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Abstract

This paper introduces a new probabilistic specification
of reliable broadcast communication primitives, called A-
Reliable Broadcast. This specification captures in a precise
way the reliability of practical broadcast algorithms that,
on the one hand, were devised with some form of reliabil-
ity in mind but, on the other hand, are not considered reli-
able according to “traditional” reliability specifications.

We illustrate the use of our specification by precisely
measuring and comparing the reliability of two popular
broadcast algorithms, namely Bimodal Multicast and 1P
Multicast. In particular, we quantify how the reliability of
each algorithm scales with the size of the system.

1. Introduction

The growing interest in peer-to-peer computing has un-
derlined the need for reliable broadcast algorithms deploy-
able at large scale. Traditionally, the reliability of broadcast
algorithms has been defined by three properties [6]:

Integrity For any message m, every correct process de-
livers m at most once, and only if m was previously
broadcast by sender(m).

Validity If a correct process p broadcasts a message m,
then p eventually delivers m.

Agreement If a correct process delivers a message m, then
every correct process eventually delivers m.

To obtain these strong properties in a system with pro-
cess and link failures, one employs costly, traditionally
acknowledgement-based algorithms. These can be effective
in a local environment, but may give unstable or unpre-
dictable performance under stress, and hence tolerate lim-
ited scalability.
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More pragmatic approaches to broadcast focus on per-
formance in very large-scale settings, and sacrifice strong
reliability guarantees (in the sense of [6]) to performance.
Examples include the Internet Multicast Usenet (MUSE)
protocol [7], or a broad range of so-called network-level
protocols building on IP Multicast [3] (e.g., Reliable Multi-
cast Transport [8]). The reliability of such protocols is typ-
ically expressed in best-effort terminology: if a participant
discovers a failure, the “most reasonable” effort is made to
overcome it, but there is no guarantee that such an attempt
will be successful. In short, best-effort reliable algorithms
are simply not intended to satisfy the traditional properties
of Reliable Broadcast [6].

Birman et al [2] proposed a new look at broadcast reli-
ability. In the context of their gossip-based Bimodal Mul-
ticast algorithm, they characterized a useful reliable broad-
cast algorithm through a set of properties including the fol-
lowing:

Atomicity The protocol provides a bimodal delivery guar-
antee, under which there is a high probability that each
broadcast will reach almost all processes, a low prob-
ability that each broadcast will reach just a very small
set of processes, and a vanishingly small probability
that it will reach some intermediate number of pro-
cesses. That is, the traditional atomic “all or nothing”
guarantee becomes “almost all or almost none”.

This property is very appealing from a practical view-
point, but still rather informal.

The aim of this work is to introduce a precise measure to
quantify the intuitively understandable notion of reliability
used in practice. In other terms, we do not aim at introduc-
ing an original broadcast algorithm which would be more
reliable than others, but at defining what the very statement
“more reliable” may mean.

To this end, we introduce a new probabilistically fla-
vored, non-binary, specification of the reliability of broad-
cast algorithms called A-Reliable Broadcast. Through this
specification, we contribute to bridging the gap between
theory and practice in broadcast reliability.

In short, A-Reliability measures a probability distribu-
tion for the reliability degree of a broadcast algorithm. The



use of probabilities enables the capture, to a certain extent,
of the nondeterminism inherent to large-scale systems.

We illustrate the use our measure through two well-
known examples. The first one, Bimodal Multicast [2], is a
representative of the rapidly proliferating family of gossip-
based algorithms which have received much attention lately,
precisely because they are “pretty reliable”. As a repre-
sentative of the class of best-effort algorithms often used
in practice, namely the network-level protocols, we dis-
cuss [P Multicast [3] on top of which many other “reliable”
network-level broadcast protocols are built.

We also demonstrate the use of A-Reliability in com-
paring broadcast algorithms by contrasting Bimodal Multi-
cast and IP Multicast, confirming that, in most practical en-
vironments, Bimodal Multicast is “more reliable” than IP
Multicast, especially as the system grows in size. This is in-
sofar unsurprising as IP Multicast has not been designed to
be reliable, yet illustrates the usefulness of our specifica-
tion in.quantifying the difference between algorithms.

The practical use of our A-Reliability measure is further-
more illustrated through the scalability analysis of Bimodal
Multicast which illuminates very attractive scalability prop-
erties of the algorithm.

Roadmap. Section 2 introduces A-Reliability. Section 3
discusses the A-Reliability of Bimodal Multicast. Section
4 similarly applies our specification of A-Reliability to IP
Multicast. Section 5 illustrates the use of A-Reliability in
comparing broadcasting algorithms through Bimodal Mul-
ticast and IP Multicast. Section 6 concludes with final re-
marks, also on the applicability of our specification.

2. A-Reliable Broadcast: specification

This section presents our approach to measuring, in a
probabilistic sense, the reliability of a broadcast algorithm.
(Alternatives are discussed in [4].)

2.1. System and environment

We consider an asynchronous (in the sense of [6]) sys-
tem II of processes {p1, .., pn}. Processes are connected
through fair lossy channels of infinite capacity. Let m be
any message, uniquely identified and equipped, in partic-
ular, with a parameter sender(m). Processes communi-
cate by message passing defined by the primitives send(m)
and receive(m). Broadcast is defined by the primitives
broadcast(m) and deliver(m). Processes are subject to
crash failures. A correct (in a given algorithm run) process
is one that never crashes (in that run). To simplify presenta-
tion, we do not consider Byzantine failures, and we assume
that crashed processes do not recover.

The analysis of a broadcast algorithm usually depends
on more properties of the underlying system than only its

size and composition, as well as on parameters of the al-
gorithm itself. Henceforth, we will use the term environ-
ment, denoted &, to refer to the set of relevant system prop-
erties and algorithm parameters. Environment £ represents
a point in an environment space E, a set of all possible com-
binations of parameters: £ € E.

Let By and By be two broadcast algorithms that have
different sets of parameters in their respective environments
&1 and &;. To compare the algorithms we introduce a com-
pound environment - a union of the two environments,
€ = &1 U &,. Note that the composition makes sense only
if the related parameters in £; and & do not contradict. For
example, if the system models for B; and B, comprise the
probabilities of an end-to-end message loss, respectively,
€1 € &1 and g4 € &, then g1 = £45. Otherwise, the compar-
ison does not seem meaningful. In Section 5 we will illus-
trate this through the concrete examples.

2.2. A-Reliable Broadcast

Let A be any pair of real numbers (¢, p) (¢, p € [0,1]).
We say that a broadcast protocol complies with the speci-
fication of A-Reliable Broadcast (or a broadcast protocol
is A-Reliable) iff the following properties are simultane-
ously satisfied with probability .

Integrity For any message m, every correct process de-
livers m at most once, and only if m was previously
broadcast by sender(m).

Validity If a correct process p broadcasts a message m then
p eventually delivers m.

A-Agreement If a correct process delivers a message m,
then eventually at least a fraction p of correct processes
deliver m.

Properties Validity and Integrity here are the same as in
traditional Reliable Broadcast [6].

Agreement, as defined in [6], is transformed here into A-
Agreement which is less restrictive in terms of the number
of processes that need to deliver the message and also has a
probabilistic flavor.

2.3. Interpretation of p and 1

A = (1, p) represents a basic “reliability measure” of a
broadcast algorithm. The values of ¢ and p are intrinsically
coupled: ¢ can roughly be pictured as the probability with
which at least a fraction p of processes behave according to
the properties of Reliable Broadcast [6]:

Reliability probability ¢: 1) is the probability that a proto-
col run behaves “properly”. That is, once a message
m is broadcast by a correct process, “enough” correct
processes eventually deliver m.



Reliability degree p: p defines the fraction of correct pro-
cesses which eventually deliver m.

For instance, to satisfy the properties of A-Reliable Broad-
cast with A = (¢p = 0.95, p = 0.9), once a message m is
broadcast, an algorithm should, with probability 0.95, de-
liver m to 90% of correct processes in the system. In other
terms, in a run of the system with 10 correct processes, one
can expect 95% of all messages which are broadcast to be
delivered by at least 9 processes (not necessarily the same
processes for every message).

2.4. Reliability distribution function

In a practical system, with a given required reliability
degree p, several broadcast algorithms can easily be com-
pared along the v they offer for the given p. To give an in-
formal measure of the general performance in terms of re-
liability of a broadcast algorithm, several samples Ap...Ag
are usually sufficient. A precise expression of the reliabil-
ity of such an algorithm requires however the consideration
of the probabilities for all possible p € [0, 1], especially
when comparing two algorithms in general. Indeed, con-
sider two algorithms B; and By and a set Ag,=(0.9, 0.9)
and Ap,=(0.85, 0.9). Algorithm B seems to perform bet-
ter for pp, = pp, = 0.9. However, this information is not
sufficient to promote algorithm B; as “more reliable” than
algorithm Bs, since for pﬁgl = 9392 = 0.95, algorithm B,
might offer a ¢, of 0.8, while in the case of algorithm By,
g, might be only 0.7.

To compare two algorithms in a more general manner,
we define a reliability distribution function ¥ g(p,€) of a
broadcast algorithm B:

Yp :[0,1] x E— [0, 1] (1)

such that for any p € [0,1] and £ € E, B is A-Reliable
with A = (¥5(p, ), p).

As a direct consequence of the definition of A-
Agreement — a sample in which a fraction pg of pro-
cesses deliver every message is also a sample in which ar
least any fraction p € [0, po] of the processes deliver ev-
ery message — (p) is a monotonically decreasing (with
respect to p) function.

Note however, that by the size of “a fraction p of n pro-
cesses” we mean [pn]. Accordingly, 1)(p) is not represented
by a continuous function, but manifests steps.

2.5. Comparing broadcast algorithms

Consider a reliability range V = [p1, p2] C [0, 1], that
is, a range of values for the reliability degree p which is of
interest in the context of a comparison.

In the sense of A-Reliable Broadcast, in the environment
&, an algorithm By is more reliable in V = [p1, p2] than an

algorithm By iff

VpeV: ¢p, (pa g) > VB, (pa E); and
dpo € V : ¢B1(P055) > ¢B2(POa5)l

Similarly, in the environment &£, an algorithm Bj is said to
be strictly more reliable in NV = [p1, p2] (p2 > 0) than an
algorithm By iff

VpeV,p#0: ¢, (p,E) > VB, (p,E) 3)

We exclude here p = 0, because for any broadcast algo-
rithm B: ¢5(0) = 1.

Finally, in the environment &, an algorithm By is more
reliable than an algorithm Bs iff, in £, By is more reliable
than By in V = [0, 1]. Analogously, in the environment &,
an algorithm By is strictly more reliable than an algorithm
B, iff, in £, By is strictly more reliable than By in V =
[0,1].

@)

2.6. Atomicity

The reliability distribution function can be used to de-
fine the probability that a certain number of processes de-
liver the message as a result of an algorithm run. More pre-
cisely, the probability that the fraction p of correct processes
that delivered a broadcast message (in a given environment
&) is larger than p; but smaller than p; (0 < p; < p2 < 1)
can be defined as:

P(p1 < p < p2) =9(p1,E) — Y(p2,€). )

Thus, the following Atomicity predicate (see more exam-
ples in [2]) defines a failed broadcast to be one that reaches
more than a fraction o of correct processes, but less than a
fraction 1 — o of correct processes in a system (o < 1/2).

P(USP<1—U)=¢(075)—¢(1—075)- (5)

[4] discusses several alternative non-binary specifications
of broadcast algorithms.

2.7. A-Reliable Broadcast: from perfect to useless

A reliability distribution function ¢ in the sense of (1)
can be found for any broadcast algorithm. We demonstrate
this through the following extreme cases.

Dreamcast: One can easily see that an algorithm imple-
menting traditional Reliable Broadcast [6] in a given
environment £ is A-Reliable with A = (1,1). Since
1Y grp is a monotonically decreasing function, this sam-
ple univocally defines ¥ rp: Vp € [0,1] YrB(p,E) =

1 This second condition is necessary to avoid that two equally perform-
ing algorithms are “each more reliable than the other”.



1. One may call such an algorithm perfectly reliable.
As we mentioned earlier in the introduction, its prac-
tical implementation in a network with unreliable pro-
cesses and channels is expensive and not scalable.

Spellcast: A bogus algorithm which does nothing con-
forms to the specification of A-Reliable Broad-
cast such that V€ € E with at least one correct process

andVp € 10,1]:vuB(p,€) =0 @ue(0,€) = 1).

3. Bimodal Multicast

This section focuses on the Bimodal Multicast [2] algo-
rithm. While providing a lower reliability in terms of A-
Reliability than a perfectly reliable protocol, it is in most
cases more scalable and efficient. We first recall the algo-
rithm, and then discuss its A-Reliability.

3.1. Protocol overview

Bimodal Multicast is composed of two subprotocols
structured roughly as in the Internet MUSE protocol [7].
The first is an unreliable, hierarchical multicast (IP Multi-
cast can be used where available) that makes best-effort at-
tempt to deliver each message to its destination. The sec-
ond is a two-phase anti-entropy protocol that operates in
a series of asynchronous rounds. During each round, the
first phase detects message losses; the second phase cor-
rects such losses and executes only if needed.

For the analysis below, we use a simplified version of
the first phase of the anti-entropy protocol of Bimodal Mul-
ticast, which differs from the original protocol in ways
that simplify the discussion without changing the analyti-
cal results (also used by [2]). The algorithm proceeds as
follows [2]. A message m which is gossiped about is at-
tached the number of times it has been forwarded, round.
When a process p receives m for the first time, p deliv-
ers it, and, if the message has been forwarded less than T'
rounds (round < T), forwards m to nf randomly cho-
sen processes by attaching it round + 1. When a process p
broadcasts m, it handles m as if it had received m with 0 at-
tached.

3.2. Model

The stochastic analysis below is based on the assumption
that the execution of a broadcast algorithm can be broken
up into a sequence of synchronous rounds, such that, during
each round ¢, only processes which have gossips with round
number ¢ are gossiping, and every round happens strictly
after all the transmission of the previous round are com-
pleted [1, 2]. Of course, in a real execution, each process
autonomously proceeds in its own asynchronous rounds.

For the following analysis, we assume that failures are
stochastically independent. The probability of a message
loss is € > 0, and the probability of a process crash dur-
ing the protocol execution is 7 > 0. For simplicity, we as-
sume that all incorrect processes are initially crashed. This
implies that dependent link failures like a network partition
are outside of our failure model. At any moment and for
any message m, an infected process is one that already re-
ceived m, an infectious process is an infected one which is
gossiping m in the current round, and a susceptible process
is one that is not infected yet by m. Following [2], we de-
scribe the state of the propagation of a given message n in
round ¢ using the random variables Xy, and Y;, which de-
note the number of susceptible processes and the number of
infectious processes, respectively.Initially, only the broad-
castin process is infected. To summarize the constraints on
the state of the system:

T

X1 + Y1 = Xy, XT+ZY;S =n. (6)
t=0

with initial values Xg = n — 1,Yy; = 1. Note that at any
round ¢, the number of infected processes is n — X;.

3.3. Analysis

Let F = f be the number of incorrect processes in a
given run. We define 3(1 — €)(n — f)/n as the probabil-
ity that a given gossip message m sent by an infectious pro-
cess is successfully received by a given process p;, that is:
(a) the gossiping (infectious) process chooses p; as destina-
tion, (b) message m is not lost in transmission, and (c), pro-
cess p; is correct. Respectively, g5 = 1—3(1—¢)(n—f)/n
is the probability that a certain process did not receive a
given gossip message from a particular infectious process.
If j processes are gossiping in a given round, susceptible
process p; is not infected in this round with probability qgf.

The corresponding stochastic process can be expressed
in the form of a homogenous Markov chain with a transition
matrix defined by:

Pijkif = P(Xyp1 =k, Y1 =l| Xy =4,V =4, F = f)
_ {(;) (1 —qfc)lqﬁ;k k+1=1
0 kE+1#1
(7
The distribution of X;41 and Y341 can be defined as:
P(Xiy1 =k, Yip =1|F = f)
=YY P(X; =i,V =jIF = fipiuy @
i g

Using (6),(7) and (8), we can build a distribution of X7
and Y7. We are interested in the probability that, for some



p € [0,1], not less than a fraction p of correct processes are
infected up to round 7':

Yem(p,EBM) =
=Y P(F=f)P(Xr <n—[p(n—fIF =f)
f

= "Y1 = it ©)
2 (F)a-»
> S P(Xr=iyr=jF =),

i<n—[p(n—f)1 J

where Egpr = (e, 7,1, 3, T) is the set of system and algo-
rithm parameters defining the current environment.

3.4. A-Reliability of Bimodal Multicast

Based on this, we formally characterize the A-
Reliability of Bimodal Multicast [2].

Proposition 1 For any environment Egyr = (e, 7,n,5,T)
and any p € [0,1] Bimodal Multicast [2] is A-Reliable with
A= (¢Bm(p,EBM), p)-

Proof: Validity and Integrity follow directly from the al-
gorithm description and the absence of Byzantine failures:
the sender of a broadcast message delivers the message im-
mediately and a process that receives the broadcast message
delivers it only once. Thus, Validity and Integrity are always
satisfied.

The proof of A-Agreement follows from the analysis
above. Since ¥par(p, Egar) gives the probability of suc-
cessfully infecting at least a fraction p of correct processes,
given that initially one process is infected, A-Reliability
with A= (p, Egnr),p) is guaranteed.

3.5. Approximation of ¥ g (p, Epnr)

Here we present a way to approximate the function
Yem(p, Esrr). We describe the state of the system using
the stochastic process X (t) - the proportion of susceptible
processes in round £.

Neglecting the fluctuation of X (¢) around its conditional
expectation z(t), we have the following deterministic ap-
proximation of the stochastic process:

ot + 1) = z(t)g "D =20), (10)
with the following initial conditions:

#(0)=""1, 2(1) = 2(0)q (1)

Here ¢ = 1 — $(1 — &)(1 — 7). The approach is robust for
large n, when the deviation of X (¢) is comparatively small
[1]. We define the average reliability degree of the proto-
col Egnm[p] as 1 — limy—s 4 oo z(t). In other words, Epar[p]

specifies the average fraction of the system infected by a
broadcast message. From (10) we can derive the following
relationship:

_ n—1 n
z(t +1)g"*® = z(t)g"* V) = —q". (12

Denote ¢ = 1 — u/n, where p = fn(l —e)(1 — 7). As-
sume that Sn is constant (the number of gossip messages
sent by a process per round does not depend on the sys-
tem size). For large n, (1 — p/n)"™ ~ e *. Thus, we have
the following recursive relationship:

n—1

z(t+1) = O 20) = (13)

Note that, according to (13), z(t) is a monotonically de-
creasing function. Applying Cauchy’s theorem, we can ap-
proximate the discrete function z(t) by a continuous one
y(t),t € [0,400[, such that z(t + 1) — z(t) = y(¢) and
y(t) = z(t), t € N, yielding the following Cauchy prob-
lem:

n—1

y(0) = ——, j=ev—y. (14)

The question is: what is the lower-bound asymptote of the
susceptible fraction of the system y(t) and how does it de-
pend on n?

One can easily see that equation (14) does not depend
on t and n, that is if (¢) is a solution of (14), then, for
any to, ©(t — to) is also a solution of (14). The system size
n only impacts the initial condition (14). Thus the lower-
bound asymptote of y(¢) does not depend on n: (14) defines
the time necessary to approach it.

The lower-bound asymptote x; can be roughly estimated
for y < 1 through the following consideration:

e
——— (15)

wly—1) — o~y o1 O0W?) = 1, =
e e "+e Fuy+0(y*) = m T~ e

Assume that the maximal number of rounds 7" is sufficient
to approach closely the upper bound of the infected frac-
tion 1 — z; (that is T = O(logn) [1]). Hence, we can ap-
proximate the probability that a given process is infected as
aresult of the run as 1 — ;. The reliability distribution func-
tion is approximated as:

Yem(p, €M) = Z (T;)(l—xl)i%ﬂ_i- (16)

[pn]<i<n

Note that we are approximating v g s (p, Eg ) by the prob-
ability that at least fraction p of all processes is infected.
This is valid when 7 < 1. In general, (16) defines a lower
bound on Yy (p,Epm): the probability of infecting at
least fraction p of correct processes can be only larger.



3.6. Average reliability of Bimodal Multicast

The above analysis allows to state the following result:

Proposition 2 For any environment Egp; = (€, 7,1, 8,) in
which T < 1, the average reliability degree Eppr[p](n) as
a function of system size n is such that:

6711

EBM[p](n) —n—+o0o 1- 17)

1—pe#’
where p = fpn(l —e)(1 — 7).

The proof follows directly from the approximations pre-
sented above.

Note that if 8, = % (such that the number of partners a
process gossip to each round, k = 3, n is constant), then the
right-hand side of (17) is constant with respect to the sys-
tem size. In other words, the expected reliability degree of
Bimodal Multicast is stable with respect to the scale of the
system. This a very valuable property for self-organizing
systems, since for some fixed set of parameters of the al-
gorithm, its reliability degree does not degrade as the sys-
tem size increases. As we will see in the following section,
IP Multicast is not scalable in this sense: its average relia-
bility degree Erpar[p](n) decreases exponentially as n in-
creases.

4. TP Multicast

In this section, we illustrate the notion of A-Reliable
Broadcast through a second, in the traditional sense [6] in-
herently unreliable algorithm, namely IP Multicast [3].

4.1. Protocol overview

As its name reveals, IP Multicast is a so-called network-
level datagram broadcast protocol directly based on IP. The
transmission of such datagrams is not reliable, and basic
IP Multicast does not consider message loss detection and
reparation, making it inherently unreliable. In the context of
IP Multicast, many different protocols have been described
and deployed.

4.2. Model

We focus here on a sparse distribution of processes.

We suppose a spanning tree, as for instance the ones that
are encountered with the Protocol-Independent Multicast —
Sparse Mode (PIM-SM) [5] protocol, which is k-ary and
of depth d. In other terms, we consider a regular spanning
tree with a single (correct) broadcasting process located at
the root, k¢ receiving processes constituting the leaves of
the tree, and every non-leaf node of the tree representing a
router with k outgoing links. The system size is thus given

byn =k%+1 =~ k% but we will consider n and k as pa-
rameters of the environment, and, since we are interested
in large systems, we use d = login. A spanning tree ob-
tained in a real use case can always be captured by a possi-
bly bigger spanning tree with a number of leaves of order n
conforming to the above description.

Similarly to the analysis of Bimodal Multicast in the pre-
vious section, 7 is the probability that a given process fails,
and the probability of a message loss in a link between two
nodes in the spanning tree as ;. In addition, we define as
7 the probability of a router failure. We assume that all in-
correct entities are initially crashed and the link failures are
stochastically independent.

4.3. Analysis

Similarly to the analysis presented in the previous sec-
tion, we propose a breakdown in successive rounds. These
rounds however correspond to the levels in the spanning
tree, that is, at round 1, the router of a broadcasting pro-
cess forwards a given message m to the k routers represent-
ing its child nodes (Yy = 1). Due to failures, only Y; < k
will receive m. In any round 1 < t < d, the Y;_; “infec-
tious” routers of level ¢ — 1 forward m to their kY;_; child
nodes (maximum of k?). The probability p of a successful
reception of m by an entity at level ¢ < d is therefore given
by p = (1 —v)(1 — &). Atround ¢ = d, the routers com-
posing level d — 1 finally send m to the processes constitut-
ing the leaves of the tree. We assume that F' = f processes
are correct in a given run.

The probability of having a given number Y; of “in-
fected” entities at a given level £ > 0 can be computed re-
cursively based on the probabilities of any number of in-
fected entities at level ¢ — 1. Finally, the probability of ob-
taining a given number of infected processes at the leaves
of the spanning tree enables the computation of the fraction
p of the correct processes in II which have received m. For
that end, we require the probability of having j infected en-
tities at level 0 < ¢t < d based on the number ¢ of infected
entities at the previous level:

pij = (’f)pf’ (1 — p)(ik=9) (18)

Thus, the probability of having j infected entities at round
0 < t < dis given recursively by:

Y PMa=ip; (19

0<i<kt—1

P(Y; = j) =

Let F' = f be the number of incorrect processes in a given
run. The probability pg of successful transmission of mes-
sage m from an infected router at level d — 1 to a process at
level d is given by p; = (1 — &;)(n — f)/n and the proba-
bility of having j infected processes at level ¢ = d based on



the number ¢ of infected entities at the previous level:
AN .
Dijf = (j )p}(l — py) k=D, (20)

Thus, the probability of having j infected processes at round
d is given recursively by:

PYg=jIF=f)= Y  PXs1=ipy; Q1)

0<i<kd-1
As a direct consequence, the probability of having infected
at least a fraction p of correct processes in a k-ary spanning
tree of depth d is given by:

Yrpm(p, Erpm)
=Y P(F =f)P(Ya > [p(n— f)I|F = f)
f

- ; (’}) (1= )71t (22)

> PYa=jIF=§),
[p(n—f)1<i<n—f

where M is the number of correct processes in a given run
and Erpyy is the environment defined as the set of parame-
ters gIPM = (Ela 7,7, M1, k)

4.4. A-Reliability of IP Multicast

Based on (22), we are now able to formally characterize
the A-Reliability of IP Multicast.

Proposition 3 For any environment Erpy = (g4, 7,77, 1, k)
and Vp € [0,1] IP Multicast is A-Reliable with A =

(Wrpm(p,E1PM), p)-

Proof: The proof of Integrity follows from the semantics of
IP and the absence of Byzantine failures, and Validity is as-
sured with prevalent operating systems. Thus, Validity and
Integrity are always satisfied in this model.

The proof of A-Agreement follows from the analysis
above. Y¥rpu (p, E1par) is equal to the probability of suc-
cessfully infecting at least a fraction p of processes. Thus
A-Reliability with A=y rpar(p, Erpar).p) is guaranteed.

4.5. Average reliability degree of IP Multicast

The average fraction p of correct processes which receive
m, Erpu|p], is given by:

Erpulpl(n) = (1 —e)p'o8= "t (23)

Furthermore, the probability that all n processes are correct
and receive a given broadcast message m, P(Yy; = n) =
(1), can be easily expressed in this model through:

P(Yy=n)=pit(l—g)"(1-7)" (24

5. Discussion

We present discuss here the reliability distribution func-
tions (and also the average reliability degrees) of Bimodal
Multicast and IP Multicast, which enable the quantifi-
cation of the difference in (A-)reliability of these algo-
rithms.Furthermore, we show that Bimodal Multicast,
unlike IP Multicast, manifests no considerable reliabil-
ity degradation as the system grows in size.

5.1. Environment

We assume that the system topology allows each pro-
cess to maintain a k-ary spanning tree with d layers, whose
leaves represent the other processes, and non-leaf mem-
bers represent the routers. The probability of a message loss
between processes used in the analysis of Bimodal Multi-
cast (Section 3) is thus bounded by e = 1 — (1 — &;)%(1 —
v)%1, where ¢; is the probability of a message loss in a
link between two corresponding nodes in the spanning tree
and ~y is the probability of a router failure. We consider Bi-
modal Multicast and IP Multicast in the compound envi-
ronment Eg = Eppr U Erppr = (g7 = 0.05,7 = 0.01,v =
0.001,n = 256,k = 4,8 = 0.02,T = 6). Non-common
parameters of the environments Egps and Erppy, B and T,
are chosen in order to approach closely the upper-bound re-
liability degree 1 — x; defined by (15).

5.2. Reliability distribution functions

Figure 1 presents the reliability distribution functions
Yeum(p, Er) of Bimodal Multicast and ¢rpar(p, Er) of IP
Multicast in the “realistic” compound environment Eg. As
expected, Ypar(p, Er) > Yrpm(p,Er)Vp € [0.55,1], 1€,
Bimodal Multicast is strictly more reliable in V = [0.55, 1]
in the environment £g. However, in a “better” environment
Er+ (with much smaller values for €;, 7 and ), IP Multi-
cast may guarantee the same level of reliability as Bimodal
Multicast. At the extremum, in a perfect environment £p
withegg =7 =7 =0, '{b[pM(p, gp) = 1Vp € [0, 1].
Bimodal Multicast on the other hand, even in the perfect
system, admits the case when all the gossips of any given
round are sent to already infected members and some part
of the system will never get the broadcast message. Thus,
Vp €]0,1[, e (p, Ep) is strictly less than (but can be ar-
bitrarily close to) 1. This conveys the strong impact of the
choice of the environment, in which two algorithms are to
be compared, on the respective reliability distributions, and
thus on the result of the comparison.

5.3. Scalability measure

Our reliability measure of broadcasts algorithm can be
used to sketch a measure of the scalability of such algo-
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Figure 2. Average reliability degrees Eg/[p]
and E;p|[p] for a given system size n.

rithms. Basically, we can consider an algorithm to be scal-
able if its average reliability degree as function of the sys-
tem size E[p](n) is constant, or slowly decreasing.

This criterion obviously reflects just one dimension of
scalability, namely that of reliability. Yet, investigating scal-
ability in terms of overhead is not in the scope of this work.
It is nevertheless worth noting that IP Multicast is “more
scalable” in terms of message complexity and time: to ob-
tain the same reliability degree it requests a smaller num-
ber of messages and consumes less time. Note furthermore
that traditional Reliable Broadcast[6] is scalable in this con-
text: its reliability degree is Ergp[p](n) = 1, although it is
not scalable in terms of message complexity and time.

5.4. Average reliability degrees

Figure 2 presents the average reliability degrees for Bi-
modal Multicast and IP Multicast (Egs[p], resp. Erpas[p])
for a varying sytem size n. As expected, n does not have
a noticeable impact on the reliability of Bimodal Multi-
cast (see Proposition 2) while, for IP Multicast, Erpar[p]
is significantly decreasing.

6. Conclusions

This paper suggests a probabilistic measure of reliabil-
ity, called A-Reliability. To demonstrate our measure, we
considered the Bimodal Multicast algorithm of Birman et
al. and a protocol variant of IP Multicast as case studies
and we measured their respective reliabilities in probabilis-
tic terms. The proposed specifications help to prove cor-
rectness of other probabilistic broadcast algorithms as well
as to verify upper-layer distributed computing abstractions,
which are based on reliable broadcast primitives such as Bi-
modal Multicast or IP Multicast.

To quantify the reliability of a broadcast algorithm in a
probabilistic sense, we need the precise knowledge of sys-

tem parameters and an accurate model of the behavior of
the algorithm based on former ones. Such parameters are
not always available, and models usually represent approx-
imations. This outlines the main limitation of our notion of
A-Reliable Broadcast: not every system model (and algo-
rithm) matches it perfectly. We understand the notions we
presented here as a first step towards defining a rigorous
measure for scalable and probabilistic reliable protocols.
While the reliability offered by a broadcast algorithm can
be quantified through our approach, there is no measure of
its efficiency so far. We are thus currently working on iden-
tifying an appropriate measure for the efficiency, and maybe
therethrough the scalability of broadcast algorithms.
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