
The Gap in Circumventing

the Consensus Impossibility

Rachid Guerraoui

Distributed Programming Laboratory, EPFL, CH-1015, Lausanne, Switzerland
tel: +41 21 693 5272, fax: +41 21 693 7570

Petr Kouznetsov ∗

Distributed Programming Laboratory, EPFL, CH-1015, Lausanne, Switzerland
tel: +41 21 693 5274, fax: +41 21 693 7570

Abstract

The seminal impossibility of reaching consensus in an asynchronous and crash prone
system was established for a weak variant of the problem, usually called weak con-
sensus, where a set of processes need to decide on a common value out of two
possible values 0 or 1. On the other hand, abstractions that were shown to be, in
some precise sense, minimal to circumvent the impossibility were determined for a
stronger variant of the problem, called consensus, where the processes need to de-
cide on one of the values they initially propose (0 or 1). These abstractions include
synchronization primitives, namely shared object types, as well as failure detector
oracles.

This paper addresses the question of whether these abstractions were actually
also minimal to circumvent the impossibility of weak consensus. We first show that
any deterministic object type that implements weak consensus also implements con-
sensus. Then we exhibit a non-deterministic type that implements weak consensus,
among any number of processes, but not consensus, even among two processes. In
modern terminology, this type has consensus power 1 and weak consensus power
∞. Finally, we exhibit a failure detector that implements weak consensus but not
consensus.

Key words: Asynchronous distributed system, consensus, weak consensus, FLP
impossibility, atomic objects, determinism, failure detectors.

∗ Corresponding author.
Email addresses: rachid.guerraoui@epfl.ch (Rachid Guerraoui),

petr.kouznetsov@epfl.ch (Petr Kouznetsov).

Preprint submitted to Elsevier Science 16 March 2004



1 Introduction

Background.

A consensus protocol is a distributed algorithm that makes a set of processes

decide on a common value out of two possible values: 0 or 1. In 1983, it was

shown that no protocol can solve consensus in a basic distributed system model

where no synchrony assumption is made (asynchronous system), processes can

only communicate by exchanging messages, and at least one process can fail

by crashing [1]. The impossibility was extended later to the shared memory

model where processes could communicate through read-write atomic objects,

i.e., registers [2].

Given the importance of consensus in reliable distributed computing, a lot

of work has been devoted to studying abstractions that, when added to the

basic distributed model, circumvent the impossibility. In particular, certain

abstractions were shown to be, in certain senses, minimal to solve consensus.

The exploration of such abstractions has been conducted following at least

two major research trends.

(1) One trend consisted in augmenting the system model with more sophis-

ticated synchronization abstractions than message passing channels or

registers. More precisely, the idea was to study object types that should

be used, besides registers, to solve consensus in an asynchronous sys-

tem assuming an arbitrary number of possible crashes [3]. Types like

queue, test-and-set or compare-and-swap can indeed be used to do so and

they are said to implement consensus. It was observed that certain types

could implement consensus among a certain number k of processes but

not among k+1. For example, instances of type queue and registers make

it possible to solve consensus among 2 processes but not among 3 pro-

cesses [3]. In a sense, queue is a minimal type to implement consensus

among 2 processes: 2 is also said to be the consensus power of queue. In

comparison, the consensus impossibility of [2] implies that the consensus

power of register is 1: with registers only, consensus cannot be solved

among 2 processes. At the other extreme, the consensus power or type

2



compare-and-swap is ∞ [3]: instances of this type and registers make it

possible to solve consensus among any number of processes. The notion

of consensus power leads to define a hierarchy, called the consensus hier-

archy, with types that have low consensus power at the bottom and those

that have high consensus power at the top.

(2) The second trend consisted in augmenting the system model with syn-

chrony assumptions, i.e., timing assumptions on process relative speeds

and communication delays [4], and still rely on basic communication ab-

stractions like message passing channels or registers. One can precisely

reason about the ability to solve consensus using these synchrony as-

sumptions through the concept of failure detector [5]. Informally, a failure

detector is a distributed abstraction that provides processes with infor-

mation about the failure pattern of every execution, i.e., about which

process has crashed (resp. has not) at any given point in time. A failure

detector is typically implemented using timeouts and, in this sense, it en-

capsulates synchrony assumptions. In [6], the weakest failure detector to

implement consensus was determined. This failure detector, denoted by

Ω, outputs at any time and every process of the system, exactly one one

process so that, eventually, all correct processes output the same correct

process. The very fact that Ω is the weakest to solve consensus means

that (1) Ω implements consensus, and (2) any failure detector that imple-

ments consensus can emulate the output of Ω (i.e., implements Ω). The

result of [6], established in the message passing model with a majority of

correct processes, was extended to the shared memory model in [7].

Motivation.

The motivation of this work is the simple observation that the original con-

sensus impossibility [1,2] was stated for a weak variant of consensus, whereas

abstractions to circumvent the impossibility, be them object types or failure

detectors, have been studied with a stronger consensus variant in mind.

In a weak consensus protocol, the processes can decide any value (0 or 1),

provided that there is an execution of the protocol where 0 is decided and

one where 1 is decided. In the stronger variant of consensus, which is simply

3



called consensus in the literature, the value decided must be one of the values

proposed. In particular, if all processes initially propose 1 (resp. 0), the decision

value must be 0 (resp. 1).

It is indeed natural to state an impossibility result on the weak variant of con-

sensus and, when seeking for abstractions that circumvent the impossibility,

consider abstractions that also lead to solve a stronger variant of consensus.

However, determining that some abstraction is, in some sense, minimal to im-

plement (the strong variant of) consensus does not mean that the abstraction

is indeed minimal to circumvent the impossibility (of weak consensus). The

motivation of this work was to determine whether, computationaly speaking,

there is a gap between the two problems. More precisely, we seek to address

the two following questions about this gap:

(1) (The type perspective on the gap). If a type implements weak consensus,

does it also implement consensus? In particular, is the consensus power

of a type the same as its weak consensus power.

(2) (The failure detector perspective on the gap). If a failure detector D imple-

ments weak consensus, does it also implement consensus? In particular,

is Ω also the weakest failure detector to implement weak consensus. 1

Contributions.

To address the first question, we distinguish between deterministic types and

non-deterministic ones. In short, a deterministic type is one such that the out-

put and resulting state of any invocation of an object of that type, performed

in the absence of concurrency and failures, is uniquely determined by (a) the

state of the object prior to the invocation and (b) the invocation itself.

(1) We show that, for any number of processes, any deterministic type that

implements weak consensus also implements consensus. In a sense, the

consensus and weak consensus powers of a deterministic type are the

same. Said differently, the consensus and weak consensus hierarchies,

when restricted to deterministic types, are the same. To prove this re-

sult, we exploit the inherent computation power of deterministic types.

1 This question was partially addressed in [6]; we will come back to this in Section 5.

4



In short, we observe that any protocol that solves weak consensus using

objects of a deterministic type boils down to reaching a critical state s

of some object X, such that, applying different operations to s leads to

distinguishable states of X. Since X is deterministic, there is a protocol

which brings X to state s. We use this observation to derive a protocol

that solves another variant of consensus, named team consensus [8], and

then derive the fact that the protocol also solves consensus [8, 9].

(2) We show that this is not the case with non-deterministic types. Basically,

we exhibit a new non-deterministic type, which we call rambler, that im-

plements weak consensus for an arbitrary number of processes, but cannot

implement consensus even among two processes. In other words, we ex-

hibit a non-deterministic type which has, as a weak consensus power ∞,

and as consensus power 1. Type rambler is constructed in such a way that,

using any number of its instances, no process can fetch any meaningful

information about other processes: the instances might exhibit the very

same behavior for an arbitrary sequence of invocations. Intuitively, this

means that type rambler cannot implement consensus even among two

processes. On the other hand, the type has some non-trivial agreement

properties, and these make it possible to solve weak consensus among any

number of processes using just one instance of type rambler.

To address the gap question in terms of failure detectors, we first observe

that the implementability of weak consensus cannot actually be studied in

the original formalism of [5, 6]. More precisely, we point out the fact that, in

the original failure detector formalism of [5, 6], weak consensus would have

an asynchronous solution, contradicting [1]. We first propose an extension of

the basic failure detector formalism that addresses this issue by putting both

consensus and weak consensus on the same stable ground. Then we exhibit a

failure detector that implements weak consensus but not consensus, i.e., this

failure detector is strictly weaker than Ω.

Roadmap. In Section 2, we present the system model. In Section 3, we recall

the consensus and the weak consensus problems, as well as another variant

of consensus, team consensus, which is a key element of one of our proofs. In

Section 4, we show that any deterministic type that implements weak consen-

5



sus also implements consensus. In Section 5, we show that this is not the case

with non-deterministic types. In Section 6, we discuss the implementability of

weak consensus in a model with failure detectors. Then we exhibit a failure

detector that implements weak consensus but not consensus. In Section 7 with

conclude the paper with some general observations on the questions raised in

this paper.

2 Model

The model we mainly consider in this paper is the one of [10, 11]: a set of

asynchronous processes communicating through shared objects. We recall be-

low the details of the model which are substantial for our results. In Section 6

we augment this model with the failure detector abstraction.

Processes.

We consider a set Π of n + 1 processes p0, . . . , pn (n ≥ 1) that communicate

using shared objects. The processes might fail by crashing, i.e., stop executing

their steps. A process that never crashes is said to be correct. A process that

is not correct is said to be faulty. Processes are asynchronous in the sense that

we do not make any assumption on their relative speeds.

Objects and types.

An object is a data structure that can be accessed concurrently by the pro-

cesses. Every object is an instance of a type which is defined by a tuple

(Q, O,R, δ). Here Q is a set of states, O is a set of operations, R is a set

of responses, and δ ⊆ Q × O × Q × R is a relation, known as the sequential

specification of the type. We assume here that every sequential specification δ

is total : for each pair (q, o) ∈ Q × O, there exists a pair (q′, r) ∈ Q × R such

that (q, o, q′, r) ∈ δ. We distinguish here deterministic types, of which the se-

quential specification is a function δ : Q×O → Q×R, and non-deterministic

types, of which the sequential specification carries each state and operation to

a set of response and state pairs.

6



We consider here linearizable [12] objects: operations on the objects must

appear in one-at-a-time order consistent with their real time order. We assume

that the objects are wait-free [3]: any process completes any operation in a

finite number of steps, regardless of delays or failures of other processes. We

call wait-free linearizable object atomic objects. If an atomic object instantiates

a deterministic type, we say that the object is deterministic.

Protocols.

A protocol is a distributed deterministic automaton that defines, for every state

of each process pi, the next step pi is going to take, i.e., the next operation pi is

going to execute. We assume that each operation is executed instantaneously,

so a protocol execution can be seen as a sequence of invocation-response pairs.

We say that an execution e of P is an i-solo execution if pi is the only process

that takes steps in e.

Schedules.

A schedule is a (finite or infinite) sequence of identifiers of processes in Π. For a

given protocol P , we say that a schedule σ triggers an execution e of P , if, in e,

processes take steps of P in the order defined by σ. Clearly, if processes access

only deterministic objects, a given schedule triggers exactly one execution. On

the other hand, if non-deterministic objects can be accessed, a schedule might

trigger a number of executions.

3 Variants of consensus

Weak consensus.

The seminal consensus problem consists for a set of processes in reaching a

common decision based on the initial states of the processes. Traditionally [1],

the binary version of the problem was defined through a set of properties

which includes:

• Termination: every process that takes an infinite number of computation

7



steps eventually decides on a value in {0, 1};
• Agreement: no two processes decide on different values.

Clearly, the problem defined only through these two properties has a trivial

solution: e.g., every process always decides 0. To filter out such protocols, the

following non-triviality property was defined [1]:

• Weak validity: every protocol has an execution in which 0 is decided and

an execution in which 1 is decided.

The problem defined through termination, agreement and weak validity, called

here weak consensus, is shown to be impossible to solve in an asynchronous

system in the presence of at least one faulty process [1, 2].

Consensus.

This impossibility result of [1, 2] clearly holds also for the consensus problem

in which every process initially has a proposal value in {0, 1} and, instead of

weak validity, the following property is ensured:

• Validity: any decided value is the initial value of some process.

Weak consensus is trivially reduced to consensus: any solution of consensus

has an execution in which 0 is decided (e.g., when all processes propose 0) and

an execution in which 1 is decided (e.g., when all processes propose 1).

Consensus solvability and initial states.

We say that a protocol P solves (weak) consensus if the set of all possible

executions of P satisfies termination, agreement and (weak) validity. A set

S of types is said to implement (weak) consensus if there exists a protocol P

that solves (weak) consensus and, in every execution of P , processes access

only objects of types in S.

We assume here that every atomic object has a predefined initial state. A

state s of an object is called reachable if there is a sequence of operations that

brings the object from the initial state to s. We also use the following result

on deterministic atomic objects [9]:

8



Lemma 1 Let S be any set of deterministic types. If S implements consensus

when objects of types in S are initialized to some reachable state s, then S also

implements consensus when objects of types in S are initialized to the initial

state.

Team consensus.

To prove our first result (next section), we use a restricted form of consensus,

team consensus [8]. This variant of consensus ensures agreement only if the in-

put values satisfy certain conditions. More precisely, assume that there exists

a (known a priori) partition of Π into two non-empty sets (teams). Team con-

sensus guarantees agreement if all processes of the same team have the same

input value. Obviously, team consensus can be solved whenever consensus can

be solved. Surprisingly, the converse is also true [8]:

Lemma 2 Let S be any set of types. If S implements team consensus, then

S also implements consensus.

4 Deterministic types

In this section, we show that, with respect to deterministic types, weak consen-

sus is equivalent to consensus: any set of types that implements weak consensus

also implements consensus.

Theorem 3 Let S be any set of deterministic types that includes register. If

S implements weak consensus, then S also implements consensus.

Proof: Let P be any protocol that solves weak consensus using objects of

types in S.

Let G be the execution graph of P : the vertexes of G are all possible states of

P (defined by the states of the processes and all shared objects), and vertexes

s and s′ are linked with an edge directed from s to s′ if and only if there is a

step of P that, applied to s, results in s′.

9



Following [1], we use the notion of valence of a vertex of G. A state s has a

valence v ∈ {0, 1} if there is a state s′ reachable from s (i.e., there exists a

path in G from s to s′) in which some process decides v. If a state has both

valences 0 and 1, it is called bivalent. If a state has only one valence v, it is

called v-valent. A state is univalent if it is 0-valent or 1-valent. Termination of

weak consensus ensures that any state of P is either bivalent or v-valent for

some v ∈ {0, 1}.

We proceed through the following arguments:

(1) There exists a critical state in G, i.e., a bivalent state s such that ev-

ery step of P applied to s results in a univalent state [1].

(2) Assume that the system is in a critical state s. Consider a step of P

applied to s as follows. Since protocol P and all objects that we use are deter-

ministic, the step of a given process triggers exactly one transition in graph

G. Thus, the valence of the resulting state is defined by the identity of the

process that takes the step. Now we partition the system into two teams Π0

and Π1: Πv (v ∈ {0, 1}) consists of the processes whose steps applied to s

result in a v-valent state. Since s is bivalent, the two teams are non-empty.

Now we can solve team consensus for teams Π0 and Π1 using S as follows. We

associate each team Πv (v ∈ {0, 1}) with register rv. Every process writes its

input value into its team’s register and then runs P starting from its state in

s until it decides. Agreement and validity are ensured as long as members of

the same team propose the same value.

Since team consensus is equivalent to consensus (Lemma 2), we obtain a solu-

tion to consensus from S as long as the objects are initialized to their states

in s. But any solution to consensus using deterministic objects initialized to a

given reachable state can be transformed into a solution of consensus for the

initial state (Lemma 1). Thus, S implements consensus. 2

10



5 Non-deterministic types

It turns out that some non-deterministic atomic objects capable to implement

weak consensus are too weak to implement consensus. To illustrate this, we

introduce a new non-deterministic type which we call rambler. Through access-

ing objects of type rambler, no process can fetch any meaningful information

about other processes: the objects might exhibit the very same behavior for

an arbitrary sequence of accesses. Intuitively, this means that, combined with

registers, the objects of type rambler cannot solve consensus even among two

processes. On the other hand, the type is strong enough to solve weak consen-

sus.

More precisely, type rambler is defined by the tuple (Q,O,R, δ), where:

• Q = {⊥, t0, t1, 0, 1} is the set of its states;

• O = {o0, o1} is the set of its operations;

• R = {0, 1} is the set of its responses;

• and δ, its sequential specification, is

δ = {(⊥, oi, tj, j), (⊥, oi, tj, 1− j),

(t0, oi, i, i), (t1, oi, 1− i, 1− i), (j, oi, j, j)}i,j∈{0,1}

The state transition graph of a rambler object is depicted in Figure 1. The

nodes of the graph define the states of the object and the edges define opera-

tions applied in the states and the corresponding responses.

Note that type rambler is built in such a way that there is no way for a process

to get a clue about other processes through accessing an object of this type

initialized to ⊥. More precisely, objects of type rambler satisfy the following

property:

Lemma 4 Let P be any protocol that uses atomic objects of types in {rambler,register}
and σ be any schedule. Then there is an execution e of P triggered by σ in

which all objects of type rambler return 0 for all invocations.

Proof: We construct execution e triggered by σ as follows. Processes take

11



⊥

t1t0

0 1

(o1, 0), (o1, 1)
(o0, 0), (o0, 1), (o0, 0), (o0, 1),

(o1, 0), (o1, 1)

(o1, 0)

(o0, 0) (o0, 1)

(o0, 0), (o1, 0) (o0, 1), (o1, 1)

(o1, 1)

Fig. 1. State transition graph of rambler.

steps according to σ until an object of type rambler is accessed for the first

time. We assume that the object returns 0 (this is possible for any invocation)

and we do not specify its state until the object is accessed for the second time

(it can be any state in {t0, t1}). Assume that the operation with which the

object is accessed for the second time is oi (i ∈ {0, 1}). Then we postulate that,

after the first invocation, the object has state ti. By the specification of type

rambler, the object returns 0 on the second and all subsequent invocations.

By repeating the argument for every object of type rambler, we obtain an

execution in which all such objects return nothing but 0. 2

Weak consensus with rambler.

Despite the weak “synchronization power” of objects of type rambler empha-

sized in Lemma 4, a single object of the type, initialized to ⊥, can implement

weak consensus: pi just invokes o
i mod 2

twice on the object and decides on

the last returned value. After the first operation, the object is brought to a

state in {t0, t1} and becomes deterministic. Assume that the object is in state

t0. Now if p0 is the first to access it with operation o0, then the decision value

is 0. If p1 is the first to access it, then the decision value is 1. The case when

the state of the object is t1 is symmetric. Thus, there exists a 0-valent and a

1-valent executions, so weak validity is ensured. The protocol returns at most

one value in {0, 1} in any execution, so agreement is also ensured.

12



Impossibility of consensus with rambler.

We proceed by contradiction. Let P be a protocol that solves consensus using

atomic objects of types in {rambler,register}. Consider an execution of P in

which a process pi decides. We call the state of pi just before the decision a

resulting state of pi. Similar to [9,13,14], we define the view graph of P , denoted

by C(P ), as follows. Vertexes of C(P ) represent the resulting states of processes

p0, . . . , pn. Two vertexes are connected by an edge if the corresponding states

can result from the same execution of P .

Before proving that consensus is impossible with registers and objects of type

rambler, we observe that the following property holds:

Lemma 5 Let i and j be any two integers in 0, . . . , n, i 6= j, vi be a vertex of

and vj be any two vertexes of C(P ) corresponding, respectively to i-solo and j-

solo executions of P . Then vi and vj belong to separate connected components

of C(P ).

Proof: Assume, by contradiction, that there are two processes pi and pj

whose solo executions give two vertexes vi and vj of the same connected com-

ponents of C(P ): there is a path from vi to vj in C(P ). Assume pi and pj

proposed, respectively, 0 and 1. By validity of consensus, pi decides 0 in any

i-solo execution, and pj decides 1 in any j-solo execution. Thus, there is an

execution on the path from vi to vj in which different values are decided by

different processes — a contradiction. 2

Theorem 6 No protocol can solve consensus with objects of types in {rambler,register}.

Proof: We establish a contradiction through the following steps.

(1) By Lemma 4, for any schedule σ, there is an execution e of P triggered

by σ in which objects of type rambler return 0 for any invocation. Let C ′

be the subgraph of C corresponding to such executions e.

(2) For all i ∈ {0, 1}, let vi be the vertex of C ′ corresponding to an i-solo

execution. We show in the following that v0 and v1 belong to the same

connected component of C ′.
Assume, by contradiction, that v0 belongs to a component C0 of C ′,

13



and v1 belongs to a component C1 of C ′, disconnected from C0. Then two

processes can solve consensus by using only registers as follows. Every

process pi writes its value in register ri and runs protocol P but, instead

of accessing an object of type rambler, pi assumes that 1 was returned

for the invocation. Finally, the process ends up with a view in C ′. If the

resulting view belongs to C0, the value read in r0 is decided. Otherwise,

the value read in r1 is decided. Termination and agreement are trivially

ensured. Validity follows from the fact that no process can reach a state

in Ci unless pi has taken at least one step of P . By the protocol, before

taking a step of P , pi writes its input value in ri. Thus, no value is decided

unless it is an input value of some process.

So two processes solve consensus using only registers, contradicting [1,

2]. Therefore, v0 and v1 belong to the same connected component of C ′.
(3) It follows from Lemma 5 that v0 and v1 do not belong to the same con-

nected component of C ′ — a contradiction with (2).

Thus, we conclude that no protocol can solve consensus using objects of types

in {rambler, register}. 2

6 Failure detectors

The previous section highlights the existence of a gap between weak con-

sensus and consensus in a distributed system model augmented with (non-

deterministic) object types abstractions. It is natural to ask whether such a

gap also exists in a model where the consensus impossibility is circumvented

using failure detector abstractions [5].

In the following, we first discuss this question in the original model of [5,6]: a

set of asynchronous processes, some of which can fail by crashing, communi-

cate by message passing and can consult failure detector abstractions to get

information about the failure pattern of their current execution. The discus-

sion also applies to a model where, instead of message passing, the processes

would communicate using registers [7].

14



We motivate below the need for slightly revisiting the model. Then we exhibit

a failure detector that implements weak consensus but not consensus, i.e., we

also highlight a failure detector gap.

An issue with the model.

In fact, the weak consensus problem was also discussed in [6], where a failure

detector that implements weak consensus but not consensus was exhibited.

For any failure pattern, this failure detector either permanently outputs 0 at

all processes, or permanently outputs 1 at all processes. It is claimed in [6] that

this failure detector, which we denote here by X , trivially implements weak

consensus: every process just decides on the value obtained from the failure

detector. However, a deeper look a X reveals a fundamental contradiction

with the consensus impossibility [1]: failure detector X can be emulated in an

asynchronous system. Indeed, a “fake” failure detector that outputs 0 for any

failure pattern, emulates X . As a consequence, the fact that X solves weak

consensus would imply that weak consensus is solvable in an asynchronous

system, which, in turn, would contradict [1, 2]. Strange, isn’t it?

The issue here has to do with the very definition of a problem. In [6], a problem

is defined through a set of properties which every execution of a protocol that

solves this problem should satisfy. Strictly speaking, weak consensus is not a

problem in this sense: it is defined through a set of properties which the whole

set of executions of a protocol that solves the problem should satisfy. So in

order to decide whether a given protocol A solves weak consensus, it is not

sufficient to ensure that any execution of A satisfies some properties. What we

need to show is that the set of all executions of A satisfies some properties.

To find out whether the weakest failure detector to implement consensus is

also the weakest to implement weak consensus, we first need to revisit the very

notion of a problem. We do so by (1) defining a problem as a set of properties

P over a set of executions, and then (2) stating that a protocol A solves the

problem if the set of all executions of A satisfies P . This definition is strictly

more general than the one of [6].

The failure detector gap.

15



Now we are ready to define a failure detector, denoted by Y(F0, F1) where F0

and F1 are two failure patterns, that implements weak consensus in the men-

tioned sense but does not implement consensus. Like failure detector X re-

called above, for every failure pattern, Y(F0, F1) either permamently outputs

0 at all processes, or permamently outputs 1 at all processes. Further, for fail-

ure pattern F0, Y(F0, F1) outputs only 0, and, for failure pattern F1, Y(F0, F1)

outputs only 1. A trivial protocol solves weak consensus using Y(F0, F1), for

any two different F0 and F1.

Now we show that some Y(F0, F1) does not implement consensus. Assume, by

contradiction, that there is a protocol A that solves consensus using Y(F0, F1)

where, in F0, some process crashes initially (at time t = 0). We consider a set

of failure patterns in which no process is crashed initially (at time t = 0). By

our assumption, Y(F0, F1) outputs 1 for all these failure patterns. Thus, we

have a solution of consensus in the presence of at least one failure (processes

can fail at any time t > 0) without any failure detector — a contradiction

with [1].

7 Concluding notes

The motivation of this work was the observation that the impossibility of

consensus was established for a weak variant of the problem, namely weak

consensus, whereas research on circumventing the impossibility has been per-

formed on the stronger consensus variant. A posteriori, this is not surprising

because consensus is universal whereas weak consensus is not. Indeed, using

consensus and registers, any type can be implemented. The existence of a

non-deterministic type that implements weak consensus but not consensus

precisely implies that this is not the case with weak consensus.

This paper shows that the gap between weak consensus and consensus also

holds in a system with failure detectors. We have in particular shown that Ω

is not the weakest failure detector to implement weak consensus. Determining

this weakest failure detector remains an open question.

16



Acknowledgments

We are grateful to Partha Dutta for an interesting discussion on the subject,

and to Eli Gafni for his observation that “getting 0 when all start with 1 may

only be the result of non-determinism, intuitively speaking” [15].

References

[1] M. J. Fischer, N. A. Lynch, M. S. Paterson, Impossibility of distributed

consensus with one faulty process, Journal of the ACM 32(3) (1985) 374–382.

[2] M. C. Loui, H. H. Abu-Amara, Memory requirements for agreement among

unreliable asynchronous processes, Advances in Computing Research (1987)

163–183.

[3] M. Herlihy, Wait-free synchronization, ACM Transactions on Programming

Languages and Systems 13 (1) (1991) 124–149.

[4] C. Dwork, N. A. Lynch, L. J. Stockmeyer, Consensus in the presence of partial

synchrony, Journal of the ACM 35 (2) (1988) 288 – 323.

[5] T. D. Chandra, S. Toueg, Unreliable failure detectors for reliable distributed

systems, Journal of the ACM 43(2) (1996) 225–267.

[6] T. D. Chandra, V. Hadzilacos, S. Toueg, The weakest failure detector for solving

consensus, Journal of the ACM 43(4) (1996) 685–722.

[7] W.-K. Lo, V. Hadzilacos, Using failure detectors to solve consensus in

asynchronous shared-memory systems, in: Proceedings of the 8th International

Workshop on Distributed Algorithms (WDAG’94), Vol. 857 of LNCS, Springer

Verlag, 1994, pp. 280–295.

[8] E. Ruppert, Determining consensus numbers, SIAM Journal of Computing

30 (4) (2000) 1156–1168.

[9] E. Borowsky, E. Gafni, Y. Afek, Consensus power makes (some) sense!, in:

Proceedings of the 13th Annual ACM Symposium on Principles of Distributed

Computing (PODC’94), 1994, pp. 363–372.

17



[10] P. Jayanti, Wait-free computing, in: Proceedings of the 9th International

Workshop on Distributed Algorithms (WDAG’95), Vol. 972 of LNCS, Springer

Verlag, 1995, pp. 19–50.

[11] P. Jayanti, Robust wait-free hierarchies, Journal of the ACM 44 (4) (1997)

592–614.

[12] M. Herlihy, J. M. Wing, Linearizability: a correctness condition for concurrent

objects, ACM Transactions on Programming Languages and Systems 12 (3)

(1990) 463 – 492.

[13] O. Biran, S. Moran, S. Zaks, A combinatorial characterization of the distributed

tasks which are solvable in the presence of one faulty processor, in: Proceedings

of the 7th Annual ACM Symposium on Principles of Distributed Computing

(PODC’88), 1988, pp. 263–275.

[14] M. Herlihy, N. Shavit, The asynchronous computability theorem for t-resilient

tasks, in: Proceedings of the 25th ACM Symposium on Theory of Computing

(STOC), 1993, pp. 111–120.

[15] E. Gafni, Private communication (2003).

18


