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Abstract

This paper investigates the time-complexity of the non-blocking atomic commit (NBAC) problem in a synchronous
distributed model where out of n processes may fail by crashing. We exhibit fop 3 an inherent trade-off between the
fast abortproperty of NBAC, i.e., aborting a transaction as soon as possible if some process votes “no”, fastl tbenmit
property, i.e., committing a transaction as soon as possible when all processes vote “yes” and no process crashes. We also giv
two algorithms: the first satisfies fast commit and a weak vadéfast abort, whereas the second satisfies fast abort and a weak
variant of fast commit.
0 2004 Elsevier B.V. All rights reserved.
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1. Introduction Each round consists of two phases: (a) in send
phaseall processes (that did not crash) send messages
1.1. The synchronous model to all processes; (b) in threceive phasghe processes
receive the messages sent in the send phase of that
We consider a sefl = {p1, pa, ..., pn} (n > 3) round and update their local states. If some proggss

of processes in a synchronous crash-stop modé [5]. completes the send phase of the round, every process

The processes may fail by crashing and do not recover that completes the receive phase of the round receives

from a crash. Any process that does not crash in a run the message sent py in the send phase. }f; crashes

(any execution of an algorithm) is said to berrect ~ during the send phase, then any subset of the processes
in that run; otherwise the process is said toféngity. might not receive the message sentbyn that round.

In any given run, at most < n processes may crash,

and we denote by the effective number of processes 1.2. The non-blocking atomic commit problem

that crash in that run. The processes proceed in rounds.

In the non-blocking atomic commiiroblem [1,6]
" Corresponding author. (NBAC), each process is supposed to cast a votg, ei-
E-mail addressbastian.pochon@epfl.ch (B. Pochon). ther O or 1, proposing to either abort or commit a
1 We refer the reader to [5] for details on the model. distributed transaction. Each process is supposed to
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eventually decideon either 0 (abort the transaction) of these satisfying one of the properties and a weaker
or 1 (commit the transaction), such that the following form of the other one. We say in this context that an
properties are satisfied: (uniform agreement) no two NBAC algorithm satisfiesveak fast aborif it glob-
processes decide differently, (termination) every cor- ally decides by round 2 in every run in which some
rect process eventually decides, (abort validity) O is process proposes 0, and an NBAC algorithm satisfies
the only possible decision if some process proposes 0,weak fast commif it globally decides by round 3 in
and (commit validity) 1 is the only possible decision if every run in which all processes propose 1, and no
every process is correct and proposes 1. process crashes. Our first algorithm satisfies fast com-
The abort validity property of NBAC states that, if mit and weak fast abort, and our second algorithm sat-
any process proposes 0, then 0 is the only possible de-isfies fast abort and weak fast commit. Additionally,
cision value. This leads to an interesting observation: both algorithms match the bounds of [2,4] for the runs
if a processp; receives a message from any process with process crashes, namely, they both globally de-
that proposes 0, thep; can immediately decide 0. cide in min(f + 2, ¢ + 1) rounds in runs with at most
Clearly, there is an algorithm which ensures a global f crashes, provided > 1.
decisiorf by round 1 in any run in which some process
proposes 0 (no matter how many crashes occur in that
run). This property, which we cafast abort allows 2. Incompatibility of fast commit and fast abort
the processes to quickly retry committing a transac-
tion in case of a “logical” abort. As previously mentioned, it is possible to globally
On the other hand we would also like to commit decides by round 1 in every run in which some process
a transaction as fast as possible when all processesroposes 0. However, observe that if a procgsss
propose 1. In [2,4], it is shown that in runs with at required to decide in round 1 in any run in which some
most f crashes (& f <), min(f +2,t +1)°is a process proposes 0, thephas to decide 0 in round 1
lower bound for a global decision. An algorithm that if p; does not receive the round 1 message from any
achieves this bound, forQ f <1, is said to beearly other procesyp;, becausey; does not know whether
deciding We say that an NBAC algorithm satisfies the p; proposed 0 or 1.
fast commiiproperty, if it globally decides by round 2
in every run in which all processes propose 1 and no Proposition 1. For 3< ¢ < n — 1, no NBAC algorithm
process crashes. Note that early decision implies fastcan satisfy both the fast abort and the fast commit
commit. properties.

1.3. Contribution Proof. Consider by contradiction an NBAC algorithm
A which satisfies both fast abort and fast commit. We

~ Interestingly, forr > 3, we show that fast abortis  exploit indistinguishabilitpetween five different runs
incompatible with fast commit. More precisely, while ot 4 and derive a contradiction.

fast abort and fast commit can both be individually
achieved (as we discuss later in the paper), we prove (1) |n run R1, processp; proposes 0, and all other
that no single NBAC algorithm can have both prop- processes propose 1. Procgsscrashes before
erties. We also present two NBAC algorithms, each sending any message in round 1. By abort validity,
the only possible decision in this run is 0. By fast
2 Throughout this paper, our bounds are for decision events, not abort, every process distinct from decides 0 at

halting events. the end of round 1, in particular.
3 A run globally decides in round if every process that decides (2) Run R2 starts from the initial configuration in
in that run, decides by rourid and some process decides in roénd which all processes propose 1 (including).

4 |e., some process proposes 0. This could occur for instance Processp; crashes in round 1 after sending a
because of a concurrency control problem.

5 For the sake of brevity we are being slightly imprecise here; the messagg tf) alll processes bpi. Clearly,. p2
lower bound really isf +2 for f <r—2,andf +1for f >r— 1. cannot distinguistR1 fro_m R2. Thusp, decides
The special case i§ =+ — 1. 0 at the end of round 1 iR2.



P. Dutta et al. / Information Processing Letters 91 (2004) 195-200 197

(3) Run R3 is identical toR2, except thatpo now processes exchange their estimatg initialized to
crashes at the beginning of round 2, before send- their proposal value, and try to adjust their estimate
ing any message in round 2, apg crashes atthe  in anticipation of a weak fast abort: if a process does
beginning of round 3. All remaining processes are not receiveest= 1 from all processesit changes

correct. Clearly, at the end of round B2 and its estimate to 0, as it might be the case that some
R3 are indistinguishable fop,, and hencep; process proposed 0. In round 2, after exchanging their
decides 0 at the end of round 1 RB, and then estimate, the processes decide 0 if they are certain that
crashes. any other process will eihr decide 0 or continue with

(4) Run R4 is failure-free, starting from the initial a O estimate. Otherwise, the processes decide at the
configuration in which all processes propose 1. By end of round 2 if they notice a failure-free run. From
fast commit, and commit validity, all processes de- round 2 on, each procegs records, in a seHalt;,
cide 1 atthe end of round 2 iR4, in particularps. the identity of the processes known to have crashed.

(5) Finally, run R5 is similar to R4, but processes In the next rounds, processes exchange their estimate
p1 and p2 crash in the send phase of round 2, with each other, and update their d$¢alt; with the
such that both processes send a message to onlyidentity of the processes from which no message has
p3 in round 2, and procesps crashes at the been received. A procegs decides in a round > 2
beginning of round 3. ClearlyR4 and R5 are whenever its sdtlalt; does not contain more thar- 2
indistinguishable forpz at the end of round 2.  processes.

Thus p3 decides 1 at the end of round 2, and then With FCWFA, every process which decides, de-

crashes. cides by roundf + 2, for f <t — 2, orroundf + 1,
for f >t — 1, in every run where there are at most
In R3, processp, decides 0 and crashes. Rb, f processes that crash (early deciding). For an intu-

processps decides 1 and crashes. RuR8 and R5 ition of why FCWFA is faster whery =t — 1 (vs.
are however indistinguishable for all processes distinct f < ¢t — 2), consider a run in which no process has
from p1, p2, andps. To see why, observe th&3 and decided by round — 1. We show that, after exchang-
R5 are different only ap; andp at the end of round  ing messages far— 1 rounds, two processes have dif-

1, andp1 and p2 send messages only ta in round 2. ferent estimates only if there remains at most a single
None of the three processes send any messages afteprocess that may crash (that 5> r — 1). Hence, any
round 2. This contradicts uniform agreementi process can decide on its estimate at the end of round

t, provided it receiveg — r + 1 messages in round
In the next section, we circumvent this incompati- For the sake of clarity, we omit the obvious optimiza-
bility by weakening one of the properties whep 3. tion where any process which proposes 0 can decide 0
The first algorithm we give in this case satisfies weak before taking any step in the algorithm.
fast abort and fast commit, whereas the second algo- Interestingly, a slight modification of FCWFA re-
rithm satisfies fast abort and weak fast commit. For sults in a second NBAC algorithm that satisfies weak
t < 2, itis possible to design an NBAC algorithm that fast commit and fast abort properties. This second al-
satisfies both fast commit and fast abort: we give that gorithm is called FAWFC. The corresponding modifi-
algorithm in [3]. cations are shown between brackets directly in Fig. 1.
We prove the correctness and the efficiency of
FCWFA. In the algorithm, variable,, for 1 <r <
3. Fast NBAC algorithms t + 1, denotes sets which can hold duplicate values
at the same time. In the following proofs, we denote
In this section we assume that 3. We first give the local copy of a variablear at processp; by
an NBAC algorithm in Fig. 1, which satisfies fast var;, and the value ofvar; at the end of round
commit and weak fast abort. The algorithm is called by var/. We call a message carrying an estimate
FCWEFA. It is a flooding algorithm, optimized for the est= 1, acommitmessage, and similarly, a message
fast commit and the weak fast abort properties, and carrying an estimatest= 0, anabort message. We
the special case wherg =¢ — 1. In round 1, the  denote bycrashed the set of processes that crash
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1: At processp;:

2:est :=1; decided :=false Halt; :=0; S, :=0,1<r<t+1

% S, is a multiset %

{8’: decid&0); decided := true}

{19:if r =2 and|Sy| < n — 1 then},
{20’: est :=0}
{21":if 3<r <t —1and|Haltj| < r — 2then},

3: procedure proposév; )
4: est:=v;
5: sendl,est) to all
6:  S1:={est; | (1, est;) has been received in round 1
7. if |S1] <n or3est; € S1: est; = O0then
8: est:=0
9. forr=2...r+1do
10: if decided then sendr, DEC, est) to all; return
11: esesendr, EsT, est) to all
12: Sy :={est; | (r, EST, est;) has been received in roumd
13: if receive any message DEC, est;) for someest; then
14: est := est;; decidgest); decided := true
15: else
16: Halt; := 1T\ {p; | est; € S}
17: if Jest; € Sy est; =0then
18: est:=0
19: if r =2 andvest; € S»: est; = 0then
20: decid€0); decided :=true
21: dseif r <t —1and[Halt;| <r — 2then
22: decidéest); decided :=true
23: dseif r=rand|S;| >n—1t+ 1lthen
24: decidéest); decided := true
25: decidé€est); return

Fig. 1. A fast commit, weakly fast abort, early deciding AlBalgorithm
gives a fast abort, weakly fast commit NBAC algorithm (FAWFC).

beforecompleting round. We first prove two general
claims. (The corresponding proofs for FAWFC can be
obtained by straightforward modifications; for space
limitation, we give those proofs in [3].)

Claim 2. In FCWFA, if no process has decided by
roundr — 1> 1 and at the end of round two distinct
processeg; and p; are such that egt# esg, then
|crashed| >r.

Proof. We prove the claim by induction on the round
number. We note that if no process decides by round
r — 1, then processes do not receive @mC message

in roundr, and hence processes update their estimate
in roundr. For the base case= 2, assume that the
conditions of the claim hold, and that, w.L.o.gsf =

1 andestt = 0. It follows thatest: = 1; otherwise,
upon receiving the abort message frpmin round 2,

pi would have changed itsstto 0. In round 2, since

p;j changed iteestfrom 1 to 0, p; received at least

(FCWFA). Replacing line 8, 19, 20 and 21 with 89, 20 and 21

one abort message that has not received. Hence
some procesg; sent an abort message in round 2 and
crashed in the send phase of round 2 before sending
the message tp;. Thus,est,i- = 0. Furthermore, since
esf =1, esf is also 1, and it follows thap; received
commit message from allprocesses inround 1. Since
est,i‘ = 0 and all process have sent commit messages
in round 1, p; has received less than message in
round 1. Thus, some process distinct frgm has
crashed in round 1. Henderashed| > 2. Assume
now the claim for round — 1 (induction hypothesis).
We prove the claim for round. Suppose that no
process decides by roumdand consider two distinct
processeg; and p; such thatesf = 1 andes} =

0. Clearly,esyf‘l = 1. As both processes completed
roundr, py received round message fronp;, hence
es1{‘1 =1. Thus there is a procegg which sent an
abort message tp; in roundr, and crashed before
sending a round message tQy. Thus,esgf‘l =0.
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Sinceest ! = 1 andest ~ = 0 and no process has
decided by rouna — 2, from induction hypothesis it
follows that|crashed—!| > r — 1. As p, crashes in
roundr, |crashed| >r. O

Claim 3. In FCWFA, for any round- > 2 and any
processp; that completes round without receiving
a DEC message, crashéd! C Halt! .

Proof. Sincep; completes round without receiving
aDECmessage, it updatésalt; in line 16. If a process
p; crashes by round — 1, thenp; does not receive
roundr message fronp;, and hence, includeg; in
Halt;. O

199

Dr=2,2)3<r<t—-1,3)r =t,and (4y =r+1.
(Notice that no process decides in round 1.)

Case 1. Consider the subcase (1a) where=
1. Since p; decides 1, it did not receive any abort
message. Furthermore, gs decides in round 2,
|Ha|tl.2| <0, i.e., p; received round 2 messages from
all processes. In other wordg; receivedn commit
messages in round 2. Hence, all processes received
commit messages in round 1, and no process crashes
before completing round 1. Therefore, only commit
messages are sentin round 2. Thus, no process decides
0 in round 2, and every process that completes round
2, hasest® = 1. Consider now the subcase (1b) where
v = 0. Thus p; receives only abort messages in
round 2, including from itself. Sincg; completes

The next two propositions assert the correctness round 2, any process that completes round 2, receives

and efficiency of FCWFA.
Proposition 4. FCWFA solves NBAC.

Proof. We prove here the termination, commit valid-
ity, abort validity, and agreement properties of NBAC
in FCWFA.
Termination All correct processes decide by round
t 4+ 1, and no process blocks in any round.
Abort-validity. If any process proposes 0 then,

the abort message from. Thus no process can decide
linround 2, and every process that completes round 2
without deciding, changes iestto 0 on receiving the
abort message from; .

Case2. We note thap; must have decided at line
22. (Process,; cannot decide at line 14 because
is the lowest round in which some process decides.)
Suppose by contradiction that some procggsde-
cides 1— v in roundr, or completes round with
est’ =1 — v. Since bothp; and p; complete round

every process that completes round 1, either receives,. they receive each other’s roundnessages. If any
less tham messages or receives at least one abort mes-gf them hasest= 0 at the end of round — 1, then

sage, and hence, executes line 8. Thus, in round 2, onlypoth processes would haest” = 0. Henceesll."l —

abort messages are exchanged amongst processeggr—1
Every process that completes round 2 executes line 20

and decides 0.
Commit-validity. Consider a run in which every

process proposes 1 and no process fails. At the end
of round 1, every process receives commit messages;
from n processes, and hence, does not executes line
8. Thus, in round 2, only commit messages are ex-

changed amongst processes. Consequently,
receiven commit messages in round 2 as well, and for
all processesalt? = ¢J. Thus every process decides
1 atline 22.
Uniform agreementWe consider the lowest round

r in which at least one process decides. lpetbe
one of the processes that decides in rounday on
value v. We show that every process that decides in
roundr, decides, and processes that complete round
r without deciding, havest” = v. This immediately

implies uniform agreement. We consider four cases:

processes

= 1. Thus in round-, some procesg, sent an
abort message to one of the procesgesf p;) and
not to the other one. Thiest —! = 0, and, by Claim 2,
lcrashed 1| > r — 1. Thus, at the end of round by
Claim 38 [Halt/| > r — 1. A contradiction with the
act thatp; decides in line 22 of roundl.

Case3. No process has decided by round 1. If
all processes that complete round 1 have the same
est then uniform agreement trivially follows. Suppose
two processes have differeastat the end of round
t—1.Then by Claim 2crashed 1| >t —1:i.e., there
are at most — ¢ + 1 processes that complete round
t — 1. Sincep; decides in round = ¢, so p; decides
in line 24 and has received at least- r + 1 message
in roundt. Thus exactly: — ¢ + 1 processes complete

6 Sincer is the lowest round in which some process deciges,
does not receive aryEC message in roung or in a lower round.
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roundr — 1. If any other process decides in roundt 4. Concluding remarks

receives the same—r 4+ 1 messages gs, and hence,

decidesv. If a processp; completes round without In the decentralized (non-blocking) three-phase
deciding, then it has received—r messages in ro_und commit (D3PC) algorithm of [6], which is the fastest
t, and hencer, processes crash by roundlhen, p; is NBAC algorithm we knew of so far (in terms of

a correct processes (as it has completed rodynand number of rounds), all processes decide in round 1 in
pj receives th®@EC message sentlyy; in roundr +1, every failure-free run where some process proposes
and decides. , 0, and in round 2 in the failure-free run where all

Case4. If no process decides by roundand processes propose 1. In D3PC however, no process
two processes have @stmetstat the eind of round decides in round 1 in a run where some process
t+ 1 th’.an. from Claim 2,|crashed™| > 7 + 1. proposes 0 but crashes before sending any message.
A contradiction. O This means, in our terminology, that D3PC satisfies
fast commit but not fast abort, which is consistent with
our incompatibility result. Moreover D3PC does not
satisfy early decision providef > 1.

Proposition 5. FCWFA satisfies weak fast abort, fast
commit, and early decision.

Proof. For weak fast abort, consider a run that starts
from an initial configuration where at least one process
pi proposes 0. Every procegs; which completes Acknowledgements
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