
Mobile Computing with Frugal Objects

Benoı̂t Garbinato
Université

de Lausanne
Ecole des HEC

CH-1015 Lausanne

benoit.garbinato@unil.ch

Rachid Guerraoui
Ecole Polytechnique Fédérale

de Lausanne (EPFL)
School of Computer &

Communication Sciences

CH-1015 Lausanne

rachid.guerraoui@epfl.ch

Jarle Hulaas
Ecole Polytechnique Fédérale

de Lausanne (EPFL)
School of Computer &

Communication Sciences

CH-1015 Lausanne

jarle.hulaas@epfl.ch

Ole Lehrmann Madsen
Aarhus University

Department of

Computer Science

DK-8200 Aarhus N

ole.l.madsen@daimi.au.dk

Maxime Monod
Ecole Polytechnique Fédérale

de Lausanne (EPFL)
School of Computer &

Communication Sciences

CH-1015 Lausanne

maxime.monod@epfl.ch

Jesper Honig Spring
Ecole Polytechnique Fédérale

de Lausanne (EPFL)
School of Computer &

Communication Sciences

CH-1015 Lausanne

jesper.spring@epfl.ch

ABSTRACT
This paper introduces a simple event-based model for pro-
gramming resource-limited mobile devices. Its originality
lies in its adaptability and frugality. With this model, a pro-
gram consists of a set of distributed frugal objects, called
FROBs1, that communicate through typed events and that
may dynamically adapt their behaviors based on resource
availability.

To achieve frugality, a FROB relies on two resource aware-
ness mechanisms: the ability to express resource needs be-
fore executing an action, and a logical time-slicing model
to control resource-consuming tasks (typically loops). Re-
source needs are expressed via a resource model describing
CPU, memory, bandwidth, etc., whereas logical time-slicing
makes it possible to remove loops completely. Adaptability
is then achieved by dynamically changing the set of event
types a FROB can accept and the set of corresponding ac-
tions for treating them. In particular, a FROB can shift
its capabilities in case of contention, or augment its set of
actions at runtime by downloading code from some remote
FROB.

We illustrate the use of our model on a concrete peer-to-
peer audio streaming example, showing in particular how
it supports graceful service degradation due to shortage of

1Random small things: The Free On-line Dictionary of Com-
puting, http://www.foldoc.org/

resources at runtime. We also evaluate our approach via
a first prototype of our model based on Sun’s Java KVM
targeted at resource constrained devices.

1. INTRODUCTION
As millions of mobile devices are being deployed to become
ubiquitous in our private and business environments, the
way we do computing is changing. We are moving from
static and centralized systems of wire-based computers to
much more dynamic frequently changing distributed sys-
tems of heterogeneous mobile devices. These devices, which
might be embedded, are typically communication capable,
loosely coupled, and constrained in terms of resources avail-
able to them. In particular, it is expected that many of such
devices be frugal in terms of processing power, storage and
bandwidth, for these may or not be available, depending
on the mobility pattern and the solicitations. The devices
might communicate using wireless LANs, satellite links, cel-
lular networks, or short-range radio links.

The software components of mobile devices are usually sup-
posed to automatically discover each other on the network
and join to form ad-hoc communities enabling mutual shar-
ing of each others functionalities by offering and lending
services.

In an ever changing environment, the resource awareness of
the components and their ability to provide a high degree
of adaptability are paramount to their operation. Adapt-
ability means here, for a component, the ability to adjust
the level of service it offers following changes in the resource
availability [31, 17].

To illustrate one aspect of adaptability through a simple
example, imagine a mobile service offering to stream some
audio upon request to interested mobile clients. To start
with, the audio service might be able to offer the first few
interested clients an audio stream with 128 kilobits high-

quality audio. If more interested audio clients show up in
the surrounding and request the audio stream, the audio
service might be forced to reduce the quality of the stream
to cope with the demand. This service degradation might
occur a number of times before the service might actually
decide to reject additional requests until it has more avail-
able resources.

Despite the importance of adaptability and resource aware-
ness, very few systems address these issues in a unified co-
herent framework, as detailed in [33], and as we briefly sum-
marize in the related work section. Most systems that are
marketed for mobile computing are scaled-down descendants
of programming models designed with coarse-grained static
applications in mind. These include specific variants of the
Java [19] and .Net frameworks [28].

We argue that the principles that should drive the design of
a computing model for frugal mobile devices lead instead to
fundamentally revisit that filiation. Three principles seem
of primary importance:

1. Exception is the norm. The distinction between the
notion of a main flow of computing and an exceptional
flow (i.e., a plan B) is rather meaningless in mobile
environments. As discussed above, the software com-
ponent of a device should adapt to its changing en-
vironment and cannot predict the mobility pattern of
surrounding devices or even the way the resources on
its own device will be allocated. The fact that some-
thing exceptional is always going on [33] calls for a
computing model where several flows of control can
possibly co-exist, or even be added or removed at run
time.

2. Resources are luxuries. Just like it is nowadays consid-
ered normal practice that a software component is able
to adjust to specific changes on some of its acquain-
tance components, and react accordingly, we argue for
a computing model where the components can react to
the shrinking of local resources, as well as to changes to
their communication capabilities. This calls for a com-
puting model where the components are made aware
of the resources they use, and can use them in a fru-
gal way. The fact that resources are luxuries also mean
that certain greedy programming habits, such as loops,
forks or wait statements, should be used, if at all, par-
simoniously.

3. Coupling is loose. Many distributed computing mod-
els have been casted as direct extensions of centralized
models through the remote procedure call abstraction
(e.g. [32, 29, 38]). This abstraction aims at promoting
the porting of centralized programs in a distributed
context. Clearly, such abstraction makes little sense
when the invoker does not know the invokee, or even
know whether there is one at a given point in time.
Some of the extensions to the abstraction, including
futures [35] (also called promises [26]) only address the
synchronization part of the problem. Mobile environ-
ments rather call for anonymous and one-way commu-
nication schemes.

Needless to say, devising a robust computing model that,
while obeying the above principles, remains simple to com-
prehend yet implementable on small devices, is rather chal-
lenging. The aim of our work is precisely to face that chal-
lenge, through a candidate computing model based on FROBs.

In our model, a program is modeled as a set of reactive frugal
objects, called FROBs. FROBs are units of distribution that
communicate through events and adapts the set of event
types they can handle and the way they handle them at
any point of their computation according to the resources
they have at their disposal. The FROBs are deployed and
executed on a FROB runtime, which provides a common
infrastructure for communication and resource awareness.

1.1 Typed Events, Conditions and Actions
In the FROB model, computing is triggered by typed events
that regulate the anonymous and asynchronous communi-
cation between FROBs. A FROB can specify, at any point
of its computation, (a) the type of events it can process, (b)
its actions, i.e., how the events should be processed, and (c)
its conditions, i.e., under which circumstances (in terms of
resource availability) the actions should be processed.

The set of typed events that a FROB can process acts as
its interface. Interfaces are used by the runtime to dispatch
events to the FROBs within a device, or even by a cluster-
head in an ad-hoc network to route events within a certain
geographical zone2, see Figure 1.

½

FROB
Device

condition

action

F
R

O
B

 C

queue

interface
FROB
Device

condition

action

F
R

O
B

 B

queue

FROB
Device

F
R

O
B

 D
F

R
O

B
 A action

2

3

2

3

4

4

Event
diffusion & routing

publish()

1

interface

Figure 1: Event-based Interacting FROBs

Once an incoming event matches the interface of a FROB,
it becomes a candidate to trigger a computation within that
FROB.

When an incoming event actually triggers a computation de-
pends of the conditions expressed by the FROB. Conditions
provide the means for a FROB to specify resource-based
scheduling strategies, as well as priority-based concurrency

2Although not covered in depth in this paper, these inter-
faces along with the typed events also provide means of inte-
grating FROB-based systems with traditional back-end sys-
tems.

control schemes. The conditions of a FROB are ordered and
are matched against events accordingly.

An action is a sequential unit of computing that is executed
based on some event. The action might modify the FROB’s
state, as well as its behavior, by adding or removing event
types to/from the interface, conditions and actions.

Each condition is associated with an action through a trig-
ger, which is an atomic unit of computing. The atomicity
of the condition-action pair significantly simplifies execu-
tion and concurrency control. Although reachable to the
runtime, the triggers, conditions and actions are considered
part of the internals of a FROB – its state – and are invisible
to the outside (particularly to other FROBs).

1.2 Adaptability based on Resource Aware-
ness

The FROB model promotes adaptability based on resource
awareness in the system on several accounts. In order to
handle certain events, the FROBs actively have to request
necessary resources; they have to request the runtime to
give some resources to them. This is necessary in order for
the FROB to have enough resources available to execute
the action. In addition, the FROBs are passively informed
by the runtime about critical changes in the resource levels
to which they can choose to respond.3 Since the runtime
manages resources shared between multiple FROBs, over
time the demand for resources might change in such a way
that the resource availability gets constrained. In this case,
the runtime thus requests the FROBs to willingly give up
some of the shared resources.

1.3 Dynamic Code Replacement, Distribution
and Mobility

As mentioned above, FROBs are adaptive to changes in re-
sources. This adaptability is expressed in terms of changing
its interface or changing internal behavior. Whereas the
former involves adding or removing event types to the al-
ready existing interface, the process of adapting behavior is
typically done through replacement of code, which in inher-
ently supported in the FROB programming model. The act
of changing interface or changing internal behavior through
behaviour replacement is done dynamically during runtime.

The code used to replace existing code in a FROB might
be loaded locally or received from another possibly remote
FROB. The FROB model provides means for the FROBs
to exchange individual parts of their code rather than the
entire code, which can then be used to upgrade code in a
fine-grained manner during runtime.

The FROB model also allows mobility as part of the adap-
tation to changes in resource availability. As such, FROBs
can adapt to resource changes by requesting the runtime to
be migrated to another devices, where it can better exploit
remote resources. If both the source and destination run-
time agrees to this migration, the runtime will migrate the
running FROB.

3Assuming that the FROBs have subscribed to these event
types in their interfaces.

1.4 Prototype Implementation
We have implemented a prototype of the FROB runtime
on top of the Java KVM virtual machine, which as part of
the J2ME CLDC/MIDP [36, 37] platform is targeted at re-
source constrained mobile devices. The current prototype
implementation of the FROB runtime adds a memory over-
head of approximately 117 kilobytes or roughly 5% to the
J2ME CLDC platform version 1.1.4

Using this FROB runtime, we have implemented a demand-
ing scenario involving ad-hoc audio streaming between mo-
bile devices. This scenario is especially challenging from an
adaptability point of view. It enables FROB-based clients to
discover peer audio providers and to request permission and
obtain the functionality needed to play the provided audio
stream.

It should be stressed that although this paper uses Java,
or rather a deliberate subset of the language constructs, for
the FROB runtime implementation and particularly the sce-
nario, it is only as a prototyping platform. As such, this does
not imply that the FROB model is bound to Java nor any
other particular language or execution platform.

1.5 Contributions
To summarize, the contributions of the paper are a candi-
date event-based computing model, which promotes resource-
based adaptability through a notion of typed yet dynamical
(i.e. which can change during runtime) interface, as well
as the ability to change behavior through code distribution,
replacement and migration.

The rest of the paper is structured as follows. Section 2
overviews related work, and positions the FROB comput-
ing model with respect to alternative distributed comput-
ing models. Section 3 describes the main concepts underly-
ing the FROB model and gives an overview of the scenario
used throughout the paper. Section 4 describes the resource
awareness scheme underlying the FROB model as well as
aspects of resource-based adaptability. In that section, we
also exemplify these aspects through extensions of the audio
streaming scenario. Section 5 evaluates the FROB model by
also describing the prototype runtime (based on the small
Java J2ME CLDC platform) on which FROBs are currently
executed, along with some initial measurements on memory
requirements. Finally, Section 6 gathers some final remarks.

2. RELATED WORK
As we pointed out in the introduction, the computing mod-
els currently marketed by the industry for building mobile
applications, such as Java CLDC [36] and .Net Compact
Framework [28], are descendents of programming models
used to build traditional applications for more static envi-
ronments. Unfortunately, neither the models, nor their run-
time support, provide the constructed applications with ad-
equate ability of combined adaptability and resource aware-
ness. Although there have been attempts to address aspects
of adaptability in certain variants of such systems, such as [4,
41], these only focus on very coarse-grained levels of adapt-
ability. The focus is solely on connectivity: a subset of the

4Running MIDP version 2.0 augmented with additional
packages as described in Section 5.

centralized programming model and a trimmed down ver-
sion of the runtime system are provided.

SEDA [42] is an event-based approach which focuses, like we
do, on designing systems that behave gracefully even under
severe load; however, whereas SEDA proposes a rather fixed
architecture for Internet servers, FROBs aim at representing
a more general-purpose computing programming model.

There is no broadly accepted programming model for re-
source management, and, a fortiori, resource awareness. Sev-
eral prototypes have been proposed, using Java as execu-
tion platform, such as the Aroma VM [40], KaffeOS [5]
and the Multi-tasking Virtual Machine (MVM) [11], which
suffer from their lack of portability, and therefore appli-
cations running on such platforms may not be deployed
throughout a large variety of devices, including embedded
systems. JRAF2 [7] is a resource management framework
that is portable, since it is based exclusively on bytecode
instrumentation of applications, middleware and runtime
support [22]. JRAF2 has been tested in many settings, from
grid computing to desktop applications, including, with some
limitations, embedded devices.

Another important obstacle that researchers in resource man-
agement are facing, is that efficient resource management
also requires appropriate isolation (such as Unix processes)
between the supervised entities, in order to prevent un-
wanted interferences such as deadlocks when a misbehaving
entity is sentenced to be throttled or killed. Whereas Java
does not yet provide such a facility, research is currently
pursued in that direction [12].

For very resource constrained devices, the most notable pro-
ject is TinyOS [21], which is centered around sensor net-
works. Like TinyOS, the FROB model is based on an event-
based programming model, which resource-wise is a cheap
alternative to multi-threading systems that are expensive in
terms of stack management and over-provisioning of stacks,
as well as locking mechanisms [14]. TinyOS provides re-
source awareness in the sense that it has been designed to
be conservative in its resource consumption; but it cannot
in any way adapt to changes in the levels of resource by
changing behavior. Compared to TinyOS where the code,
once linked and deployed on a device, cannot be changed,
the FROB platform provides fine-grained means for non-
interrupted runtime code replacement.

The Maté [25] project addresses this issue by providing a vir-
tual machine for TinyOS devices on which very small blocks
of code, capsules of 24 instructions, can be replaced. How-
ever, limited to small blocks of code, this solution is still
very inflexible compared to the FROB model.

Other projects, such as [14, 30], have also addressed adapt-
ability – though still somewhat inflexible – with predefined
service levels and infrastructure responsibility to actually
initiate the possible changes.

The FROB programming model has its roots in the seminal
work of Dijkstra on guarded commands [13] and its deriva-
tives [6]. The underlying idea is to divide the programming
into a set of atomic actions protected by predicates. A pred-

icate determines the exact conditions under which a certain
action can be executed. In the FROB context, these pred-
icates, called conditions, typically evaluate the availability
of resources that are needed to perform a given action, and
help express priority-based concurrency control strategies.
Interestingly, condition/action pairs themselves are guarded
by an interface of event types that the FROB is willing to
accept at any point in time of its computation.

Unlike many distributed computing models [23, 3, 43], only
one action at a time is executed by a FROB, and actions
do not contain synchronization statements. Besides the un-
derlying issues of thread and CPU management, such state-
ments (e.g., wait, fork/spawn) break the atomicity of the
actions and significantly complicate code upgrading, concur-
rency control, and resource-based reasoning. In particular,
remote procedure calls, be completely synchronous, or semi-
synchronous through the use of futures [35] or promises [26],
are precluded within FROB actions. If needed, they are
programmed through events and conditions across several
action executions. In this sense, our model is close to the
actor model [20, 1], and more precisely its actorspace [2]
variant with anonymous event-based communication (itself
inspired by [24]). There are however three important differ-
ences. First, whereas an actor is an immutable object (state
changes are achieved through the creation of new actors -
become statement), a FROB is on the contrary expected to
change its state and behavior. This has a direct impact on
the programming style but also, and may be more impor-
tantly, on the runtime management of object identities and
memory allocation. Second, the notion of (internal) condi-
tion, which is an inherent part of our model, provides a flex-
ible way to devise concurrency control and resource-based
scheduling strategies. The development of such strategies
using only send and become statements of the actor model
clearly leads to the explosion of a program into many in-
dependent actors, which hampers resource-based reasoning
and code upgrading. Third, FROBs have a type oriented
notion of interface. At any point in time, the set of event
types that a FROB can handle is precisely defined, and this
facilitates code reuse and prevents casting errors.

Like Emerald [23], the FROB computing model supports
migration of running processes. However, unlike Emerald,
the FROB computing model does not support migration the
process’ thread. The FROB computing model is inherently
threadless, and thus maintains a loose coupling between the
actions and the thread executing them. The threads are
assigned to the execution of actions by the runtime in a
time-slicing scheme. Given this time-slicing scheme, and
the fact that, within any FROB, only one action at a time is
executed, the checkpointing of the runtime state of a running
process between two action executions is straightforward.

The FROB computing model is inherently anonymous and
asynchronous, without any global clock concept, unlike in
purely synchronous models [9], or even hybrid models like [10].5

Processes are notified of events following a type-based pub-
lish/subscribe interaction pattern [15, 16] (unlike most con-
current programming languages [23, 3, 43]) and do not need

5Of course, more coupled forms of communication abstrac-
tions can easily be developed on top of the basic FROB
communication infrastructure.

to pull a shared space for events they are willing to treat
(unlike in Linda [18]).

3. THE FROB COMPUTING MODEL
As illustrated in Figure 2, from the computing viewpoint,
a FROB basically consists of: (1) an interface made up of
event types, (2) a FIFO ordered queue of events, and (3) an
ordered list of triggers (each made of a condition and an
action).

The interface and triggers (including the conditions and ac-
tions) are contained in a data structure called a dictionary
(see (4) in Figure 2). The dictionary also references other
parts of the state and code of the FROB – in all cases typed
entities. In this sense, the dictionary represents the FROB.
Since slots are always named6 and their content must be ref-
erenced through this name, this level of indirection makes
it possible to redefine behavior by changing their content.
In fact, all entries in the list of triggers (i.e., the individual
conditions and actions) are names referring to slots in the
dictionary where the actual condition and action are located.

The event queue of the FROB (2) is not contained in the
dictionary and is under the sole control of the runtime, i.e.,
the FROB has no direct access to it and its only way to con-
sume events is by defining adequate triggers. This enforces
a declarative model of programming with multiple flows of
control.

D
ic

tio
na

ry

Published
events

(<condition>, <action>)
(<condition>, <action>)
(<condition>, <action>)

. . .

”interface”

”triggers”

<action>

<variable>

1 2 3

4

code

state

In
te

rfa
ce <event type>

<event type>
<event type>

Figure 2: Programmer’s View of a FROB

The runtime places published events into the event queue
of a FROB if they match at least one of the event types in
its interface. If there are events in the queue, the runtime
evaluates each event against all triggers of the FROB, in
the order defined by the event queue and the trigger list,
and executes the first trigger that evaluates to true. In this
context, evaluating a trigger actually means evaluating its
condition, whereas executing a trigger means executing the
code corresponding to its action. This code is accessible as
a named slot in the dictionary.

3.1 Events
An event is the basic entity to which FROBs react, i.e.,
an event might cause an action in a FROB to be executed.
The events serve as communication units between multi-
ple FROBs, whether deployed on different devices or on

6In Figure 2 illustrated by names in quotes (for specific
names) or enclosed in <> (for some name).

the same device. The events are typically published by the
FROBs themselves, but might also be generated by the run-
time following some internal event.

FROB denotes a frugal object
e denotes an event
E = {e1 < e2 < ... < en} denotes a queue of

accepted events
E ∈ FROB and is denoted FROB.E

Figure 3: Events on the Event Queue

All events received and accepted by a FROB are put on the
FIFO ordered event queue associated with the FROB (in
Figure 3) for further processing.

An event can have an expiration time associated. The time-
out defines the maximum time that an event may live be-
fore having to be processed by a FROB. After this time, the
event expires and (a) is thus not disseminated any more,
and (b) the event is removed from the event queue of the
FROB after which the runtime notifies the FROB through
a system event describing that the original event expired. It
is optional whether the FROBs want to react to this system
event.

3.2 Interfaces
An interface expresses what typed events a FROB will react
to. For an incoming event to be added to the FROB’s event
queue, the FROB must have expressed interest in the event.
This is done through the interface, which consists of a set of
event types. The event types can be defined by a name and
possibly a predicate expression.

If a FROB is interested in an event, it accepts it and puts
it on its event queue; otherwise it ignores it. The properties
and operations of the interface are seen in Figure 4.

i denotes an event type
I = {i1, i2, ..., in} denotes a set of registered
event types on the interface

dic denotes a dictionary
dic ∈ FROB
I ∈ dic and is denoted FROB.I

operations on I :
I = {i1, ..., in} ` I.add(ix) ⇒ I = {i1, ..., in, ix}
I = {i1, ..., ij , ..., in} ` I.remove(ij) ⇒ I = {i1, ..., in}

event type matching :
e : event ` i : e → {true, false}

Figure 4: Interfaces and their Operations

The acceptance of an event is decided on the result of match-
ing the event against the interface of the FROB. The evalu-
ation of the event against the interface is done externally –
based only on the received event – and thus independently
of the internal state of the FROB. The procedure involves
matching based on (a) the event type, and also possibly (b)
event content. Thus, if the event has a type not represented
in the interface, then the event does not match and is ig-
nored. On the contrary, if the event has a type represented
in the interface, the matching continues on the content of

the event, if required. To perform the match on the con-
tent of the event, it first has to be deserialized after which
the predicate-based expression can be matched against the
contents of the event.

Using these interfaces, two FROBs can model a point to
point communication scheme on top of the underlying com-
munication scheme. This can be done through the spe-
cialized event types with appropriate predicate expression
matching an address name, which the events sent between
the FROBs include.

3.3 Triggers
A trigger represents the common interface between an event
and an action. The FROB represents this interface through
an ordered list of triggers, which the FROB through the dic-
tionary can manipulate at any time during runtime. The or-
dering in the list has the effect of prioritizing triggers during
their inspection. The properties and operations of triggers
are depicted in Figure 5.

t denotes a trigger
T = {t1 / t2 / ... / tn} denotes an ordered list

of triggers
T ∈ dic and is denoted FROB.T

operations on T :
T = {t1 / ... / tn} ` T.add(t, i) ⇒

T = {t1 / ... / ti / ... / tn}
T = {t1 / ... / ti / ... / tn} ` T.remove(i) ⇒

T = {t1 / ... / tn}

Figure 5: Triggers and their Operations

A trigger is a logical abstraction that binds a condition
with an associated action. Since conditions and actions
are named entries in the dictionary, they can be associated
through multiple triggers concurrently.

3.4 Conditions
A condition is used to express when the action of the trig-
ger should be executed, that is, under which resource-based
circumstances. A condition is a combination of predicates
expressed in terms of the event, internal FROB state (rep-
resented by the dictionary), and system properties provided
by the runtime (i.e. available computing resources etc.). A
condition is bound to events of a given type.

A condition – or rather its predicate expressions – is evalu-
ated in the context of a given event, which was accepted by
the FROB’s interface. During this evaluation, the condition
cannot change the internal FROB state – only query values
in the dictionary. Upon evaluating a condition to true it
causes the action associated in the trigger to be executed.
An event, which causes a condition to evaluate to true, is
said to be appropriate for processing.

3.5 Actions
An action is a piece of code – located in a named slot in the
dictionary – which defines how the FROB should deal with
an accepted event following the successful evaluation of the
associated condition. This is depicted in Figure 6.

The action is executed in a context consisting of the first
appropriate event (which is removed from the event queue),
and the dictionary of the FROB. Thus, the action can read,
modify and write values in the dictionary. Since the dictio-
nary contains everything that defines the FROB, an action
has the ability to completely redefine the FROB behavior –
even the action itself; dynamically upgrading a FROB can
for example be achieved that way.

c denotes a condition, element of the set C
a denotes an action, element of the set A

t is a trigger ⇔ t = (c, a) ∈ C ×A
R denotes the resource domain
event e, dictionary dic, R r ` c(e, dic, r) :

E × dictionary ×R → {true, false}

Figure 6: Conditions and Actions

The runtime guarantees that the action executes atomi-
cally with respect to the FROB, i.e, two actions of the
same FROB cannot execute concurrently. In addition, since
FROBs are encapsulated entities, they cannot share state
(i.e. entries in the dictionaries). This combination elimi-
nates the need for synchronization on entries in the dictio-
nary.

An action might publish events to other FROBs (or to it-
self), using the non-blocking publish primitive provided
by the runtime, which provides best-effort delivery. Events
can be published to all interested FROBs (by specifying no
explicit receiver) or explicitly addressed to a specific receiv-
ing FROB (including itself) using some event types.

3.6 FROBs
A FROB contains all entities described above: a dictionary,
the interface, the triggers along with other state and code,
and its queue of events. FROBs are isolated entities, which
cannot reference each other directly. Instead, to collaborate
they publish events.

3.6.1 Life-cycle Properties
Once deployed on a runtime, the FROB is then executed and
active. A FROB eventually becomes idle when its queue of
events is empty; there is nothing for the FROB to react to.

If a FROB contains an empty set of triggers, or if the FROB’s
interface and event queue are empty, and the FROB is not
executing an action, it is declared dead and garbage col-
lected by the runtime as depicted in Figure 7.

FROB.E = ∅ ⇔ FROB is idle
FROB.T = ∅ ∨ (FROB.I = ∅ ∧ FROB.E = ∅) ⇔

FROB is dead

Figure 7: FROBs Life Properties

Having only an empty interface is not sufficient to declare a
FROB dead. There still might be some events in its event
queue that the FROB can react to when the conditions are
satisfied, which might cause new event types to be added to
the interface.

3.6.2 Code Distribution Aspects
As mentioned earlier, FROBs can publish events to each
other. These events typically contain raw data. However,
FROBs can also send code to each other such as actions or
even entire dictionaries.

The sending of entries, such as actions, between FROBs en-
ables one FROB to inherit partial functionality from another
one by, for instance, integrating the received action into its
own dictionary. This is very useful in order to adjust say the
level of service between two collaborating FROBs, or correct
a faulty piece of code.

In contrast, the sending of whole dictionaries allows for dis-
tribution of complete and isolated functionality. Since the
dictionary is basically the FROB, a FROB can be created
from any dictionary.

3.7 The FROB Runtime
The runtime supports the ability of a FROB to spawn an-
other FROB (on the same runtime) from a dictionary. The
provided dictionary (including its entries) is cloned to pre-
vent multiple FROBs from sharing data. Being able to
spawn a FROB from a dictionary, it is possible to distribute
encapsulated functionality between runtimes, which is useful
for instance through a proxy or when migrating a FROB.

3.7.1 Receiving and Accepting Events
An event is received by an individual FROB by adding it
to the end of the FIFO ordered queue, which conceptually
is associated with each deployed FROB, where it will await
further processing. Figure 8 depicts the runtime operations
on the event queue.

e denotes an event

operations on E :
E = {e1 < ... < en} ` E.add(ex) ⇒

E = {e1 < ... < en < ex}
where ei is the next event in the queue

Figure 8: Runtime Operations on the Event Queue

When the runtime receives an incoming event, it checks if
any deployed FROBs are interested in the event, i.e., any in-
terfaces containing event types matching the incoming event
have been registered. If the runtime finds a FROB having
registered an event type in its interface that matches the in-
coming event, a copy of the incoming event is then stored in
the FROB’s queue of accepted events for further processing
as seen on Figure 9.

_
i∈FROB.I

i(e) = true ⇒ (FROB.E).add(e)

Figure 9: Accepting incoming Event

3.7.2 Processing Accepted Events
The runtime continuously processes the event queue of the
deployed FROBs through iteration as long as the queue is
non-empty. During each iteration, at most one event at a

time can be removed from the queue – the first appropriate
event found in the queue, if any, for which a trigger evaluates
to true. This processing is illustrated in Figure 10.

x denotes the first event, which for the trigger
evaluates to true

x : event `
H(x) = ∃ti@tj(ti, tj ∈ FROB.T ∧ tj / ti∧

ti(x) = true ∧ tj(x) = true)

∃ei@ej(ei, ej ∈ FROB.E ∧H(ei|x) ∧H(ej |x)
∧ ej < ei) ⇒ ei /∈ FROB.E ∧ execute(a)

Figure 10: Processing the Queue of Events

When an event is removed from the queue, and the action
executed with the event, the iteration restarts from the be-
ginning of the queue.

3.8 A FROB Scenario
To demonstrate the viability of the FROB model, we have
designed and implemented a scenario on audio streaming
between mobile devices. The scenario provides several chal-
lenges in terms of adaptability to changes in resources. As
such, the scenario includes resource adaptability following
change in connectivity (the service that one relies on ap-
pears/disappears), workload (the number of clients request-
ing audio streaming) and resilience (in terms of having re-
sources to provide audio data in a steady stream).

coverage area of audio provider

?

on-demand

music stream

Existing wireless
audio receiver

Audio provider

Incoming wireless
audio requestor

collaboration protocol

Figure 11: The Audio Streaming Scenario

The scenario involves multiple devices running FROBs; one
FROB provides audio streaming capabilities to a number of
interested client FROBs wanting to play the audio stream
it provides, as illustrated by Figure 11.

The devices are all connected to some wireless network on
top of which they form an ad-hoc network. Once the net-
working capabilities have been set up, the server and client
initiates mutual discovery. Having discovered each other,
the FROBs start negotiation for collaboration, i.e. the client
FROB requests the server FROB for permission to use its
service – receive the audio stream. Having gained permis-
sion, the client receives the capabilities to decode the audio
stream after which the audio streaming starts.

The scenario also exposes problems inherent to ad-hoc net-

works and resource aware devices/runtimes, like, for instance,
how the audio provider should react as the number of re-
questing audio clients is growing (can the same quality of
service be provided, when and how should the service then
be degraded?) etc.

4. FRUGALITY AND ADAPTABILITY
Key to the FROB model is the built-in support for frugality
in terms of available resources as well as its various sup-
port forFROBs to adapt to changes in their environment,
including the resource availability. This support is present
at different levels in the model: the language level and in
the runtime.

4.1 Logical Time-Slicing Model
The FROB computing model promotes a programming style
where long running procedures are split up into small, short-
lived event-based execution units (actions), which, once ex-
ecuted by the runtime, are allowed to run to completion.
The resource requirements of these individual actions are
thus limited in terms of actual resource amount needed and
required duration.

These actions are executed based on accepted events. Events
in some FROB’s queue are thus interpreted by the runtime
as requests to ultimately get some execution time. The run-
time can thus be seen as providing a kind of logical time-
slicing model; a queued event represents a request for some
time-slice, which is granted when the action consuming that
event is executed.

This scheme of small, short-lived execution units is also pro-
moted by the fact that the FROB programming model pre-
cludes the use of loops, forks, and synchronization primitives
in the actions. This, for instance, prevents the execution of
an action from thread monopolizing the CPU. In addition,
since the computing model defines no blocking primitives, a
FROB has no way to compromise liveness either.7

In a way, the computing model requires loops to be explicitly
unfolded. As such, internal loops are programmed using the
event system that explicits the need for more CPU cycles to
the runtime. For this purpose, the FROB has to publish an
event for which it has specified the appropriate event type as
part of its interface. So, although loops and recursive calls
are syntactically absent from our model, iterative processing
can still be achieved, but in a way that prevents starvation
or violation of liveness. Indeed, the runtime benefits from
an explicit control point during the iteration, in the form
of an event representing the time-slice request for the next
iteration.

Similarly, fork or wait statements are achieved through events
that systematically yield the control to the runtime. Be-
sides concurrency control and resource-based reasons, these

7One alternative considered for a practical application, one
might want to allow loops/recursion yet still prevent this
monopolization and ensure liveness by defining a maximum
execution time for an action. After this maximum execution
time the runtime would terminate the uncompleted action.
This would however require transactional execution of the
action to prevent the state from being undefined following
a termination.

explicit control points also make it easier to checkpoint, mi-
grate and manipulate (i.e. behavioral change) the FROB.

In the audio streaming scenario, the whole scenario has been
implemented using short-lived actions. For instance, to per-
form the actual streaming, we have implemented an action
in the audio stream provider that reacts to an event-based
request to send the next chunk of audio data. Once this ac-
tion is executed (and the event is consumed), the next piece
of the audio data is read and published to the requesting
audio client.

4.2 Requesting Action Resources
Core to observe frugality is to react to a given event in
a resource aware manner. Our model promotes resource-
aware programming by allowing conditions to be expressed
in terms of resource requirements of the associated action.

The conditions represented as predicates are evaluated by
the runtime, as depicted in Figure 12, which based on in-
ternal resource monitoring and control, will determine if the
conditions can be satisfied or not, and in the former case
reserve and provide the resources to the FROB. The re-
source model defined in the runtime is non-restrictive in the
sense that it does not prevent an action in a FROB from
consuming more resources than potentially specified by its
associated condition.8

R denotes the resource demand domain
CPU denotes the CPU rate requirement
Memory denotes the Memory requirement
Bandwidth denotes the Bandwidth requirement
r = (c, m, b) ∈ CPU ×Memory ×Bandwidth

denotes a resource requirement

Resource request predicate :
r : CPU ×Memory ×Bandwidth → {true, false}

Figure 12: Resource Definition

The resources managed by the FROB runtime include those
tied to the physical platform such as CPU rate, memory
and bandwidth. By specifying the resource requirements,
the runtime guarantees – once the conditions have been sat-
isfied – that the required resources will be available to the
action throughout its execution. For CPU, this means that
the runtime guarantees that, once the action is executed, it
is on average given enough CPU cycles to execute at the
requested rate. This is critical to actions with software-
based real-time aspects. Likewise, for memory, the runtime
guarantees that no failures due to memory allocations will
occur. For bandwidth the resource model can guarantee lit-
tle in terms of absolute guarantees due to external events
stemming from the loosely coupled environment of the de-
vice. Instead, the guarantee must be expressed as relative
to the connectivity present, if any. Figure 13 illustrates a
condition in the dictionary expressing resources.

If a condition specifies no resource requirements, the run-

8However, there is nothing in the FROB model that fun-
damentally prevents the use of a more restrictive resource
implementation where each resource allocation and deallo-
cation made in an action has to be explicitly approved by
the runtime.

D
ic

tio
na

ry

. . .

”interface”

”triggers”

”condChkAud”

4

CPUrate = 10 Memory = 64

Figure 13: Requesting Resources in Condition

time will execute the associated action in a best-effort way,
meaning that it cannot guarantee that the action will be
performed at for instance a given CPU rate, and thus might
be interrupted for short periods, nor guarantee that the re-
quired memory is available, which thus might cause memory
related runtime errors.

Using the ability to express resource requirements for an ac-
tion, a FROB might for instance define two triggers that can
handle the same event type, where the condition of the first
trigger expresses how to handle the event in the best-case
(where all its required resources are available), and condi-
tion of the the second expresses what to do, if the required
resources cannot be provided by the runtime.

In the above audio streaming scenario, this ability to be-
have in a frugal manner by performing certain actions only
when required resources are available, is heavily used. As an
example, we use it in the audio receiver to play the actual
audio packet received in the event. By requesting these re-
source requirements, the audio receiver knows that, once the
action starts executing, the runtime guarantees the resource
requirements which allows the action to run to completion
without any resource related errors.

4.3 Reacting to Resource Notifications
The runtime constantly monitors resource consumption of
the FROBs that are deployed. This information is acces-
sible to the FROBs via an interface in the runtime. From
this interface, the FROBs can query the current resource
availability on which they can base decisions.

However, the resource model in the runtime is additionally
pro-active in the sense that it notifies the deployed FROBs if
major changes in resource availability occurs. The simplicity
of our model results from the consistent use of typed events
and conditions to control the life cycle of a FROB. For ex-
ample, no exception mechanism is provided: special events
are used instead, e.g., to indicate a shortage of resource.

It is optional for the FROBs to react to these resource re-
lated system events. However, it is in the best interest of
all FROBs to collaborate with the runtime, as the runtime
might otherwise be forced not to allocate time-slices to a
given non-collaborative FROB.

By responding to these system events, the FROBs might
be, for instance, informed that the runtime is running low on
memory and thus asked to free as much memory as possible,
which it, for instance, might do by degrading the level of
service that it offers. When a FROB changes its level of
service, it typically involves changing its internal behaviour,
but also its interface; that is, the event types it is interested

in receiving as depicted in Figure 14. A FROB may react to
many such resource notification events during its lifetime,
and thereby either adjust its provided level of service up or
down.

Published
events

1

In
te

rfa
ce ”HiQAudioPacket”

”AudioProviderAnn”
...

(a) Before Interface Change

Published
events

1

In
te

rfa
ce ”LoQAudioPacket”

”AudioProviderAnn”
...

(b) After Interface Change

Figure 14: Changing Interface of a FROB

Continuing the above scenario, such resource notifications
may both affect the audio provider and the audio client. For
instance, if the audio provider receives a resource notifica-
tion event from the runtime telling that the level of available
resources is low, the audio streaming FROB may initiate a
service level degradation. Such degradation might involve
stopping to respond to certain requests and instead react to
others. However, since the audio clients are all adjusted for
the actual level of service provided by the audio provider,
the audio clients (or possibly only part of them) might be
forced to adapt to this new level of service too. Thus, the
consequence of a service degradation following such a re-
source notificiation might disseminate to the audio clients
too. On the other hand, if a single audio client receives a
resource notification from its runtime, that it needs to lower
its resource consumption, the audio client might ask the au-
dio provider to adjust as well. However, in this case, the
audio provider would only degrade the level of service for
this single audio client.

The dynamic interface in itself also provides means for re-
source awareness. The event types defined in the FROB’s in-
terface basically express which events the FROB can handle,
that is, among other things, should be capable of deserial-
izing. This enables the FROB model to have a fine-grained
notion of deserializers. So, rather than having a general
deserializer capable of deserializing all possible events, the
FROB model loads a deserializer per event type in the in-
terface, and thus only spends memory resources on loading
the capabilities it really needs. Any deserializers no longer
needed (i.e. no event types in the interface) are thus un-
loaded from the runtime to free resources.

4.4 Adapting through Code Distribution, Re-
placement and Migration

Behavioural change comes either in the form of replacing
a FROB’s existing behaviour or by distributing new capa-
bilities to the FROB. Code distribution is an efficient way
to distribute the code representing this behavioural change
between FROBs. As mentioned earlier, individual pieces of
code (i.e., actions) representing small pieces of functional-
ity or some complete functionality, provided in a dictionary,
might be distributed between FROBs.

In the above audio streaming scenario, these capabilities are
used to distribute new functionality in order for the request-
ing audio client to be able to read and decode the stream dis-
tributed from the audio stream provider. This new function-
ality is distributed to the audio client by the audio provider
as part of their collaboration negotiations. This functional-
ity, represented by a dictionary, is, once received, spawned as
a separate FROB on the runtime of the client. Once running
and streaming audio, the individual actions in the dictionary
of this FROB might be replaced. For instance, if the audio
provider degrades its level of service to an extend, which
requires parts of the decoding functionality running in the
audio client to be replaced. In this case, the audio provider
would simply send the audio client the new action(s) to be
installed.

Another aspect of adaptability is related to migration of
code. The FROB runtime and infrastructure provides means
for a FROB to request its runtime to be migrated to an-
other runtime. Such a request might be initiated by the
FROB having received a resource notification from the run-
time that, for instance, the battery level is getting so low
that the device cannot continue operations for a longer pe-
riod.

4.5 Resource Aware Runtime
The adaptability in the form of code distribution, mobility
and replacement is typically motivated based on resource
availability reasons. However, the FROB model does not
mandate the support of all these forms of adaptability in
the runtime. Instead, the FROB model promotes a flexible
form of adaptability, where a FROB can adapt on different
levels depending on the capabilities on the device on which
the FROB is deployed. For instance, some devices might
be specialized for a single application and thus not support
migration of FROBs in any way.

In addition to just monitoring resource consumption and re-
quest changes in resource usage from the FROBs, the run-
time itself is also obliged to observe frugal behavior and act
accordingly in order to prevent resource related runtime er-
rors from occuring within the runtime.

The issue of resource consumption in the runtime is par-
ticularly related to the collaboration between the runtimes
on different devices, and thus the exchange of data such as
events and code, which at some point in the life-time of
the runtime might cause problems with resources. For in-
stance, the runtime might receive an event, which due to
its size combined with the available resources cannot be de-
serialized, or the runtime might receive events faster than

a FROB can consume. In such cases, the runtime might
choose to drop an event immediately and inform the FROB
about the dropped event9, or it may choose to wait to see if
required resources would be available.

5. EVALUATION

5.1 Prototype Implementation
We have implemented the FROB runtime using the Java
programming language and tested it on J2ME CLDC10 [36]
version 1.1 from Sun Microsystems. This platform is tar-
geted at network-connected mobile and embedded devices.
The platform is for devices typically having a 16- or 32-bit
processor running at about 12-32 MHz and having 160 KB
ROM and 192 KB of RAM.

Using the prototype implementation of the FROB runtime,
we have implemented the scenario as described in Section 3.8
and made it run under J2ME CLDC. To this end we had
to augment the standard installation with optional pack-
ages from the J2ME Wireless Toolkit version 2.2 to give the
platform audio capabilities. For the actual implementation
of the mobile multimedia scenario, we are using a subset of
the Java language, such as not using loops, as required by
our model.

Compared to the scenario in Section 3.8 we have had to
divert from it in a few areas, which stems from the fact
that the KVM virtual machine included in J2ME CLDC has
limitations, which restrict it to dynamically loading classes
only from its deployed jar-file and thus not from remote
locations. Hence, FROBs can only exchange classes which
are known at deployment time. In the J2ME CLDC version
of the FROB runtime it is not possible to send an unknown
implementation of for instance actions or other executable
code entries in the dictionary. In other words, compared to
the scenario, the actual sending of code from audio provider
to audio client had to be removed. Instead, the audio client
and the audio provider only exchange raw data – the audio
stream.

Thus, the adaptability of these FROBs is currently limited
in that they cannot exchange new functionality through new
code; they can only communicate data. Despite the result-
ing adaptability limitation mentioned earlier, the FROBs
can still adapt to changes in resource availability and adjust
their service level, as long as these capabilities are imple-
mented by code already available at deployment time.

5.2 Base FROB Model in Java
On our current Java platform, a FROB is represented by
an abstract class encapsulating a dictionary, which is then
subclassed by various implementations – an excerpt of one
such subclass is depicted in Figure 15. The corresponding
constructors then simply populate their FROB dictionary
with their respective interface, triggers, conditions and ac-
tions. As such, subclassing is merely used as a structuring
mechanism, rather than for actual typing purposes.

9Such a notification would of course be event based, and
would be received by the FROB if the FROB accepts such
events according to its interface.

10Using the MIDP 2.0 profile

Event types, conditions and actions are all implementations
of their respective Java interfaces; Actions, for instance, re-
ceive different implementations for handling discovery events,
streaming events etc., as needed for the scenario. Likewise,
events are represented by a marker interface without any
method definitions as the semantics of a given event is ir-
relevant to the runtime. Triggers are instances of a class
representing a tuple containing the name of a condition and
an action. Since Java does not directly support predicate
expressions in the language, conditions are represented as
standard logical expressions encapsulated inside methods.

public class AudioStreamingFROB extends FROB {

/**
* Constructor.
*/
public AudioStreamingFROB() {

// add initialization action
getDictionary().put("init",

new AudioStreamingInitAction());

// add action for handling announcement requests
getDictionary().put("announcementRequest",

new AnnouncementRequestAction());

// add condition for handling announcement requests
getDictionary().put("announcementRequestCondition",

new AnnouncementRequestCondition());

// get trigger list
final LinkedList tList = Helpers.getTriggerList(this);

// associate condition and action in trigger
tList.add(new Trigger("announcementRequest",

"announcementRequestCondition"));
...

}
}

Figure 15: Excerpt of a Java-based Representation
of a FROB

5.3 A Closer Look at The FROB Runtime
The FROB model relies on a common runtime to be first
installed on all devices on which deployed FROBs are to be
executed. This runtime – whether built on top of a virtual
machine or itself being integrated into a specialized virtual
machine – ensures independence from the underlying hard-
ware. It is responsible for hosting and executing FROB-
based applications as well as monitoring and controlling re-
sources. It also has to provide an infrastructure for allow-
ing the deployed FROBs to communicate via typed events.
In addition, it must support distribution of code between
FROBs and mobility of FROBs between devices.

The runtime enables event-based communication between
FROBs (inside and between devices) in a loosely coupled
manner. In addition, a set of FROB libraries is provided,
that deployed FROBs can use (via event communication)
to, for instance, discover other FROBs on the network, to
set up collaboration between FROBs, to manage migration

of FROBs, or to receive a notification if a given FROB sud-
denly becomes unavailable on the network. An illustration
of the interaction between the runtime and FROBs is de-
picted in Figure 16.

Resource
Notification

Event R
untim

e
H
ardw

are

Network MemoryCPU

Q:

Dictionary

Q:

Dictionary

Event
System

Resource
System

Monitoring

Figure 16: A platform with two deployed FROBs

The base infrastructure of the FROB runtime consists of
three main components; an event manager, a resource man-
ager and a number of FROB containers.

1. The event manager is responsible for enabling event-
based communication between FROBs. The commu-
nication between FROB runtimes is based on simple
broadcast-based communication. For this event han-
dling, the event manager uses two threads, which are
respectively listening for incoming events as well as
distributing them naively (i.e. giving a copy to each
FROB without looking at FROB interfaces) among the
deployed FROB containers.

2. The resource manager is responsible for monitoring
and controlling the resources of the runtime. Since nei-
ther of the standard Java virtual machines provide the
required level of resource control needed for the FROB
runtime to monitor and allocate resources, the resource
control of the FROB runtime prototype is based on a
simple simulation built directly into the runtime.The
resource control is simulated by hardcoding a fictitious
amount of CPU, memory and bandwidth into the re-
source manager from which the conditions can request
allocations. Upon having enough spare resources to
meet the requirements expressed in a condition, the
resource manager temporarily subtracts the resources
required, after which the action associated with the
condition is executed. Once the action has been exe-
cuted, the allocated resources are handed back to the
resource manager.

3. Each FROB is executed within an enclosing, single-
threaded container, which holds the associated event
queue of the FROB. The container, which is consid-
ered part of the runtime, is assigned a thread when

loaded, which (a) matches accepted events against the
FROB interface, (b) matches accepted events against
conditions, and (c) executes actions. Nothing prevents
a simple thread pool enabling sharing of threads be-
tween FROB thereby reducing the number of threads
and avoiding statically assigning a thread to a FROB.

As a general principle, the FROB runtime ensures that new
events can be received continuously while accepted events
in the FROBs are being processed. The runtime dedicates
at most one thread per deployed FROB for processing of
accepted events and execution of actions. Since each FROB
only has a single thread, there is no internal synchroniza-
tion problems stemming from concurrency. This does how-
ever not preclude a solution where parallelism, when offered
by the underlying OS and hardware, would be actively ex-
ploited inside the platform, but this would have to be trans-
parent to the programmer.

5.4 Measurements
We performed some measurements on the prototype imple-
mentation of the FROB runtime as well as the implementa-
tion of the scenario as described in Section 3.8. We focused
on the code size and memory usage. The results are depicted
in Figure 17.

Code Size Memory Usage
Runtime 63 13
Libraries 26 1
Application 28 4
Total 117 14

Figure 17: Empirical Measurements Code Size (un-
compressed class files) and Memory Usage of FROB
Elements (in kilobytes)

Compared to the typical memory budget of a KVM deploy-
ment of respectively 256 kilobytes [39], the FROB runtime
in its prototype implementation thus entails a memory over-
head of approximately 5%.

5.5 Virtual Machine Support
Based on the experiences gained with the implementations
of our prototype, combined with an investigation of other
virtual machines targetted for resource constrained mobile
devices, among others the SmallTalk based OSVM [34] from
OOVM, we have constructed a list of required features that
a virtual machine designed for the FROB platform should
provide in order to support all features of an ideal FROB
platform.

• Resource Control – low-level control of resources such
as CPU, memory, bandwidth etc. to enable allocation
of resources and provide guarantees for resource avail-
ability to meet resource requirements expressed in the
conditions of a FROB.

• Dynamic Classloading – for code distribution purposes,
loading of classes sent between FROBs, thereby en-
abling exchange of new code such as actions.

• Class Unloading – for memory consumption purposes,
unloading of classes no longer needed by the FROB
runtime.

• Broadcasting – to enable the FROBs to discover and
communicate.

Though there seem to be some way to achieve dynamically
loading and unloading of classes in some virtual machines for
non-mobile devices11, these capabilities – or parts of them
– seem typically to be left out of platforms for small devices
such as J2ME CLDC and OSVM.

5.6 Overall Evaluation
On the basis of the above prototype, we were able to demon-
strate a convincing example of non-trivial mobile computing,
to present some encouraging concrete numbers and to col-
lect detailed information on the issues in implementing the
proposed computing model.

More fundamentally, the ingredients of our model (time-
slicing, event-based, dynamic change of interfaces, code mo-
bility) were selected deliberately and carefully in response
to the limitations of standard programming conventions.

Further evaluation will consist in weighing up the conse-
quent strengths and weaknesses of the FROB model as an
answer to the challenge of implementing agile, light-weight
adaptive resource-aware systems. One of the questions that
will have to be addressed is whether the model is appropri-
ate in terms of programmer productivity: does it provide
the right abstractions for mastering the complexity, does it
contribute to reduce errors when implementing highly con-
nected, but resource-frugal software? It is true that sev-
eral design choices in the model, such as preventing ex-
plicit loops, seem to lead to a rather low-level programming
style, but we believe that proper language constructs can at
least partly compensate for that. Another difficulty stems
from the new level of adaptability that FROBs offer by en-
abling code to be dynamically modified, at a very fine gran-
ularity. This facility may become a trap if used without
proper methodology. We are currently developing libraries
for FROB-based programming. In particular, we are ab-
stracting some of the main FROBs in our streaming scenario
in the form of a reusable library, along the line of [8]. More
generally, the idea is to end up with fine-grained libraries
of event types and triggers. Particularly, we are working on
such libraries for improving resource awareness capabilities
as used in the scenario.

Another question is whether the model leads to efficient im-
plementations, with lower system load, and does it favour
good throughput of event handling? Whereas the current
prototype was built in Java on top of a KVM, a dedicated
language and VM will be more appropriate to reduce dis-
crepancies between the model and its implementation, and
hence provide fair numbers. We are therefore experiment-
ing with a specialized virtual machine which integrates the
functionality of the FROB runtime. This shall also enable

11For instance, the Java J2SE virtual machine can achieve
these capabilities through the use of custom classloaders.

more direct control over physical resources than what is pos-
sible with virtual machines such as KVM and OSVM. Many
behind-the-scene optimizations are furthermore to be ex-
plored, such as to route internal, self-addressed events more
directly than in the general case.

6. CONCLUDING REMARKS
This paper discusses the challenge of devising a computing
model for mobile devices. The paper answers some of the
questions underlying that challenge in the form of the FROB
computing model and runtime.12

On the basis of a prototype running on the Java platform for
resource-constrained devices, we were able to demonstrate
a demanding example of peer-to-peer mobile computing, to
present some encouraging concrete deployment figures and
to collect detailed information on the issues in implementing
the proposed computing model.

Further experiments are needed and many FROB aspects
need to be refined. Among these aspects, abstractions for
code reuse have not been discussed and further research
is needed to explore how (abstract) classes, (open) inter-
faces and inheritance could be appropriately used in our
context [27].

Acknowledgements
This work is conducted under the PalCom project, financed
by the European Community under the Future and Emerg-
ing Technologies initiative. We are very grateful to our part-
ners in the project for many interesting discussions, in par-
ticular Peter Andersen, Lars Bak, Erik Ernst, Monique Cal-
isti, Steffen Grarup, Dominic Greenwood, Kasper V. Lund,
Boris Magnusson, Martin Odersky, and Reiner Schmidt.

7. REFERENCES
[1] G. Agha. Actors: a model of concurrent computation

in distributed systems. MIT Press, 1986.

[2] G. Agha and C. J. Callsen. ActorSpace: an open
distributed programming paradigm. In Proceedings of
the 4th ACM SIGPLAN symposium on Principles and
practice of parallel programming, pages 23–32. ACM
Press, 1993.

[3] J. Armstrong. The development of Erlang. In ICFP
’97: Proceedings of the second ACM SIGPLAN
international conference on Functional programming,
pages 196–203. ACM Press, 1997.

[4] K. Arnold, B. O’Sullivan, R. Scheifler, J. Waldo, and
A. Wollrath. The Jini Specification. Addison-Wesley,
1999.

[5] G. Back, W. Hsieh, and J. Lepreau. Processes in
KaffeOS: Isolation, resource management, and sharing
in Java. In Proceedings of the Fourth Symposium on
Operating Systems Design and Implementation
(OSDI’2000), San Diego, CA, USA, oct 2000.

12We have chosen a name (FROB) for our computing model
that hopefully conveys its experimental nature, rather than
names of dead mathematicians like Pascal, Occam, Euclid
or Erlang.

[6] H. E. Bal, J. G. Steiner, and A. S. Tanenbaum.
Programming languages for distributed computing
systems. ACM Comput. Surv., 21(3):261–322, 1989.

[7] W. Binder and J. Hulaas. A portable
CPU-management framework for Java. IEEE Internet
Computing, 8(5):74–83, Sep./Oct. 2004.

[8] A. P. Black, J. Huang, R. Koster, J. Walpole, and
C. Pu. Infopipes: an abstraction for multimedia
streaming, multimedia systems. Multimedia
Middleware, 8(5):406–419, 2002.

[9] F. Boussinot and R. de Simone. The Esterel language.
In Proceedings of IEEE, volume 79, pages 1270–1282,
1991.

[10] E. Cheong, J. Liebman, J. Liu, and F. Zhao.
TinyGALS: a programming model for event-driven
embedded systems. In Proceedings of the ACM
symposium on Applied computing, pages 698–704.
ACM Press, 2003.

[11] G. Czajkowski and L. Daynès. Multitasking without
compromise: A virtual machine evolution. In ACM
Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’01),
Tampa Bay, Florida, oct 2001.

[12] G. Czajkowski, S. Hahn, G. Skinner, P. Soper, and
C. Bryce. A resource management interface for the
Java platform. Software Practice and Experience,
35(2):123–157, nov 2004.

[13] E. W. Dijkstra. Guarded commands, nondeterminacy
and formal derivation of programs. Commun. ACM,
18(8):453–457, 1975.

[14] A. Dunkels, B. Grnvall, and T. Voigt. Contiki - a
lightweight and flexible operating system for tiny
networked sensors. In Proceedings of the First IEEE
Workshop on Embedded Networked Sensors 2004,
2004.

[15] P. T. Eugster, P. Felber, R. Guerraoui, and A.-M.
Kermarrec. The many faces of publish/subscribe.
ACM Comput. Surv., 35(2):114–131, June 2003.

[16] P. T. Eugster, R. Guerraoui, and C. H. Damm. On
objects and events. In Proceedings of the 16th ACM
SIGPLAN conference on Object oriented
programming, systems, languages, and applications,
pages 254–269. ACM Press, 2001.

[17] A. Frei, A. Popovici, and G. Alonso. Event based
systems as adaptive middleware platforms. In
Proceedings of the 17th European Conference for
Object-Oriented Programming, 2003.

[18] D. Gelernter. Generative communication in Linda.
ACM Transactions on Programming Languages and
Systems, 7(1):80–112, 1985.

[19] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java
Language Specification, Second Edition.
Addison-Wesley, 2000.

[20] C. E. Hewitt. Viewing control structures as patterns
of passing messages. Journal of Artificial Intelligence,
8(3), June 1977.

[21] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for
networked sensors. In Proceedings of the 9th
international conference on Architectural support for
programming languages and operating systems, pages
93–104. ACM Press, 2000.

[22] J. Hulaas and W. Binder. Program transformations
for portable CPU accounting and control in Java. In
Proceedings of PEPM’04 (2004 ACM SIGPLAN
Symposium on Partial Evaluation & Program
Manipulation), pages 169–177, Verona, Italy, August
24–25 2004.

[23] E. Jul, H. Levy, N. Hutchinson, and A. Black.
Fine-grained mobility in the Emerald system. ACM
Transactions on Computer Systems, 6(1):109–133,
1988.

[24] W. A. Kornfeld and C. E. Hewitt. The scientific
community metaphor. IEEE Transactions on Systems,
Man, and Cybernetics, 11(1):24–33, January 1981.

[25] P. Levis and D. Culler. Maté: A tiny virtual machine
for sensor networks. In Proceedings of the 10th
International Conference on Architectural Support for
Programming Languages and Operating Systems, 2002.

[26] B. Liskov and L. Shrira. Promises: Linguistic support
for efficient asynchronous procedure calls in
distributed systems. In Proceedings of the ACM
SIGPLAN conference on Programming Language
design and Implementation, pages 260–267, 1988.

[27] S. Matsuoka and A. Yonezawa. Analysis of inheritance
anomaly in object-oriented concurrent programming
languages. pages 107–150. Research directions in
concurrent object-oriented programming, MIT Press,
1993.

[28] Microsoft. Microsoft .NET framework.
http://www.microsoft.com/net.

[29] Microsoft. DCOM Technical Overview (Microsoft
White Paper), 1999.

[30] A. Mukhija and M. Glinz. A framework for
dynamically adaptive applications in a self-organized
mobile network environment. In ICDCS Workshops,
pages 368–374, 2004.

[31] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E.
Tilton, J. Flinn, and K. R. Walker. Agile
application-aware adaptation for mobility. In
Proceedings of the 16th ACM symposium on Operating
systems principles, pages 276–287. ACM Press, 1997.

[32] OMG. The Common Object Request Broker:
Architecture and Specification, February 1998.

[33] K. Raatikainen. A new look at mobile computing. In
Proceedings of Academic Network for Wireless
Internet Research in Europe (ANWIRE) Workshop in
Athens, May 2004.

[34] Resilient. OSVM. http://www.oovm.com.

[35] J. Robert H. Halstead. MULTILISP: a language for
concurrent symbolic computation. ACM Transactions
on Programming Languages and Systems,
7(4):501–538, 1985.

[36] Sun Microsystems. Connected Limited Device
Configuration. http://java.sun.com/products/cldc.

[37] Sun Microsystems. Mobile Information Device Profile.
http://java.sun.com/products/midp.

[38] Sun Microsystems. Java Remote Method Invocation –
Distributed Computing for Java (Sun Microsystems
White Paper), 1999.

[39] Sun Microsystems. J2ME Building Blocks for Mobile
Devices, 2000.
http://java.sun.com/products/cldc/wp/KVMwp.pdf.

[40] N. Suri, J. M. Bradshaw, M. R. Breedy, P. T. Groth,
G. A. Hill, R. Jeffers, T. S. Mitrovich, B. R. Pouliot,
and D. S. Smith. NOMADS: toward a strong and safe
mobile agent system. In Proceedings of the 4th
International Conference on Autonomous Agents
(AGENTS-00), NY, jun 2000.

[41] UPnP Forum. Universal Plug and Play Specification v.
1.01. http://www.upnp.org.

[42] M. Welsh and D. Culler. Overload management as a
fundamental service design primitive. In Proceedings of
the Tenth ACM SIGOPS European Workshop, 2002.

[43] A. Yonezawa and M. Tokoro. Object-oriented
concurrent programming. MIT Press, 1987.

