
l

onous
e

e also give
weak
Information Processing Letters 91 (2004) 195–200

www.elsevier.com/locate/ip

Fast non-blocking atomic commit: an inherent trade-off

Partha Dutta, Rachid Guerraoui, Bastian Pochon∗

Distributed Programming Laboratory, EPFL, CH-1015 Lausanne, Switzerland

Received 9 June 2003; received in revised form 17 February 2004

Available online 18 May 2004

Communicated by F.B. Schneider

Abstract

This paper investigates the time-complexity of the non-blocking atomic commit (NBAC) problem in a synchr
distributed model wheret out of n processes may fail by crashing. We exhibit fort � 3 an inherent trade-off between th
fast abortproperty of NBAC, i.e., aborting a transaction as soon as possible if some process votes “no”, and thefast commit
property, i.e., committing a transaction as soon as possible when all processes vote “yes” and no process crashes. W
two algorithms: the first satisfies fast commit and a weak variant of fast abort, whereas the second satisfies fast abort and a
variant of fast commit.
 2004 Elsevier B.V. All rights reserved.

Keywords:Distributed algorithms; Complexity; Atomic commit

1. Introduction Each round consists of two phases: (a) in thesend
[5].
ver
run

h,
es
nds

phase, all processes (that did not crash) send messages
s
f that
s
cess
ives

sses

, ei-
a

d to

erved
1.1. The synchronous model

We consider a setΠ = {p1,p2, . . . , pn} (n � 3)
of processes in a synchronous crash-stop model1

The processes may fail by crashing and do not reco
from a crash. Any process that does not crash in a
(any execution of an algorithm) is said to becorrect
in that run; otherwise the process is said to befaulty.
In any given run, at mostt < n processes may cras
and we denote byf the effective number of process
that crash in that run. The processes proceed in rou

* Corresponding author.
E-mail address:bastian.pochon@epfl.ch (B. Pochon).

1 We refer the reader to [5] for details on the model.

0020-0190/$ – see front matter 2004 Elsevier B.V. All rights res
doi:10.1016/j.ipl.2004.04.006
.

to all processes; (b) in thereceive phase, the processe
receive the messages sent in the send phase o
round and update their local states. If some procespi

completes the send phase of the round, every pro
that completes the receive phase of the round rece
the message sent bypi in the send phase. Ifpi crashes
during the send phase, then any subset of the proce
might not receive the message sent bypi in that round.

1.2. The non-blocking atomic commit problem

In the non-blocking atomic commitproblem [1,6]
(NBAC), each process is supposed to cast a vote
ther 0 or 1, proposing to either abort or commit
distributed transaction. Each process is suppose

.

196 P. Dutta et al. / Information Processing Letters 91 (2004) 195–200

eventually decide2 on either 0 (abort the transaction)
or 1 (commit the transaction), such that the following

two
or-
is

s 0,
if

if
de-

ion:
ess
.
bal
ss
that

ac-

it
sses
at

at

he
2
no
fast

s
le
lly

rove
p-
ch

, not

s

nce

the

of these satisfying one of the properties and a weaker
form of the other one. We say in this context that an

e
fies

no
om-
sat-
lly,
ns
de-
t

lly
ess

me
1
any
r

mit

m
We
s

r

ity,
st

t

n

a

properties are satisfied: (uniform agreement) no
processes decide differently, (termination) every c
rect process eventually decides, (abort validity) 0
the only possible decision if some process propose
and (commit validity) 1 is the only possible decision
every process is correct and proposes 1.

The abort validity property of NBAC states that,
any process proposes 0, then 0 is the only possible
cision value. This leads to an interesting observat
if a processpi receives a message from any proc
that proposes 0, thenpi can immediately decide 0
Clearly, there is an algorithm which ensures a glo
decision3 by round 1 in any run in which some proce
proposes 0 (no matter how many crashes occur in
run). This property, which we callfast abort, allows
the processes to quickly retry committing a trans
tion in case of a “logical” abort.4

On the other hand we would also like to comm
a transaction as fast as possible when all proce
propose 1. In [2,4], it is shown that in runs with
mostf crashes (0� f � t), min(f + 2, t + 1)5 is a
lower bound for a global decision. An algorithm th
achieves this bound, for 0� f � t , is said to beearly
deciding. We say that an NBAC algorithm satisfies t
fast commitproperty, if it globally decides by round
in every run in which all processes propose 1 and
process crashes. Note that early decision implies
commit.

1.3. Contribution

Interestingly, fort � 3, we show that fast abort i
incompatible with fast commit. More precisely, whi
fast abort and fast commit can both be individua
achieved (as we discuss later in the paper), we p
that no single NBAC algorithm can have both pro
erties. We also present two NBAC algorithms, ea

2 Throughout this paper, our bounds are for decision events
halting events.

3 A run globally decides in roundk if every process that decide
in that run, decides by roundk, and some process decides in roundk.

4 I.e., some process proposes 0. This could occur for insta
because of a concurrency control problem.

5 For the sake of brevity we are being slightly imprecise here;
lower bound really isf + 2 for f � t − 2, andf + 1 for f � t − 1.
The special case isf = t − 1.
NBAC algorithm satisfiesweak fast abortif it glob-
ally decides by round 2 in every run in which som
process proposes 0, and an NBAC algorithm satis
weak fast commitif it globally decides by round 3 in
every run in which all processes propose 1, and
process crashes. Our first algorithm satisfies fast c
mit and weak fast abort, and our second algorithm
isfies fast abort and weak fast commit. Additiona
both algorithms match the bounds of [2,4] for the ru
with process crashes, namely, they both globally
cide in min(f + 2, t + 1) rounds in runs with at mos
f crashes, providedf � 1.

2. Incompatibility of fast commit and fast abort

As previously mentioned, it is possible to globa
decides by round 1 in every run in which some proc
proposes 0. However, observe that if a processpi is
required to decide in round 1 in any run in which so
process proposes 0, thenpi has to decide 0 in round
if pi does not receive the round 1 message from
other processpj , becausepi does not know whethe
pj proposed 0 or 1.

Proposition 1. For 3 � t � n− 1, no NBAC algorithm
can satisfy both the fast abort and the fast com
properties.

Proof. Consider by contradiction an NBAC algorith
A which satisfies both fast abort and fast commit.
exploit indistinguishabilitybetween five different run
of A, and derive a contradiction.

(1) In run R1, processp1 proposes 0, and all othe
processes propose 1. Processp1 crashes before
sending any message in round 1. By abort valid
the only possible decision in this run is 0. By fa
abort, every process distinct fromp1 decides 0 a
the end of round 1, in particularp2.

(2) Run R2 starts from the initial configuration i
which all processes propose 1 (includingp1).
Processp1 crashes in round 1 after sending
message to all processes butp2. Clearly, p2
cannot distinguishR1 from R2. Thusp2 decides
0 at the end of round 1 inR2.

P. Dutta et al. / Information Processing Letters 91 (2004) 195–200 197

(3) Run R3 is identical toR2, except thatp2 now
crashes at the beginning of round 2, before send-

re

l
By
e-

s
2,
only

.
en

inct

afte

ti-

ak
lgo-
For
at
hat

st
led
e
and

processes exchange their estimateest, initialized to
their proposal value, and try to adjust their estimate

es

me
heir
that

h
t the
m

ed.
ate

has

e-

st
tu-

as
g-
if-
gle

und

a-
de 0

-
ak
al-

ifi-
. 1.
of

ues
ote

ate
ge

sh
ing any message in round 2, andp3 crashes at the
beginning of round 3. All remaining processes a
correct. Clearly, at the end of round 1,R2 and
R3 are indistinguishable forp2, and hence,p2
decides 0 at the end of round 1 inR3, and then
crashes.

(4) Run R4 is failure-free, starting from the initia
configuration in which all processes propose 1.
fast commit, and commit validity, all processes d
cide 1 at the end of round 2 inR4, in particularp3.

(5) Finally, run R5 is similar to R4, but processe
p1 and p2 crash in the send phase of round
such that both processes send a message to
p3 in round 2, and processp3 crashes at the
beginning of round 3. Clearly,R4 and R5 are
indistinguishable forp3 at the end of round 2
Thusp3 decides 1 at the end of round 2, and th
crashes.

In R3, processp2 decides 0 and crashes. InR5,
processp3 decides 1 and crashes. RunsR3 andR5
are however indistinguishable for all processes dist
from p1, p2, andp3. To see why, observe thatR3 and
R5 are different only atp1 andp2 at the end of round
1, andp1 andp2 send messages only top3 in round 2.
None of the three processes send any messages
round 2. This contradicts uniform agreement.�

In the next section, we circumvent this incompa
bility by weakening one of the properties whent � 3.
The first algorithm we give in this case satisfies we
fast abort and fast commit, whereas the second a
rithm satisfies fast abort and weak fast commit.
t � 2, it is possible to design an NBAC algorithm th
satisfies both fast commit and fast abort: we give t
algorithm in [3].

3. Fast NBAC algorithms

In this section we assume thatt � 3. We first give
an NBAC algorithm in Fig. 1, which satisfies fa
commit and weak fast abort. The algorithm is cal
FCWFA. It is a flooding algorithm, optimized for th
fast commit and the weak fast abort properties,
the special case wheref = t − 1. In round 1, the
r

in anticipation of a weak fast abort: if a process do
not receiveest= 1 from all processes, it changes
its estimate to 0, as it might be the case that so
process proposed 0. In round 2, after exchanging t
estimate, the processes decide 0 if they are certain
any other process will either decide 0 or continue wit
a 0 estimate. Otherwise, the processes decide a
end of round 2 if they notice a failure-free run. Fro
round 2 on, each processpi records, in a setHalti ,
the identity of the processes known to have crash
In the next rounds, processes exchange their estim
with each other, and update their setHalti with the
identity of the processes from which no message
been received. A processpi decides in a roundr � 2
whenever its setHalti does not contain more thanr −2
processes.

With FCWFA, every process which decides, d
cides by roundf + 2, for f � t − 2, or roundf + 1,
for f � t − 1, in every run where there are at mo
f processes that crash (early deciding). For an in
ition of why FCWFA is faster whenf = t − 1 (vs.
f � t − 2), consider a run in which no process h
decided by roundt − 1. We show that, after exchan
ing messages fort − 1 rounds, two processes have d
ferent estimates only if there remains at most a sin
process that may crash (that is,f � t − 1). Hence, any
process can decide on its estimate at the end of ro
t , provided it receivesn − t + 1 messages in roundt .
For the sake of clarity, we omit the obvious optimiz
tion where any process which proposes 0 can deci
before taking any step in the algorithm.

Interestingly, a slight modification of FCWFA re
sults in a second NBAC algorithm that satisfies we
fast commit and fast abort properties. This second
gorithm is called FAWFC. The corresponding mod
cations are shown between brackets directly in Fig

We prove the correctness and the efficiency
FCWFA. In the algorithm, variableSr , for 1 � r �
t + 1, denotes sets which can hold duplicate val
at the same time. In the following proofs, we den
the local copy of a variablevar at processpi by
vari , and the value ofvari at the end of roundr
by varr

i . We call a message carrying an estim
est= 1, a commitmessage, and similarly, a messa
carrying an estimateest= 0, anabort message. We
denote bycrashedr the set of processes that cra

198 P. Dutta et al. / Information Processing Letters 91 (2004) 195–200

1: At processpi :
2: esti := ⊥; decidedi := false; Halti := ∅; Sr := ∅, 1� r � t + 1 %Sr is a multiset %

e

3: procedure propose(vi)

4: esti := vi

5: send(1,esti) to all
6: S1 := {estj | (1,estj) has been received in round 1}
7: if |S1| < n or ∃estj ∈ S1: estj = 0 then
8: esti := 0 {8′: decide(0); decidedi := true}
9: for r = 2. . . t + 1 do

10: if decidedi then send(r, DEC,esti) to all; return
11: else send(r, EST,esti) to all
12: Sr := {estj | (r, EST,estj) has been received in roundr}
13: if receive any message(r, DEC,estj) for someestj then
14: esti := estj ; decide(esti); decidedi := true
15: else
16: Halti := Π \ {pj | estj ∈ Sr }
17: if ∃estj ∈ Sr : estj = 0 then
18: esti := 0
19: if r = 2 and∀estj ∈ S2: estj = 0 then {19′: if r = 2 and|S2| < n − 1 then},
20: decide(0); decidedi := true {20′: esti := 0}
21: else if r � t − 1 and|Halti | � r − 2 then {21′: if 3 � r � t − 1 and|Halti | � r − 2 then},
22: decide(esti); decidedi := true
23: else if r = t and|St | � n − t + 1 then
24: decide(esti); decidedi := true

25: decide(esti); return

Fig. 1. A fast commit, weakly fast abort, early deciding NBAC algorithm (FCWFA). Replacing line 8, 19, 20 and 21 with 8′, 19′ , 20′ and 21′
gives a fast abort, weakly fast commit NBAC algorithm (FAWFC).

beforecompleting roundr. We first prove two general one abort message thatpi has not received. Henc

claims. (The corresponding proofs for FAWFC can be

ce

by

d
und

ate
e

t

some processpk sent an abort message in round 2 and
ding
e

e
ges

.

t

ed

e

obtained by straightforward modifications; for spa
limitation, we give those proofs in [3].)

Claim 2. In FCWFA, if no process has decided
roundr − 1 � 1 and at the end of roundr two distinct
processespi and pj are such that estri �= estrj , then
|crashedr | � r.

Proof. We prove the claim by induction on the roun
number. We note that if no process decides by ro
r − 1, then processes do not receive anyDEC message
in roundr, and hence processes update their estim
in roundr. For the base caser = 2, assume that th
conditions of the claim hold, and that, w.l.o.g.,est2i =
1 andest2j = 0. It follows that est1j = 1; otherwise,
upon receiving the abort message frompj in round 2,
pi would have changed itsest to 0. In round 2, since
pj changed itsest from 1 to 0,pj received at leas
crashed in the send phase of round 2 before sen
the message topi . Thus,est1k = 0. Furthermore, sinc
est2i = 1, est1i is also 1, and it follows thatpi received
commit message from alln processes in round 1. Sinc
est1k = 0 and all process have sent commit messa
in round 1,pk has received less thann message in
round 1. Thus, some process distinct frompk has
crashed in round 1. Hence|crashed2| � 2. Assume
now the claim for roundr − 1 (induction hypothesis)
We prove the claim for roundr. Suppose that no
process decides by roundr and consider two distinc
processespk and pl such thatestrk = 1 andestrl =
0. Clearly,estr−1

k = 1. As both processes complet
roundr, pk received roundr message frompl , hence
estr−1

l = 1. Thus there is a processpx which sent an
abort message topl in round r, and crashed befor
sending a roundr message topk . Thus,estr−1

x = 0.

P. Dutta et al. / Information Processing Letters 91 (2004) 195–200 199

Sinceestk−1
k = 1 andestr−1

x = 0 and no process has
decided by roundr − 2, from induction hypothesis it

ess

d-
C

nd

n,
ives
es-

only
sse

e 20

y
end
ges
line

ex-
esse
for
es

d

in
nd

es:

(1) r = 2, (2) 3� r � t −1, (3)r = t , and (4)r = t +1.
(Notice that no process decides in round 1.)

rt
,
m

ed
shes
it

cides
und
re
in

ives
de
nd 2

e

es.)

y

e
se

nd

te

,

follows that |crashedr−1| � r − 1. As px crashes in
roundr, |crashedr | � r. �
Claim 3. In FCWFA, for any roundr � 2 and any
processpi that completes roundr without receiving
a DEC message, crashedr−1 ⊆ Halt r

i .

Proof. Sincepi completes roundr without receiving
a DEC message, it updatesHalti in line 16. If a process
pj crashes by roundr − 1, thenpi does not receive
roundr message frompj , and hence, includespj in
Halti . �

The next two propositions assert the correctn
and efficiency of FCWFA.

Proposition 4. FCWFA solves NBAC.

Proof. We prove here the termination, commit vali
ity, abort validity, and agreement properties of NBA
in FCWFA.

Termination.All correct processes decide by rou
t + 1, and no process blocks in any round.

Abort-validity. If any process proposes 0 the
every process that completes round 1, either rece
less thann messages or receives at least one abort m
sage, and hence, executes line 8. Thus, in round 2,
abort messages are exchanged amongst proce
Every process that completes round 2 executes lin
and decides 0.

Commit-validity.Consider a run in which ever
process proposes 1 and no process fails. At the
of round 1, every process receives commit messa
from n processes, and hence, does not executes
8. Thus, in round 2, only commit messages are
changed amongst processes. Consequently, proc
receiven commit messages in round 2 as well, and
all processes,Halt2 = ∅. Thus every process decid
1 at line 22.

Uniform agreement.We consider the lowest roun
r in which at least one process decides. Letpi be
one of the processes that decides in roundr, say on
value v. We show that every process that decides
roundr, decidesv, and processes that complete rou
r without deciding, haveestr = v. This immediately
implies uniform agreement. We consider four cas
s.

s

Case 1. Consider the subcase (1a) wherev =
1. Sincepi decides 1, it did not receive any abo
message. Furthermore, aspi decides in round 2
|Halt2

i | � 0, i.e.,pi received round 2 messages fro
all processes. In other words,pi receivedn commit
messages in round 2. Hence, all processes receivn

commit messages in round 1, and no process cra
before completing round 1. Therefore, only comm
messages are sent in round 2. Thus, no process de
0 in round 2, and every process that completes ro
2, hasest2 = 1. Consider now the subcase (1b) whe
v = 0. Thus pi receives only abort messages
round 2, including from itself. Sincepi completes
round 2, any process that completes round 2, rece
the abort message frompi . Thus no process can deci
1 in round 2, and every process that completes rou
without deciding, changes itsestto 0 on receiving the
abort message frompi .

Case2. We note thatpi must have decided at lin
22. (Processpi cannot decide at line 14 becauser

is the lowest round in which some process decid
Suppose by contradiction that some processpj de-
cides 1− v in round r, or completes roundr with
estr = 1 − v. Since bothpi andpj complete round
r, they receive each other’s roundr messages. If an
of them hasest= 0 at the end of roundr − 1, then
both processes would haveestr = 0. Hence,estr−1

i =
estr−1

j = 1. Thus in roundr, some processpx sent an
abort message to one of the processes (pi or pj) and
not to the other one. Thusestr−1

x = 0, and, by Claim 2,
|crashedr−1| � r − 1. Thus, at the end of roundr, by
Claim 3,6 |Halt r

i | � r − 1. A contradiction with the
fact thatpi decides in line 22 of roundr.

Case3. No process has decided by roundt − 1. If
all processes that complete roundt − 1 have the sam
est, then uniform agreement trivially follows. Suppo
two processes have differentest at the end of round
t −1. Then by Claim 2,|crashedt−1| � t −1; i.e., there
are at mostn − t + 1 processes that complete rou
t − 1. Sincepi decides in roundr = t , sopi decides
in line 24 and has received at leastn − t + 1 message
in roundt . Thus exactlyn − t + 1 processes comple

6 Sincer is the lowest round in which some process decidespi

does not receive anyDEC message in roundr or in a lower round.

200 P. Dutta et al. / Information Processing Letters 91 (2004) 195–200

roundt − 1. If any other process decides in roundt , it
receives the samen− t +1 messages aspi , and hence,

d

st

rts
ess

,

d 2
ides

es

d

d

or

s no
d
her

und

4. Concluding remarks

se
st
f

1 in
ses

all
cess
ess
sage.
es
ith
ot

ug-
the
go-

on-
ead-

han
-

c
ID
ci-
ns/

s
ort
.

n

-
81,
decidesv. If a processpj completes roundt without
deciding, then it has receivedn − t messages in roun
t , and hence,t processes crash by roundt . Then,pi is
a correct processes (as it has completed roundt), and
pj receives theDEC message sent bypi in roundt +1,
and decidesv.

Case 4. If no process decides by roundt and
two processes have distinctest at the end of round
t + 1, then from Claim 2,|crashedt+1| � t + 1.
A contradiction. �
Proposition 5. FCWFA satisfies weak fast abort, fa
commit, and early decision.

Proof. For weak fast abort, consider a run that sta
from an initial configuration where at least one proc
pi proposes 0. Every processpj which completes
round 1 sets its estimateestj to 0 at the end of round
1 (because eitherpj receivespi ’s abort message
or pj does not receive any message frompi). Thus
processes receive only abort messages in roun
Thus, every process that completes round 2, dec
0 at that round (line 20).

Notice that, early decision forf = 0, implies fast
commit. We now show that the algorithm satisfi
early decision. Suppose,f � t − 2 in a run, and some
processpi completes roundf + 2 without deciding.
Thenpi has not received anyDEC message by roun
f + 2. We claim that every process inHaltf+2

i is
faulty. Suppose otherwise; if some correct processpj

is in Haltf+2
i , thenpj has halted after deciding, an

it has sent aDEC message in roundf + 2 or a lower
round. Sincepi has not received anyDEC message by
roundf + 2, no correct process is inHaltf+2

i . Thus

|Haltf +2
i | � f . Thus, in roundf + 2,pi evaluates the

condition in line 21 to true, and decides in line 22. F
the case wheref = t − 1, observe that, iff = t − 1
processes crash in a run, and some process doe
decides by roundt = f + 1, then at the end of roun
t = f + 1, every process that is not crashed, eit
receives aDEC message or receives at leastn − t + 1
messages, and hence, decides on its estimate. Iff = t ,
clearly, every process that decides, decides by ro
f + 1 = t + 1. �
.

t

In the decentralized (non-blocking) three-pha
commit (D3PC) algorithm of [6], which is the faste
NBAC algorithm we knew of so far (in terms o
number of rounds), all processes decide in round
every failure-free run where some process propo
0, and in round 2 in the failure-free run where
processes propose 1. In D3PC however, no pro
decides in round 1 in a run where some proc
proposes 0 but crashes before sending any mes
This means, in our terminology, that D3PC satisfi
fast commit but not fast abort, which is consistent w
our incompatibility result. Moreover D3PC does n
satisfy early decision providedf � 1.

Acknowledgements

We thank the anonymous reviewers for their s
gestions that significantly helped us to improve
presentation of the paper and specifically the al
rithms.

References

[1] P.A. Bernstein, V. Hadzilacos, N. Goodman, Concurrency C
trol and Recovery in Database Systems, Addison–Wesley, R
ing, MA, 1987.

[2] B. Charron-Bost, A. Schiper, Uniform consensus harder t
consensus, EPFL Technical Report DSC/2000/028, EPFL, Lau
sanne, 2000.

[3] P. Dutta, R. Guerraoui, B. Pochon, Fast non-blocking atomi
commit: an inherent trade-off, EPFL Technical Report,
IC/2004/29, School of Computer and Communication S
ences, EPFL, 2003. Available at: http://ic2.epfl.ch/publicatio
documents/IC_TECH_REPORT_200429.pdf.

[4] I. Keidar, S. Rajsbaum, On the cost of fault-tolerant consensu
when there are no faults: a tutorial, MIT Technical Rep
MIT-LCS-TR-821, MIT, Cambridge, MA, 2001. Also Inform
Process. Lett. 85 (1) (2003) 47–52.

[5] N. Lynch, Distributed Algorithms, Morgan Kaufmann, Sa
Francisco, CA, 1996.

[6] D. Skeen, Nonblocking commit protocols, in: ACM SIG
MOD International Symposium on Management of Data, 19
pp. 133–142.

