgeability can be implemented via public-key encryption techniques such as

RSA [18].

32 TOLERATING ARBITRARY FAILURES WITH STATE MACHINE REPLICATION



one given for the crash-stop model [13], except integrity, which is adapted to the

Byzantine case.2

2.3.2 Underlying Abstractions

We present here two abstractions on which we build our total order broadcast

algorithm. The first abstraction is a traditional reliable broadcast primitive, i.e., a

communication primitive that ensures all the properties of total order broadcast

except the ordering property. The second abstraction is a new one called weak inter-

active consistency (WIConsistency for short). This abstraction encapsulates the

agreement part of our total order broadcast algorithm. We simply give the specifica-

tion of this abstraction here. Its algorithm is given in the next section.

Reliable Multicast Reliable broadcast is a communication primitive that allows a

process to send messages to all processes, with the guarantee that all correct pro-

cesses eventually deliver the same set of messages. Formally, reliable broadcast

is defined through two primitives: R broadcast and R deliver. These primitives

are the means to send and deliver messages according to the validity, integrity,

and agreement properties of total order broadcast, when replacing A_broadcast

and A_deliver with R_broadcast and R_deliver respectively. Such a primitive

can be implemented with a simple rediffusion mechanism. That is, when some

correct process p receives a correctly signed message m for the first time, p

delivers and relays m to all processes.

Weak Interactive Consistency The second abstraction that we build on for our

total order broadcast algorithm is a new abstraction that we call weak interactive

consistency (WIConsistency). This is a slight variation of the original interactive

consistency abstraction [9]. Informally, in WIConsistency, each correct process

first proposes its initial value to all the other processes. Then, every correct pro-

cess eventually decides on the same set of initial values, which contains at least

one initial value of some correct process.3 Formally, WIConsistency is defined

through a propose primitive. A correct process p invokes the propose primitive

with its initial value as parameter to launch an instance of WIConsistency.

When this instance is completed for some correct process p, we say that p decides

2The original integrity property states the following: for any message m, every process A_delivers m at

most once and only if the sender of m has indeed A_broadcast m. It is important to notice that the

second clause of this property is not restricted to correct processes, i.e., the sender of m could either be

correct or faulty. This is reasonable in the crash model, where faulty processes can only fail by halting.

In the Byzantine model, however, even if a faulty process p invokes A_broadcast m, the external behavior

of this invocation might look like an invocation of A_broadcast m0 to some or all processes [13]. This can

happen, for instance, if rather than sending the same message m to all processes, p sends different mess-

ages to different processes. More generally, because p can arbitrarily deviate from its specification, it is

impossible to specify the actions p will perform as a faulty process. Consequently, to adapt the specifica-

tion to the Byzantine model, the second part of the integrity property is restricted to actions performed by

correct processes.
3In the original variant of interactive consistency, the set needs to contain the values of all correct

processes [9].
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and the decision value is the value returned by the propose primitive: this value is

actually a set of initial values. WIConsistency satisfies the following properties:

. Agreement. No two correct processes decide differently.

. Validity. The decided value is a set of values that contains at least one initial

value of some correct process.

. Termination. Every correct process eventually decides.

2.3.3 Composing the Total Order Broadcast Algorithm

We show here how reliable broadcast andWIConsistency can be composed to obtain

an algorithm that satisfies the properties of total order broadcast, in the presence of

Byzantine failures. Interestingly, and thanks to our underlying abstractions, the prin-

ciple of this composition follows the structure of the one proposed in Ref. [5], which,

in a crash model, transforms consensus and reliable broadcast into total order

broadcast.

2.3.3.1 The A_Broadcast Primitive (Algorithm 1) A correct process

simply invokes R broadcast(m) in order to A_broadcast a message m. That is,

message m is first reliably broadcast to all processes.

Algorithm 1 Total Order Broadcast Protocol: A_broadcast Primitive

To execute A_broadcast (m):

R_broacast(m)

2.3.3.2 The A_Deliver Primitive (Algorithm 2) This primitive is executed

by every process to A_deliver a message. Here, we use the reliable broadcast and

the WIConsistency abstractions. Thanks to the reliable broadcast primitive, if one

correct process delivers some message m, then all correct processes eventually

R deliver m. However, no order property is ensured by this primitive. For this

reason, correct processes proceed in a sequence of stages, and they launch a new

instance of WIConsistency at each stage. Intuitively, each stage k is responsible

for A_delivering some of the R_delivered messages. Thus, every correct process

launches the kth instance of WIConsistency with its local batch of reliably, yet

not A delivered, messages as proposed value. Eventually, every correct process

decides on a set of proposed values, i.e., a set of batches.

Algorithm 2 Total Order Broadcast Protocol: A_deliver Primitive

1: Initialization

2: R_delivered ;

3: A_delivered ;

4: k 0
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5: A_delivers for a correct process p occurs as follows:

6: when R_deliver(m) fTask1g

7: R_delivered R_delivered < fmg
8: when R_delivered – A_delivered = ; fTask2g

9: k kþ 1

10: A_undelivered R_delivered – A_delivered

11: propose(k, A_undelivered)

12: wait until decide(k, DecideSet)

13: MsgSet < iDecideSet[i]

14: MsgSet MsgSet – fm [ MsgSet j m is not correctly signedg

15: MsgSet MsgSet 2 fm [ MsgSet j 9 m0 [ MsgSet < A_deliveredj

seq(m) ¼ seq(m0) ^ m = m0g

16: A_deliverk
 MsgSet 2 A_delivered

17: atomically deliver messages in A_deliver k in some deterministic order

18: A_delivered A_delivered < A_deliverk

The algorithm relies on two concurrent tasks: Task 1 and Task 2. These tasks

manipulate three sets of messages:

. R_delivered. This set contains the messages delivered to process p via primitive

R_deliver. In Task1 (lines 6–7), each time a correct process p R_delivers a

message, p inserts it into R delivered.

. A_delivered. This set contains messages that have been A_delivered.

. A_undelivered. This set contains the messages that have been reliably deliv-

ered, i.e., R_delivered, but not yet A_delivered.

In Task 2 (lines 8–17), when a correct process p notices that the set

A undelivered is not empty, p launches a new instance of WIConsistency with

A undelivered as its initial value, and k as a sequence number that disambiguates

concurrent executions of WIConsistency (line 11). Process p waits for the decision

value (line 12), then collects the union of all messages that have been decided. This

results in a list of messages noted MsgSet (line 13).

Process p then removes incorrectly signed messages, mutant messages and

redundant messages from the set MsgSet. Before these messages are defined and

the reasons for which they are removed are explained, it is important to point out

that such messages can be safely removed because they cannot be sent by correct

processes.

. Incorrectly signedmessages. Removing all incorrectly signedmessages avoids

to A_deliver messages of which senders cannot be authenticated (line 14).

. Mutant messages. We also remove from MsgSet so-called mutant messages,4

i.e., messages that have the same sequence number (identifier) but different

4The terminology of mutant messages was introduced by Kihlstrom et al. [14].
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contents (line 15). Removing such messages contributes to ensuring the

at-most-once semantics of total order broadcast. To achieve this, each message

m that belongs to MsgSet is compared with the messages that have already been

A_delivered and with other messages in MsgSet. If m is mutant with respect to

some message that was already A_delivered, then m is removed from MsgSet. If

m is mutant with respect to one or more messages in MsgSet, then m as well as

all its mutant messages are removed from Msgset.

. Redundant messages. Nothing prevents Byzantine processes to repropose

messages that have already been A_delivered; such messages are called

redundant messages. Thus, any message m that belongs to both A delivered

and MsgSet is removed from MsgSet (line 16), to prevent the multiple

A_delivery of m.

The removal of the above misleading messages results in the set A deliverk: all

messages that remain in A deliverk are then A_delivered according to some determi-

nistic order (line 17). Finally, p updates its A delivered set by augmenting it with all

the messages in A deliverk (line 18).

2.4 WEAK INTERACTIVE CONSISTENCY

This section describes our weak interactive consistency (WIConsistency) algorithm.

We first give an overview of the algorithm, then we present the abstractions and

mechanisms underlying it, and finally we describe it in details.

2.4.1 Overview

Our WIConsistency algorithm has a preliminary step that precedes a rotating coor-

dinator scheme. In the preliminary step, every correct process pi sends its initial

value through a message (pi, vi) to all processes. Then, pi waits to collect f þ 1 mess-

ages (pj, vj) from different processes (including itself). At the end of this waiting

period, every process pi has built a set, noted seti, of f þ 1 initial values. This seti

constitutes the estimate with which pi starts the rotating coordinator scheme to

reach a decision. The decided value is one of the estimates, i.e., a set of initial

values. In the presence of at most f Byzantine processes, any decided value contains

at least one initial value proposed by some correct process.

The rotating coordinator scheme proceeds in asynchronous rounds, each one

being divided into two phases. Roughly speaking, Phase 1 is used to decide on a

value proposed by some coordinator, whereas Phase 2 is triggered if Phase 1 has

failed and is used to prepare for the new round. In Phase 1 of every round r, the cor-

rect processes try to decide on the estimate of the coordinator q of round r. The coor-

dinator q starts by broadcasting its current estimateq of the decision. When a process

receives estimateq, it reissues (broadcasts) this value to all. Once a process

has received estimateq from N � f processes, it broadcasts a decision message

containing estimateq and decides on it.
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Phase 2 ensures that, if any process decides on estimateq in round r, then all cor-

rect processes that start round r þ 1 set their current estimate to estimateq. This is

ensured as follows. When a process “stops trusting” coordinator q, it broadcasts a

suspicion message. Once a process has received at least N � f suspicion messages,

it broadcasts its current estimate in a so-called GoPhase2 message. Once a process

has received N � f GoPhase2 messages, it checks whether one of the received esti-

mates is the estimate of q.5 If an estimate sent by q is found, the process adopts it and

moves to round r þ 1.

2.4.2 Underlying Abstractions

Our WIConsistency algorithm relies on the following components: (1) a muteness

failure detector, denoted by SMA, to cope with crash-like behaviors (muteness

behaviors), (2) an Echo Broadcast mechanism to cope with conflicting estimates

and invalid estimates, (3) a certification mechanism to cope with invalid messages,

and (4) a filtering mechanism to detect missing messages.

2.4.2.1 Muteness Failure Detector In a Byzantine environment, a process p

might not receive an expected message from a process q, either because q has

crashed, or because q decides not to send the message (i.e., q is not crashed but

Byzantine). We encapsulate the ability of p to detect such a muteness behavior

within a module, denoted by SMA and called a muteness failure detector. Here,

we outline the specification of such a failure detector, whereas we devote Section

2.5 to a detailed discussion on this specification and its implementation.

Just like a crash failure detector is a distributed oracle that gives hints about

crashed processes, a muteness failure detector can be viewed as a distributed

oracle that gives hints about mute processes. Failure detector SMA outputs, at

every correct process p, a set of processes that are considered to be mute with respect

to p: when SMA outputs q at p, we say that p suspects q. Roughly speaking, SMA
provides hints about Byzantine processes from which a correct process stops

receiving algorithmic messages, with respect to some algorithm A (SMA might

provide wrong hints). In our context, A represents the WIConsistency algorithm.

We characterize SMA through the two following properties:

1. MuteA-completeness. There is a time after which every process that is mute to

any correct process p, with respect to A, is suspected to be mute by p forever.

2. Eventual weakA-accuracy. There is a time after which some correct process p

is no more suspected to be mute, with respect to A, by any other correct

process.

Unlike with crash failure detectors, the specification of muteness failure detectors

depend on the algorithms using them. We come back to the inherent nature of this

aspect in Section 2.6.

5An estimate message is made of the estimate and the identifier of the process proposing it.
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2.4.2.2 Echo Broadcast At the beginning of each round, the current coordi-

nator communicates its estimate to all processes (Phase 1). A Byzantine coordinator,

rather than sending a unique estimate to all processes, may send them different esti-

mates, which we call here conflicting estimates. The problem is to prevent correct

processes from delivering, in the same round, conflicting estimates from a Byzantine

coordinator.6

To cope with conflicting messages, we use an Echo Broadcast algorithm [17, 21].

In our context, the Echo Broadcast algorithm forces the coordinator of some round r

to prove that it does not send conflicting messages to correct processes. More pre-

cisely, the coordinator of round r, say process q, initiates an Echo Broadcast by send-

ing to all processes its estimate v in a signed message tagged Initial. Then, when a

correct process p receives this Initial message for the first time, it extracts v and

echoes it to q. That is, p sends to q a signed message tagged Echo that carries the

received estimate v and the associated round number. Any additional Initial message

received from q in this round is ignored by p. Once process q receives N � f signed

Echo messages for v, process q sends a signed message tagged Ready that carries the

set of received signed Echo messages. No correct process p delivers v until it

receives the Ready message that carries the N � f expected Echo. This algorithm

preserves correct processes from delivering conflicting estimates in the same

round. The Echo Broadcast constitutes a means to preserve the agreement property

within a round. Figure 2.1 illustrates the communication pattern of this algorithm in

a given round r.

When some correct process, say p, receives an Initial message that carries an esti-

mate that is not a set of f þ 1 signed values (pi, vi), then p does not send an Echo

message to the current coordinator. This prevents a Byzantine coordinator from suc-

cessfully completing an Echo Broadcast on an invalid estimate, i.e., on an estimate

with a seti ¼ {(pj, vj)pj[p} and jsetij ¼ f þ 1.

2.4.2.3 Certification We introduce the notion of certificate to cope with inva-

lid messages. Roughly speaking, an invalid message is one that is sent out of context.

Before defining this notion more precisely, we first introduce the _� relationship

∋

p

q

p

(Initial,q,r,v,–) (Echo,p,r,v) (Ready,q,r,{(Echo,p,r,v)}     )π

Figure 2.1 Exchange of messages in an echo broadcast.

6This is an instance of the well-known Byzantine agreement problem [2, 16].
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between actions. Let e1 be the action of receiving a set of messages sm1 by some

process p, and let e2 be the action of sending a message m2 by the same process

p. We say that e1 precedes e2, noted e1 _� e2, if the action e2 of sending m2 is

conditioned by the action e1 of receiving set sm1. From an algorithmic viewpoint,

this definition can be translated as follows: “if receive sm1 then send m2.” This

definition is illustrated in Fig. 2.2.

In a trusted model, i.e., one that excludes malicious behaviors (e.g., the crash

model), when some process performs an action e2, such that e1 _� e2, it is trivially

ensured that (1) e1 happened before e2 and (2) sm1 was correctly taken into account

to compute m2. In contrast, this is no longer guaranteed in a Byzantine model. A

Byzantine process may perform e2 either without hearing about e1 or without

taking into account the occurrence of e1. The resulting message m2 sent by such

a Byzantine process is referred to as an invalid message. Coming back to our

WIConsistency algorithm, if such invalid messages are not detected, the correctness

of the algorithm may be compromised.

A certificate aims at proving the validity of any message m2 such that sm1 _�m2.

The structure of the certificate appended to message m2 is therefore the set of all

messages that compose sm1. Thus, when some correct process p receives message

m2 and its associated certificate, knowing how sm1 should be taken into account

to generate m2 allows p to verify whether m2 is a valid message. In the particular

case of round r ¼ 1, some messages m2 can be sent, although there was no previous

delivery of sm1. In this case, such a message m2 is validated by an empty certificate.

At this point, a legitimate question is the following:is it possible for a Byzantine

process to validate some message m2 with a false certificate? The answer is no,

because no process (correct or not) can construct a certificate without the partici-

pation of a majority of correct processes in some round r. Indeed, any certificate

used in the context of our Byzantine-resilient WIConsistency algorithm should

satisfy two properties. First, all messages that compose a certificate are signed

and sent in the same round r (the round is contained in each message). Second,

every certificate should be composed of N � f messages. Hence, having f , N=3,
every certificate is composed of a majority of messages sent by correct processes.

These properties ensure that the certificates constitute a way to preserve the agree-

ment property of WIConsistency across the rounds.

other
processes

p

m2sm1

e1 e2

Figure 2.2 The _� relationship.
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2.4.2.4 Filtering Missing messages are messages that were voluntarily skipped

by some Byzantine process, while this process is still sending other messages. For

instance, a Byzantine coordinator may decide to skip sending the expected estimate

message, while still sending other messages, e.g., replaying messages from previous

rounds. Such behaviors can prevent the progress of correct processes.

The filtering of missing messages is based on the FIFO property of our reliable

communication layer and on the following properties of the Byzantine-resilient

WIConsistency algorithm:

. in every round r, a correct process p sends only a bounded number of messages

to some other process q. We denote this bound by nround;

. a message m sent by a correct p in round r always includes the value of r.

To illustrate how these two properties are used to detect missing messages, consider

correct process p waiting, in round r, for some specific message m0 from process q:

. as soon as p has received a message from q with round number r0 . r, process p

detects that q has skipped the expected message;

. as soon as p has received more than r � nround messages from q, process p detects

that q has skipped the expected message.

2.4.3 The WIConsistency Algorithm

As we explained, the algorithm (Algorithm 3) starts with a preliminary step during

which every correct process collects a set of f þ 1 signed initial values (p, vp) from

different processes. More precisely (lines 3-6), every correct process p sends all pro-

cesses its initial value in a signed message (p, vp). Then, p collects f þ 1 correctly

signed values from different processes and puts them into the setp. This setp is the

valid estimate with which p starts participating in Task1.

After this step, the processes try to decide on a value through Task1 and propa-

gate that decision through Task2. We describe these tasks below, first without

depicting how certificates validate certain messages of the algorithm, and then we

solely focus on the certification aspect. Hereafter, p designates any correct process

executing Algorithm 3, whereas q designates any other process (correct or not) with

which p interacts.

Task 1 (lines 10–43) Task 1 is divided into two phases. In Phase 1, every correct

process tries to decide on the estimate of the current coordinator cp (see Fig. 2.3).

Throughout Task 1, a local predicate Byzantinep(q) is associated by p to every

process q; initially, this predicate is false. As soon as p detects some misbehavior

exhibited by q, like sending invalid messages or estimates, p sets its local predi-

cate Byzantinep(q) to true. If p is informed that Byzantine(cp) is true or cp is sus-

pected at 2f þ 1 processes, then p proceeds to Phase 2 before moving to the next

round (see Fig. 2.4).
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2.4.3.1 Phase 1 (Lines 10–27) During Phase 1, if the current coordinator cp

is correct, it uses a centralized Echo Broadcast [17, 21] to send its estimate to all

processes. First cp sends its estimate setcp
in a signed Initial message to all processes

(line 11). When process p receives this message for the first time, p checks if setcp
is

a valid estimate carried by a valid Initial message, and if so, p sends an Echo mess-

age to cp (lines 13-15). Then, once cp collected 2f þ 1 Echo messages about setcp
, cp

sends a Ready message to all processes (lines 16–18). At this point the Echo Broad-

cast algorithm is completed. Note that, when cp sends a valid Ready message, we say

that cp has successfully echo certified its estimate. When process p receives a valid

Ready message for the first time, it adopts setcp
and relays the Ready message to all

processes (lines 19–24). Once p received 2f þ 1 Ready messages containing cp’s

estimate, p sends a decide message to all processes and decides on setcp
(lines

25–27). If cp is Byzantine, and does not send the appropriate messages, then p

eventually moves to Phase 2.

2.4.3.2 Phase 2 (Lines 28–43) Phase 2 ensures that if any process decides on

some estimate set during Phase 1 of round r, then every correct process that starts

round r þ 1 starts with its estimate equal to set. To proceed to Phase 2, a correct

process p must learn that Byzantine(cp) is true or cp is suspected at 2f þ 1 processes

(lines 28–30). Before moving to Phase 2, p sends the GoPhase2 message to all

(lines 31–33). This message carries the last valid estimate seen by p, i.e., the last

successfully echo certified estimate seen by p. When p receives a valid GoPhase2

message, and p is still in Phase 1, p proceeds to Phase 2. Then, p waits for the

reception of 2f þ 1 valid GoPhase2 messages (lines 35–40). Among the 2f þ 1

valid GoPhase2 messages received, process p looks for the last estimate that was

Byzantine process

p4
p3

p2
p1

p4
p3

p2
p1

- Phase 1- 
Centralized Echo Broadcast Next round

Decide Suspicion GoPhase2ReadyEchoInitial

- Phase 2 -

Figure 2.3 Exchange of messages in Phase 1.

Suspicion GoPhase2

Next round
t

s

q

p

Figure 2.4 Exchange of messages in Phase 2.
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successfully echo certified and, if such a value exists, p adopts it (line 41). Note that

p might not find any successfully echo certified estimate, in which case p

does not update its estimate. This is possible if, for instance, the coordinator is

suspected before being able to echo certify its proposal. In that case, operation

Last_Successfully_EchoCertified(InitialCertifp) simply returns p’s current estimate

(setp , ReadyCertifp). Finally, p leaves Phase 2 and proceeds to the next round

(lines 42–43).

Task 2 (lines 44–46) This task handles the reception of Decide messages by pro-

cess p. If the Decide message is valid, then first p relays it to all processes, and

second p decides on the value carried by the Decide message.

2.4.4 About Certificates

In the following, we detail four kinds of messages in Algorithm 3 that require the use

of certificates.

. Initial message. In round r, this message, noted here Initialr, carries the esti-

mate proposed by the current coordinator. This message is validated by a cer-

tificate noted InitialCertif.

For the first round (r ¼ 1), since no rounds happened before, Initialr does not

need any certificate to be considered as valid. That is, in this round, the certi-

ficate InitialCertif is empty and any estimate proposed by the current coordi-

nator, say q, is considered valid.

For all other rounds (r . 1), the estimate proposed by q must be selected

during Phase 2 of round r � 1. Indeed, during this phase, process q waits

for 2f þ 1GoPhase2 messages, according to which it updates its estimate.

We denote this set of 2f þ 1 GoPhase2 messages Set GoPhase2r�1. Since

Initialr must be sent after the reception of Set GoPhase2r�1, we have that

Set GoPhase2r�1 _�Initialr. So, the certificate InitalCertif appended to Initialr

is the collection of all messages that compose Set GoPhase2r�1.

Knowing the update rule that should be processed by q to update its estimate,

and having set Set GoPhase2r�1 used for this update, each correct process can

check the validity of the Initialr message received from q.

. Ready message. In round r, this message, noted here Readyr, is sent by the cur-

rent coordinator in the last step of the Echo Broadcast algorithm. This message

is validated by a certificate named ReadyCertif.

Before sending Readyr, the current coordinator should wait for 2f þ 1 simi-

lar Echo messages, i.e., messages with identical estimates and identical round

numbers. We note this set of 2f þ 1 Echo messages Set Echor. Since Readyr

must be sent after receiving Set Echor, we have that Set Echor _�Readyr. Con-

sequently, the certificate ReadyCertif appended to Readyr is the collection of all

messages that compose Set Echor.

. Decide message. In round r, this message, noted here Decider, can be sent by

any process q. This message is validated by a certificate named DecideCertif.
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In round r, any process should have received at least 2f þ 1 Readyr0

messages from some round r0 � r before sending Decider. We note this set

of 2f þ 1 Ready messages Set Readyr0 . Since Decider must be sent after the

reception of Set Readyr0 , we have that Set Readyr0 _�Decider. Consequently,

the certificate DecideCertif appended to Decider is the collection of all mess-

ages that compose Set Readyr0 .

. GoPhase2 message. In round r, this message, noted here GoPhase2r, can be

sent by any process q. This message is validated by a certificate named

GoPhase2Certif .

In round r, any process should have received at least 2f þ 1 Suspicion

messages before sending GoPhase2r. We note this set of 2f þ 1Suspicion mess-

ages Set Suspicionr. Since GoPhase2r must be sent after the reception of

Set Suspicionr, we have: Set Suspicionr _�GoPhase2r. Consequently, the certi-

ficate GoPhase2Certif appended to GoPhase2r is the collection of all messages

that compose Set Suspicionr.

Algorithm 3 Byzantine-Resilient WIConsistency Algorithm

1: function propose(vp) fEvery process p executes Task 1 and Task 2 concurrentlyg

2: InitialCertifp ;

3: setp ; fPreliminary Phaseg

4: send (p, vp) to all

5: wait until ( fþ1 processes q: received (q,eq))

6: setp f(q, eq) j p received (q, eq) from qg

7: loop fTask 1g

8: CurrentRoundTerminatedp false; ReadyCertifp ;;

GoPhase2Certifp ;

9: DecideCertifp ;; coordSuspectp false; cp (rp mod N) þ1;

phasep 1

10: if cp ¼ p then

11: send (Initial, p, rp, setp, InitialCertifp) to all

12: while not (CurrentRoundTerminatedp) do
13: when receive Valid (Initial, q, setq, InitialCertifq) from q

14: if (q ¼ cp) ^ (no Echo message was sent in rp by p) then

15: send (Echo, p, rp, setq) to cp

16: when (cp ¼ p) ^ ( for 2fþ1 distinct processes q: received (Echo, q, rp, setp))

17: ReadyCertifp f(Echo, q, rp, setp) j p received (Echo, q, rp, setp) from qg

18: send (Ready, p, rp, setp, ReadyCertifp) to all

19: when receive Valid (Ready, q, rp, setq, ReadyCertifq)

20: DecideCertifp  DecideCertifp < f(Ready, q, rp, setq, ReadyCertifq)

21: if (first Ready message received) ^ (p = cp) then

22: ReadyCertifp ReadyCertifq
23: setp setq
24: send (Ready, p, rp, setp, ReadyCertifp) to all
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25: else if 2fþ 1 Ready messages received from distinct processes then

26: send (Decide, p, rp, setp, DecideCertifp) to all

27: return(setp)

28: when (cp [ SMA _ Byzantinep(cp)) ^ (not coordSuspectedp)

29: send (Supicion, p, rp) to all

30: coordSuspectedp true

31: when (phasep ¼ 1) ^ for 2fþ 1 distinct processes q:

received (Supicion, q, rp))

32: GoPhase2Certifp f(Supicion, q, rp) j p received (Supicion, q, rp)

from qg

33: send ((GoPhase2, p, rp , setp , ReadyCertifp), (GoPhase2Certifp)) to all

34: phasep 2; InitialCertifp ;

35: when receive Valid ((GoPhase2, q, rp, setq, ReadyCertifq),

(GoPhase2Certifq))

36: if phasep ¼ 1 then

37: phasep 2; InitialCertifp ;

38: send ((GoPhase2, p, rp , setp, ReadyCertifp), (GoPhase2Certifq))

to all

39: InitialCertifp InitialCertifp < (GoPhase2, q, rp, setq, ReadyCertifq)

40: if 2fþ 1 GoPhase2 messages received from distinct processes then
41: (setp , ReadyCertifp) Last_Successfully_EchoCertified(InitialCertifp)

42: currentRoundTerminatedp true

43: rp rp þ1

44: when receive Valid (Decide, q, r, set, DecideCertifq) {Task2}

45: send (Decide, q, r, set, DecideCertifq) to all

46: return(set)

2.5 MUTENESS FAILURE DETECTOR

A key abstraction underlying our weak interactive consistency algorithm is the

muteness failure detector. Hereafter, we define the muteness failure model, then

we proceed with a more precise specification of our muteness failure detector

module, and then we discuss its implementation under partial synchrony

assumptions.

2.5.1 The Muteness Failure Model

Intuitively, muteness characterizes faulty processes from which correct processes

stop receiving algorithmic messages. As conveyed by Fig. 2.5, muteness failures

represent a special case of Byzantine failures, yet a more general case than crash

failures. A muteness failure may occur when a process simply crashes, or arbitrarily
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decides to stop sending a specific subset of algorithmic messages to some or all cor-

rect processes, while still sending other messages.7

We now more precisely define the muteness behavior of a Byzantine process.

Without loss of generality, we assume that the set of messages that can be generated

by any algorithmA to have a specific syntax. Thereby, we say that a message m is an

A message if the syntax of m corresponds to the syntax of the messages that may be

generated by A. Although some messages sent by a Byzantine process may carry a

semantic fault, we still consider them as A messages as long as they respect the

syntax of messages that could be generated by algorithm A.8 Based on this defi-

nition, we define the notion of muteness as follows.

Mute Process A process q is mute to some correct process p, with respect to some

algorithm A, if there is a time after which p stops receiving A messages from q.

When some process q becomes mute with respect to some correct process p, we

say that q fails by quitting algorithm A with respect to process p.

2.5.2 Muteness Failure Detector Specification

To simplify the presentation, we assume the existence of a real-time global clock

outside the system: this clock measures time in discrete numbered ticks, whose

Figure 2.5 Inclusion relation between different types of failures.

7A subtle cause of a muteness failure can be for instance the following: a Byzantine process sends algo-

rithmic messages to a correct process, but its end of the communication channel skips some sequence

number used to ensure FIFO ordering of messages. In this case, the FIFO channel on the other (correct)

end no longer delivers the received messages to the correct process. Consequently, the correct process

stops receiving messages from this particular Byzantine process. Retransmitting messages might in this

case be useless because a Byzantine process can decide to systematically drop the same messages. At

this stage, one can notice that there are various causes that can induce muteness failures. However,

since we model failures and not faults, we merely ignore, in our specification, the causes of muteness

and we only focus on the observable behavior of mute processes (from the point of view of a correct

process).
8The conflicting estimates, defined in the previous section, are instances of messages that have a correct

syntax but carry a semantic fault.
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range is the set of natural numbers N. This is merely a fictional device inaccessible

to the processes of the set P ¼ {p1, p2, . . . , pN}.

2.5.2.1 Muteness Failure Pattern A muteness failure pattern FA is a func-

tion from P�N to 2P, where FA(p, t) is the set of processes that quit algorithm

A with respect to correct process p by time t. By definition, we have

FA( p, t) # FA( p, t þ 1). We also define quitp(FA) ¼
S

t[N FA( p, t). We say that

q is mute to p with respect to A if q [ quitp(FA). We denote by correct(FA) the

set of correct processes in failure pattern FA.

2.5.2.2 Muteness Failure Detector History We define a muteness failure

detector history as a function HA from P�N to 2P, where HA(p, t) denotes the

set of processes suspected by a correct process p to be mute at time t.

2.5.2.3 Muteness Failure Detector A muteness failure detector is a function

DA that maps each failure pattern FA to a set of muteness failure detectors histories.

We define the class SMA of muteness failure detectors, such that any DA [S MA
features the mute A-completeness and the eventual weak A-accuracy properties

given below.

Mute A-Completeness There is a time after which every process that is mute to

any correct process p, with respect to A, is suspected to be mute by p forever.

This property is formally expressed as follows:

8FA,8HA [ DA, 9t [ N,8p [ correct(FA) ^ 8q [ quitp(FA),

8t0 � t : q [ HA( p, t0):

EventualWeakA-Accuracy There is a time after which some correct process p is

no more suspected to be mute, with respect to A, by any other correct process.

This property is formally expressed as follows:

8FA,8HA [ DA, 9t [ N, 9p [ correct(FA),

8t0 � t,8q [ correct(FA) : p � HA(q, t
0):

2.5.3 Muteness Failure Detector Implementation

In the layered architecture of Chandra and Toueg [5], the crash failure detector

module is a black box (Figure ??). It can be implemented in a partial synchrony

model in which we assume that there is a time after which process relative speeds

and communication delays are bounded. The implementation is independent from

the (consensus) algorithm using the failure detector.

In the following, we describe an implementation of our muteness failure detector

module SMA under partial synchrony assumptions of Ref. [5]. Unlike in Ref. [5],

however, our SMA implementation is not encapsulated within a black box: it

depends on the algorithm using the module, i.e., A (e.g., on our WIConsistency
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algorithm). This is not surprising, given that the very specification of SMA depends

on the algorithm using it. We discuss below an implementation of SMA that is gen-

eric in the sense that it can be used with a class of (regular round-based) algorithms,

of which our WIConsistency algorithm belongs.9

Regular Round-Based Algorithms We define here the class of regular round-

based algorithms, named CA, in the context of which we give our SMA
implementation. The class CA is characterized by three attributes that must be

featured by any algorithm A [ CA. These attributes are given below.

. Attribute (a). Each correct process p owns a variable roundp the range of

which is the set of natural numbers N.

As soon as roundp ¼ n, we say that process p reaches round n and n is a

reached round. Then, until roundp ¼ nþ 1, process p is said to be in round n.

Given any round n, if all processes are expecting at least one message from

some process p, we say that p is a critical process of round n and its awaited

messages are said to be critical messages. With these definitions, Attributes

(b) and (c) can be stated as follows:

. Attribute (b). Each process p is critical every k rounds, i.e., p is critical when

roundp mod k ¼ 0.

. Attribute (c). Provided that at least N � f correct processes reach round n, if

the critical process p of round n is correct, then when p is in n, p sends at

least one message to all processes in n.

Intuitively, Attribute (a) states that the algorithms within class CA proceed in

rounds. Attribute (b) and (c) express, in terms of rounds, the very fact that any pro-

cess should be critical an infinite number of times and that, when the critical process

is correct, it should communicate with all processes. Hence, no correct process that

executes A can be mute. In Attribute (c), the communication of correct critical pro-

cesses is conditioned by the presence of N � f correct processes, where N is the total

number of processes participating in A and f is the maximum number of Byzantine

processes tolerated by A. That is, the actual value of N � f depends on algorithm

A [ CA and represents the minimum number of correct processes required by A

to execute an infinite number of rounds. As already mentioned, any algorithm A

that aims at solving an agreement problem requires that f , N=3, which is the

case for our WIConsistency algorithm. Our WIConsistency algorithm features

attributes (a), (b), (c), and clearly belongs to class CA.

A Parameterized Implementation for SMA Algorithm 4 given below is an

implementation for SMA, named ID, assuming that algorithm A that uses ID
belongs to class CA. Algorithm 4 relies on a timeout mechanism and is composed

of three concurrent tasks. Variable Dp, for some process p, holds the current

9Clearly, unless we restrict the class of algorithms that useSMA, the latter cannot be implemented even in

a perfectly synchronous model. We shall come back to the rationale behind this in Section 2.6.
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timeout and is initialized with some arbitrary value, initD . 0, that is the same for

all processes. Furthermore, ID maintains a set outputp of currently suspected pro-

cesses and a set criticalp containing the processes that p monitors (and hence adds

to its outputp set in case of suspicion). These two sets are initially empty. A newly

suspected process is added to outputp by Task 1 as follows: if p does not receive a

“q-is-not-mute” message from Dp ticks for some process q that is in criticalp, then

q is suspected to be mute by p and is inserted in the outputp set.

Correctness Figure 2.6 illustrates the interactions between algorithm Ap, which

designates algorithm A when executed by correct process p, and ID. Besides

queries to ID on suspected processes (arrow 1), our implementation ID handles

two more interactions with Ap, implemented by Task 2 and Task 3.

Algorithm 4 Implementation ID of Muteness Failure Detector SMA

1: fEvery process p executes the following:g

2: Dp initD; outputp ;; criticalp ;; {Initialization}

3: for all q [ criticalp do fTask 1g

4: if (q � outputp) ^ (p did not receive “q-is-not-mute” during Dp ticks) then

5: outputp outputp < q

6: when receive “q-is-not-mute” from Ap fTask 2g

7: if (q [ outputp) then

8: outputp outputp 2 q

9: when receive new_criticalp from Ap fTask 3g

10: criticalp new_criticalp
11: Dp gA(Dp)

Each time p receives anAmessage from some process q (arrow 2), algorithmAp

delivers the message “q-is-not-mute” to ID (arrow 3). As a consequence, Task 2

removes process q from outputp if q was suspected. At the beginning of each

round, Ap delivers a new criticalp set to ID (arrow 4) containing the critical pro-

cesses of the new round. This operation is possible because algorithm A belongs

to class CA and hence features Attributes (a), (b) and (c) introduced in Section 2.5.3.

p ∈
q‘‘  -is-not-mute’’

pnew_critical

M
some    message from

suspicions (1)

(2)
(3)

(4)

Figure 2.6 Interactions between Ap and SMA.
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2.5.3.1 Parameterization of ID Task 3 updates criticalp with set new criticalp.

In addition, Task 3 also computes a new value for timeoutDp by applying some func-

tion gA on the current value of Dp. Since the timeout is updated in each new round,

there exists a corresponding function, DA :R! T , that maps each round n onto its

associated timeoutDA(n). For instance, if function gA doubles the current timeoutDp,

then DA(n) ¼ 2n�1 initD. Note that function gA is precisely what parameterizes our

implementation ID of muteness failure detector SMA.

2.5.4 Interactions Between Ap and ID

Proving the correctness of algorithm ID consists in proving that ID ensures the mute

A-completeness and the eventual weak A-accuracy properties. The difficulty here

lies in the very fact that, rather than approximating bounds on communication

delays and process relative speeds, as does the implementation of [5] in the crash

failure context, ID approximates the maximum delay between two consecutive A

messages.

In some sense, A messages replace the traditional “I-am-alive” (heartbeat)

messages in crash failure detector implementations. So, the interval between two

consecutive A messages does not only depend on synchrony bounds, but also

depends on the delay introduced by the semantics of algorithm A when sending

two consecutive messages. This makes the proof of the correctness of ID rather

tricky. A particularly difficult case is when the interval of time between two A

messages also depends on the timeout value; e.g., whenever the timeout value

increases, the interval between two A messages increases even further.

In the following, we first give a set of timing assumptions underlying our proof.

In particular, these timing assumptions exclude the aforementioned case.

Assumptions for the Correctness Proof The correctness of ID relies on three

main assumptions: (1) partial synchrony assumptions, (2) permanent partici-

pation assumptions, and (3) timing assumptions on algorithm A and on the time-

out function of ID, i.e., on function DA. When our parameterized implementation

ID is used with some algorithm A, we have to prove that A and ID, together,

satisfy these timing assumptions. In particular, this implies that we have to

determine an adequate function gA.

2.5.4.1 Partial Synchrony Assumptions We assume here the existence of a

bound d on communication delays and a bound f on process relative speeds: these

bounds are both unknown and hold only after some unknown time GST (global

stabilization time) [7]. Such a weak partially synchronous system is also the one

assumed by Chandra and Toueg for their implementability proof of SP [5]. (With-

out such assumption, any non-trivial form of agreement is impossible, even with

only one crash failure [8].) From now on, we consider the system only after GST,

i.e., we assume only values of the global clock that are greater or equal to GST.

2.5 MUTENESS FAILURE DETECTOR 49



2.5.4.2 Permanent Participation We assume the permanent participation of

N � f correct processes. This is a theoretical assumption needed to prove liveness.

The problem is that, with less than N � f correct processes, we cannot guarantee

anymore that a correct process executes an infinite sequence of rounds and sends

regular messages to all. As a consequence, ID cannot ensure eventual weak

A-accuracy forever. From a more practical perspective, we need the permanent

participation property to hold long enough for the algorithm to terminate.10 In

fact, we only need ID to ensure SMA properties as long as no correct process

terminates. In the case of our WIConsistency algorithm for instance, once a correct

process terminates, all correct processes are able to eventually terminate without

using SMA anymore.

2.5.4.3 Timing Assumptions on A and ID Here, we state three timing

assumptions: the first and second ones are only related to algorithm A, while the

third one expresses a timing relation between algorithm A and ID. Our WIConsis-

tency algorithms satisfies these assumptions.

Before stating these assumptions, we first introduce the following definition: For

any given round n, we say that n is completed for a correct critical process p of n, if

all correct processes received all the critical messages expected from p in n.

Intuitively, Assumption (a) below states that, within any round n after GST, the

critical messages of some correct critical process p are received by all correct

processes within a fixed amount of time b, provided N � f correct processes

(including p) are in round n.

. Assumption (a). There exists a constant b such that the following holds. Let p

be any correct critical process in any round n. As soon as n is reached by at

least N � f correct processes including p, then n is completed in some constant

time b.

Intuitively, Assumption (b) below states that, given some reached round n,

the maximum time after GST needed for any correct process to reach n can

be expressed by a function h.

. Assumption (b). There exists a function h :R! T that maps any round

reached by at least one correct process p, into the maximum time required by

any correct process q in some round m � n to reach n.

Informally, Assumption (c) below states that, after GST, there exists a round

n0 after which the timeout DA(n) associated with any reached round n � n0 is

larger and grows faster than h(n).

. Assumption (c). There exists a function DA such that the following holds.

There exists a round n0 such that 8n � n0, where n is a reached round, and:

(DA(n) . h(n)) ^ (DA(nþ 1)� h(nþ 1) . DA(n)� h(n)):

10Similarly, crash failure detector properties need only to hold “long enough for the algorithm using them

to achieve its goal” [5, p. 228].
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Corollary 2.5.1 From Assumptions (a), (b), and (c), we infer that:

9 n0 [ R,8n � n0,DA(n) . h(n)þ b:

In short, these timing assumptions avoid a detailed analysis of the internal struc-

ture of algorithm A, in order to know when each A message is sent. We indirectly

capture this information by quantifying the amount of time needed by some correct

process to reach some round. Furthermore, to avoid false suspicions (after GST), we

calibrate the timeout function. That is, a timeout function that eventually associates

to each round a timeout value sufficiently large to allow all correct processes to reach

this round.

Correctness Proof
Theorem 2.5.2 When used by any algorithm A of class CA, ID ensures the prop-

erties of SMA in the partial synchrony model, under timing Assumptions (a), (b) to

(c), and assuming the permanent participation of N � f correct processes.

PROOF We first prove the Mute A-completeness property and then proceed with

the Eventual weak A-accuracy property.

2.5.4.4 Mute A-Completeness By Attribute (b) of any algorithm A [ CA,
we infer that each process is critical in an infinite number of rounds. Therefore,

each process q is eventually added to the set of criticalp of a correct process p. If

q is mute to process p, it means p stops receiving A messages from q forever.

Since the algorithm Ap of process p stops receiving A messages from q, then algor-

ithm ID stops receiving “q-is-not mute” messages (Task 2). Therefore, there is a

time t after which process p timeouts on q and inserts q in its outputp set (Task 1).

Since p stops receivingAmessages from q forever, then process q is never removed

from outputp. Hence, process q is suspected forever to be mute by p. Therefore, there

is a time after which the mute A-completeness property holds forever.

2.5.4.5 Eventual Weak A-Accuracy From mute A-completeness and the

assumption of the permanent participation of N � f correct processes, we infer

that a correct process is never blocked forever by a mute process. Therefore, any cor-

rect process executes an infinite sequence of rounds. Let p and q be any two correct

processes. From Algorithm 4, we know that q can only be added to outputp in rounds

where q is a critical process. From Corollary 2.5.1, we have 9n0 [ R, 8n � n0,

DA(n) . h(n)þ b; let n be any such round where q is a critical process. Then,

assume that p just reached n, i.e., p is at the beginning of round n. There are two

possible cases:

1. Case 1. Process q � outputp at the beginning of round n, i.e., when p starts

round n it does not suspect q. Since DA(n) . h(n)þ b, the timeout Dp is

larger than the maximum time required by any correct process (including q)

to reach round n, plus the time needed by round n to be completed for q.
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As a consequence, process p receives the expected critical messages from

q without suspecting q. Thus, q is not added to outputp. Furthermore,

thanks to Corollary 2.5.1, we infer that q will not be added to outputp in n,

nor in any future round where q will be critical.

2. Case 2. Process q [ outputp at the beginning of round n, i.e., when p

starts round n process q is already suspected by p. Thus, there exists a

round r , n such that (1) q is a critical process of r, and (2) p did not receive

any critical messages sent by q in r (either q did not send them yet or p did not

receive them yet). Since each correct process executes an infinite sequence of

rounds, from the assumption that there are always N � f correct processes par-

ticipating in A, and from Attribute (c), we know that process q eventually

reaches round r as well as at least N � f correct processes. Hence, q eventually

sends a message to all in that round. So, there is a round r0 � n, where p even-

tually receives q’s messages sent in round r, and consequently removes q from

outputp. Since for round r0 we also have DA(r
0) . h(r0)þ b and q � outputp,

we fall back on the above Case 1.

Therefore, a round max(r0, n) exists after which process q is never suspected to

be mute by any correct process p. Thus, there is a time after which the eventual

weak A-accuracy property holds forever. A

2.6 CONCLUDING REMARKS

The motivation of this work was to identify a set of abstractions to build upon a total

order broadcast algorithm that tolerates Byzantine failures of processes and asyn-

chronous periods of the network. We presented here such an algorithm based on

two underlying fundamental abstractions: weak interactive consistency and mute-

ness failure detectors. Roughly speaking, these abstractions are the counterpart of

consensus and crash failure detectors in the modular approach of Ref. [5]. We

evaluate here our layered architecture by discussing three aspects: (1) the modularity

of our abstraction specifications, (2) the modularity of our abstraction implemen-

tations, and (3) the impact of our modularization on performance.

2.6.1 Modularity of Specifications

Whereas the specification of our weak interactive consistency abstraction is inde-

pendent from the algorithm using it (i.e., total order broadcast), the specification

of our muteness failure detector module is not. That is, the specification of our mute-

ness failure detector module depends on the weak interactive consistency algorithm.

We give below the rationale behind this dependency.

Unlike crash failure detectors [5], one cannot specify a Byzantine failure detector

module independently from the algorithm using it. Indeed, a Byzantine process

might not have necessarily halted but might for instance send messages that have

nothing to do with those it is supposed to send in the context of its algorithm, or
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it might arbitrarily decide to stop sending any messages (without halting though). To

illustrate this point, consider a process q that is part of a set P of processes trying

to agree on some value. Suppose now that q executes algorithm A, which is proven

to be correct, whereas all other processes in P execute a different algorithmA0, also

proven to be correct. With respect to processes executingA0, q is viewed as a Byzan-

tine process, that is, a faulty process (although it executes correct algorithm A). In

fact, a Byzantine process q might exhibit an incorrect behavior with respect to some

process p but behaves correctly with respect to another process p0. For instance, q

might be executing A against process p and A0 against process r. The specification

of Byzantine failures is intimately related to a specific algorithm and actually even

to a specific process executing that algorithm. In short, Byzantine failures are not

context-free, unlike crash failures. Consequently, a Byzantine failure detector

specification cannot be, unlike a crash one, orthogonal to the algorithm using it.

One could imagine separating crash failures from other kinds of Byzantine

failures and using crash failure detectors to track the former while leaving the

latter to the algorithm itself. One could hope here to keep intact the modularity of

the original model [5] and deal with failures that are of a more complex nature at

a separate level. Unfortunately, this approach also does not make sense because

crash failure detectors are inherently defined to track physical crashes and not logi-

cal failures. To better understand this point, assume that an algorithm designer is

provided with a perfect crash failure detector in a Byzantine environment [5].

Such a failure detector guarantees that every process that crashes is eventually sus-

pected by all processes, and that no process is suspected unless it crashed. The mal-

icious thing about Byzantine processes however is that they can stop participating in

the algorithm without crashing. From a more practical point of view, this means that

these processes can for instance send heartbeat messages in a timely manner, yet do

not send any message related to the actual algorithm. According to the definition of a

perfect failure detector, these are correct processes and there is no reason to suspect

them. In some sense, such Byzantine processes do not physically crash but they

algorithmically crash. From the perspective of a correct process, however, either

behavior can lead to the same problem if the faulty process is not properly detected:

the progress of correct processes cannot be guaranteed and even a perfect crash

failure detector is useless here. Hence, there is no point in trying to track crash

failures only.

Our approach is in a sense pragmatic because only part of the malicious behavior

is captured by the failure detector, namely,muteness behavior. This approach enables

us to capture a tricky part of malicious failures inside well-defined modules (mute-

ness failure detectors), while restricting the dependency between the algorithm and

the failure detector. Interestingly, and as we have shown, adequately defined, these

muteness failure detectors encapsulate the amount of synchrony used to solve agree-

ment problems like weak interactive consistency and indirectly total order broadcast.

2.6.2 Modularity of Implementations

Due to the specification orthogonality of crash failure detectors, their implemen-

tation can be made independent from the algorithms using them. This makes it
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possible to view a failure detector as a black box of which implementation can

change without any impact on the algorithms that use it, as long as it still ensures

its expected properties (e.g., completeness and accuracy). Because muteness failure

detectors cannot be specified orthogonally to the algorithms using them, their

implementation obviously depends on those algorithms. This dependency even

restricts the set of algorithms that can make a meaningful use of failure detectors.

Indeed, there are algorithms for which no implementation of our SMA muteness

failure detector does make sense. These are for instance algorithms A in which

the expected correct behavior of a process can be confused with an incorrect one,

i.e., where the set of correct processes overlaps the set of mute processes. Imagine

for example that a correct process p, to respect A’s specification, must eventually

stop sending messages, i.e., must become mute with respect to all processes. Then

the Mute A-Completeness property requires every correct process q to suspect p

while the Eventual Weak A-Accuracy property requires that q eventually stops

suspecting p. Clearly, the two properties become in contradiction making any

implementation of SMA impossible.

What we suggest in this chapter can be viewed as a gray-box approach, with a

parameterized implementation of a muteness failure detector SMA that is sufficient

to solve weak interactive consistency and hence total order broadcast in a Byzantine

environment. We require from the algorithms using our muteness failure detector

SMA that they have a regular communication pattern, i.e., each correct process

communicates regularly (to prevent the case where muteness is viewed as a correct

behavior). More precisely, we define a class of algorithms, named CA, for which the

use of SMA does indeed make sense. We characterize CA by specifying the set of

attributes that should be featured by any algorithm A [ CA. We qualify such algor-

ithms as regular round-based. Note that even given those restrictions, we have

shown that it is not enough to make timing assumptions about the system model

to implement a Byzantine failure detector. One needs to make timing assumptions

about A as well. These assumptions, together with the regular round-based flavor,

are featured by our weak interactive consistency algorithm.

It is also important to notice that, in Ref. [5], all aspects related to failure detec-

tion are encapsulated inside the failure detector module. Consequently, the only

places where the algorithm deals with failures is by interacting with the failure

detector. In a Byzantine context, failures have many faces, some of which can

simply not be encapsulated inside the failure detector. Indeed, SMA can only

cope with muteness failures, while leaving other malicious behaviors undetected,

e.g., conflicting messages., invalid messages, and missing messages. These had to

be dealt with directly by the upper layer algorithms (i.e., weak interactive consist-

ency and total order broadcast).

2.6.3 Impact on Performance

Many optimizations can easily be introduced in our total order broadcast algorithm

to make it more efficient in steady state, i.e., when there is no suspicion and the pri-

mary (coordinator) does not change (we also typically talk about nice periods). This
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is the state of the system that is the most frequent in practice and for which algor-

ithms are usually optimized. We give below two examples of optimizations.

1. Rather than deciding on a set of values, the processes can start by deciding

only on one value, i.e., only on one batch of messages. That is, initially a tra-

ditional consensus is used rather than weak interactive consistency. If some

process suspects that its batch is not being ordered, an instance of weak

interactive consistency is then launched, i.e., as a fail-over mechanism.

2. Our Echo Broadcast algorithm can be decentralized to reduce the number of

communication steps from three to two. Instead of going back to the sender

after receiving its message and then having the sender send it to all, the pro-

cesses would directly echo the message to all.

With these optimizations, three communication steps are needed to deliver a

message (in a steady-state): just like in a decentralized 3PC [20]. In fact, the mod-

ularity of our approach helps identify the parts that could indeed be (safely) skipped

in steady-state or (de)centralized. Furthermore, the very use of our weak interactive

consistency abstraction (to agree on batches of messages) inherently enables us to

gather messages and treat them together (in one shot), just like a group commit in

transactional systems [10]. Through our agreement abstraction, we also circumvent

the need for explicitly stabilizing messages before every new primary election after

a fail-over (unlike in Ref. [3]). It would be interesting to explore the benefit of our

modularisation in confining the use of public-key cryptography to fail-over states

[3], or in recovering Byzantine processes [4].
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