
Distributed Programming for Dummies
A Shifting Transformation Technique

Carole Delporte-Gallet, Hugues Fauconnier Rachid Guerraoui, Bastian Pochon
LIAFA Institute Distributed Programming Laboratory

Université Denis Diderot EPFL
F-
���������

Paris
�

CH-
�����	�

Lausanne

Abstract

The perfectly synchronized round model provides the
powerful abstraction of crash-stop failures with atomic
message delivery. This abstraction makes distributed pro-
gramming very easy. We present an implementation of this
abstraction in a distributed system with general message
omissions. Protocols devised using our abstraction (i.e., in
the perfectly synchronized round model) are automatically
transformed into protocols for the omission model. The
transformation is achieved using a round shifting technique
with a constant time complexity overhead. This transforma-
tion is in a precise sense optimal. Furthermore, and rather
surprisingly, no automatic transformation from a weaker
model, say the traditional crash-stop model (with no atomic
message delivery), onto an even stronger model than the
general-omission one, say the send-omission model, can
provide better time complexity performance.

1. Introduction

Motivations. Distributed programming would be easy if
one could assume a perfectly synchronized round-based
model where the processes would, after every round, have
the same view of the distributed system state. Basically,
computation would proceed in a round-by-round way, with
the guarantee that, in every round, a message sent by a cor-
rect process is received by all processes, and a message sent
by a faulty process is either received by all or by none of the
processes.

Unfortunately for the programmers, and fortunately for
our research community, the assumption that all processes
have the same view of the global distributed system state
does rarely hold in practice. In particular, the illusion of a
perfectly synchronized world breaks because messages sent
over a network might be subject to partial delivery, typi-
cally because of a buffer overflow at a router, or because of

the crash of some computer hosting processes involved in a
distributed computation.

It is of course legitimate to figure out whether we could
provide the programmer with the simplistic view of a per-
fectly synchronized world, and translate, behind the scenes,
distributed protocols devised in such an ideal model into
more realistic and weaker models. After all, the job of a
computer scientist is usually about providing programming
abstractions that hide low level details, so why not try to
provide those that make the job of the programmer really
easy.

The very fact that no such abstraction has already been
made available to programmers through popular program-
ming middleware, even after several decades of research
in distributed computing, might indicate that its imple-
mentation might turn out to be significantly involved. In-
deed, a closer look at the semantics of the perfectly syn-
chronized round-based model (PSR) abstraction reveals that
what needs to be implemented is actually a succession of
instances of an agreement algorithm, more precisely an
algorithm solving the Interactive Consistency (IC) prob-
lem [14].

This observation highlights two issues. The first has
to do with feasibility. To implement the PSR abstraction
over a given model, one needs to make some synchrony
assumptions on the model [7], and the coverage of these
assumptions might simply not be sufficient for certain dis-
tributed environments. The second issue has to do with per-
formance. Even when the PSR abstraction can be imple-
mented, the cost of its implementation might be too high.
That is, devising a distributed protocol over PSR, and re-
lying on the implementation of PSR to automatically gen-
erate a distributed protocol in a weaker model might have
a significant overhead with respect to devising the protocol
directly in the latter model.

The lack of any such evidence was the motivation of
this work. More precisely, the motivation was to figure out
whether we can come up with an efficient implementation,

1

in terms of time complexity, of the PSR abstraction, over the
general-omission model (or simply omission model) [12].
In this model, processes proceed in a round-by-round man-
ner, but messages can be lost. The PSR abstraction can in-
deed be implemented in such a model, but the inherent cost
of implementing it in this model was unclear.

Background. The lack of any evidence about the cost of
implementing PSR might seem surprising given the amount
of work that was devoted, either (1) to devising optimal
agreement algorithms over various models, including the
omission model, or (2) to implementing weaker forms of
PSR.

(1) In particular, we do know that, in terms of time com-
plexity, the tight lower bound on implementing interactive
consistency in an omission model where � processes can fail
is ����� [6]. That is, ����� rounds of the omission model are
needed for all correct processes to reach a decision about
the new global state of the distributed system (i.e., the de-
cision vector). If, pretty much like in state machine repli-
cation [16], we implement PSR as a sequence of instances
of interactive consistency, then the ����� cost would add up.
In other words, ���	�
���
� rounds would be needed to imple-
ment � rounds of PSR. One might wonder whether algo-
rithms that are early deciding [10] would decrease this cost.
Indeed, these algorithms need fewer rounds for processes to
decide when only � failures occur, out of the total number �
of failures that are tolerated. There is however a tight lower
bound of � rounds in failure-free runs [4, 9]. Thus, �������
rounds would anyway be needed to implement � rounds of
PSR with � actual failures.

(2) Implementing a synchronous round-based model
with crash failures [8] (crash-stop model) over various
weaker models, such as the omission model, has been the
subject of several investigations, e.g. [1, 13] (Byzantine fail-
ures are considered in [13]). These can be viewed as im-
plementing an abstraction that is weaker than PSR.1 The
idea underlying the implementation proposed in [13], for
the models we consider, is that of doubling rounds. Roughly
speaking, any round of the crash-stop model is simulated
with two rounds of the omission model. Hence, ��� rounds
of the omission model are needed to simulate � rounds of
the crash-stop model.

In both cases, we end up with multiplicative factor over-
heads.2 Is this multiplicative factor inherent to imple-
menting PSR over an omission model? Or could we de-

1PSR prevents a message from being received by some but not all
the processes, whereas the crash-stop model does not (in case the sender
crashes).

2Even if we try to implement the weaker crash-stop abstraction along
the lines of [13]. In fact, if we implement PSR directly on the crash-stop
model (used as an intermediate model), and use the transformation of [13],
we end up with a cost of ����������� rounds of the omission model for �
rounds of the PSR model with � actual failures.

vise a shifting implementation with an additive factor, i.e.,
��� � ? At first glance, this would be counter-intuitive be-
cause it would mean devising a more efficient implementa-
tion than [13] for an abstraction that is strictly stronger.

Contributions. This paper presents a time-efficient shift-
ing technique to implement the PSR abstraction over an
omission model: � rounds of PSR require �!�"�#�$�%�
�
rounds of the omission model when � failures occur. That
is, �'&(�)�*� . This is clearly optimal because PSR solves
interactive consistency in one round, and this costs at least
�$�+� in the omission model [4, 9]. In other words, any
shifting transformation technique from the PSR model to
the omission model has to pay the �,�-� cost.

Furthermore, and maybe even more interestingly, we
show the surprising (shifting optimality) result that, had we
tried to devise a shifting technique to implement a weaker
abstraction than PSR (say a crash-stop synchronous model)
over a stronger model than general omissions (say send
omissions [8]), we would not have gained anything in terms
of time complexity. In particular, this means that our tech-
nique is also optimal even to implement the crash-stop
model abstraction.

We precisely define the notion of shifting transformation
and then describe our own technique. Beforehand, we intro-
duce the necessary machinery to formulate the definitions
of simulation and transformation. The key idea of our tech-
nique is that a round in the omission model is involved in
the simulation of more than one round of PSR. This is also
the source of some tricky algorithmic issues that we had to
address. To conclude, the paper discusses the applicability
of our technique to other models, e.g., with Byzantine fail-
ures [11]. For space limitation, proofs are omitted, and can
be found in [5].

2. Model

Processes. We consider a finite set . of / processes0�132
465756564#1�8�9
, that communicate by message-passing. We

assume that processes are fully connected. A process is
characterized by its local state and we denote by : the set
of possible states of any process. Processes interact in a
synchronous, round-based computational way. Let ;<&>=@?
be the set of round numbers (strictly positive, integer num-
bers). We denote by A the set of messages that can be sent,
and by ACB�&-AED 0GFH9 the set of messages that can be re-
ceived.

F
is a special value that indicates that no message

has been received. The primitive send() allows a process
to send a message to the processes in . . The primitive re-
ceive() allows a process to receive a message sent to it that
it has not yet received. We assume that each process re-
ceives an input value from the external world, at the begin-
ning of every round, using the primitive receiveInput(). We

denote by � the set of input values that can be received, for
all processes. An input pattern is a function ��� .�� ;���� .
For any given process

1
	
and round number � , ���
� 4 ��� rep-

resents the input value that
1
	

receives at the beginning of
round � . For any given set of input values � , we denote by���

the set composed of all input patterns over � . For the
sake of simplicity, we assume that input values do not de-
pend on the state of processes. In Section 4, we discuss an
extension where this assumption is relaxed.

Roughly speaking, in each synchronous round � , every
process goes through four (non atomic) steps. In the first
step, the process receives an external input value. In the
second step, the process sends the (same) message to all
processes (including itself). In the third step, the process
receives all messages sent to it. The fourth step is a local
computation to determine the next local state of the process.

Failure Patterns. A failure pattern is a function � �
.�� ;�� ����������� 0�� 4 � 9 . For any given process

1�	
and round number � , � �
� 4 ��� returns the set of processes
to which

1
	
fails to send its message, the set of processes

from which
1
	

fails to receive their message, and whether1 	
crashes � � � or not � � � , in round � . We assume that pro-

cesses do not recover after crashing: a process that crashes
in a round does not send nor receive any message in any sub-
sequent round. Thus, for any process

1 	
and round � , any

failure pattern � considered implicitely satisfies the condi-
tion ����� 4���� . �6�
� � � 4 �G� &!�!� 4"�,4 �
�$#%� �
� 4 � �(� � &�#. 4 . 4 �
��� .

A process
1 	

is correct up to round � (a process is al-
ways correct up to round 0), under any failure pattern � ,
if
1
	

does not fail in sending nor receiving messages, and
does not crash, up to and including round � under � , i.e.,
� � � 4 � B �H&C�'& 4 & 4(� � , for �*)+� B)+� . A process

1
	
is cor-

rect if it always sends and receives correctly, i.e., � �
� 4 ��� &
�!& 4 & 4"� � , for all �-,"; . A process that is not correct is
faulty. Let .0/1���321. � �!� � be the set of all correct processes
under failure pattern � , and ��465�7 �983�
� � &*.;:<.=/1�1�321. � �
� �
be the set of all faulty processes in failure pattern � . For
any failure pattern � , we denote by � the effective num-
ber of faulty processes in � , i.e., � &?> ��465
7	�983�
� �0> . In this
paper, we consider the following types of failures:

@ Atomic failure: A process
1 	

that crashes in a round �
is correct up to round �A:*� . In round � , in which

1 	
crashes,

1 	
can either crash before sending a message

to all or after sending a message to all. More precisely,
the corresponding failure pattern is such that � � � 4 ��� &
�#. 4 . 4 �
� or �!B �C� . � �
� �
� 4 ��� & �!& 4��,4 � � � .

@ Crash failure: A process
1�	

that crashes in a round �
is correct up to round �A:*� . In round � , in which

1D	
crashes,

1 	
can either (i) send a message to a subset of

the processes, crash, not receive any message, or (ii)

send a message to all, receive a subset of the messages
sent to it, and crash. More precisely, the correspond-
ing failure pattern is such that �!BE� � . � �!� � � 4 ��� &
�
� 4 . 4 � � � or �'B �C� . �6�
� �
� 4 ��� & �'& 4��,4 � � � .

@ Send-omission failure: A process
1 	

that commits a
send-omission in a round � fails to send its message in
that round to a subset of processes in the system. More
precisely, �!BF� � . 4 �?G&H&��6�
� � � 4 �G� & �!� 4 & 4"� ��� .

@ General-omission failure: A process
1�	

that commits a
general-omission in a round � fails to send or receive a
message to or from a subset of processes in the system.
More precisely, �!BF� 4��I� . 4 � D � G&�& � �!� � � 4 ��� &
�
� 4��,4(� � � .

Models. A model J is defined as a set of failure patterns.
We define four distinct models:

@ Model �LKNM,� / 4 � � (Perfectly synchronized round) is
defined by all failure patterns over / processes where
at most �PO / processes are subject to atomic failures
only, and the remaining processes are correct.

@ Model �P�14FQ1R � / 4 � � is defined by all failure patterns
over / processes where at most �SO / processes are
subject to crash failures only, and the remaining pro-
cesses are correct.

@ Model TPUS�VQ1QW�9/ / � / 4 � � is defined by all failure pat-
terns over / processes where at most �XO / processes
are subject to either crash failures or send-omission
failures, and the remaining processes are correct.

@ Model YZ27/[2��34\7 �	/ 4 � � is defined by all failure patterns
over / processes where at most �SO / processes are
subject to either crash failures or general-omission fail-
ures, and the remaining processes are correct.

We say that a model J^] is stronger than a model J^_ ,
and we write J^]a`bJc_ , if and only if J^] � Jc_ . We
say that a model J^] is strictly stronger than Jd_ , and
we write J]fe J _ , if and only if J] `gJ _ and
J _?h J] . Weaker and strictly weaker relations are de-
fined accordingly. From the equations above, it is clear
that �LKNM,�	/ 4 � �C` �P�34FQ�R � / 4 � �+`iTPUj�9Q1QW�9/ / � / 4 � �k`
YZ2
/[2W�34\7 �	/ 4 � � .
Protocols. The processes execute a protocol l &m l 2 475656564 l 8on

. Each process
1
	

executes a state machine l 	
,

defined as a triple
m Q 	 4(p�	 4 T 	 n

, respectively an initial state,
a state transition function and a message output function.
We assume that, at any process

1�	
, the corresponding state

machine is initialized to Q 	
. The message output function

T 	 �G:��A�q� ;�� A generates the message to be sent by

process
1 	

during round � , given its current state, an exter-
nal input value, and the round number.3 The state transition
function

p[��:-���	A B �
8

�$; � : outputs the new state
of process

1
	
, given the current state of

1�	
, the messages re-

ceived during the round from all processes (possibly
F

if a
message is not received) and the current round number. If
a variable � appears in the local state of all processes, we
denote by � 	 the variable at process

1 	
, and by ���	 the value

of � after
1 	

has executed round � , but before
1 	

has started
executing round � �>� . For convenience of notation, ���	 de-
notes the value of � at process

1 	
after initialization, before1 	

takes any step.

Runs and Problem Specifications. In the following,
Q6�V4 �V2 	

denotes a variable maintaining the current state of
process

1 	
(initialized to Q 	

). In round � , for any input pat-
tern � and any failure pattern � , where � � � 4 ��� & �
� 4��,4�� �
for some subsets � ,

�
of . and

� , 01� 4 � 9 , 1 	 sends to1��
the message T 	 �!Q7�V4 �V2 �
	

2	 4 ��� � 4 �G� 4 ��� if � G, � , or
F

if
��,�� ,

1 	
receives from

1��
the message sent by

1��
if ��G, �

,
or
F

if �d, �
, and

1o	
changes its state according to

p[
if� & �

, or keeps the same state in the case
� &+� .

A run corresponds to an execution of a protocol, and is
defined as a tuple

m � 4 � 4 K p 4
ME

n
, where � is the input pat-

tern observed in the run, � is the failure pattern observed
in the run, K p � .�� ; D 0��
9 � : is a function such
that, for any process

1 	
and round � , K p � � 4 ��� is the state

of process
1 	

at the end of round � (K p � � 4(� �)& Q 	
), and

ME � .k� ; � A B is a function such that, for any pro-
cess
1 	

and round � , ME � � 4 ��� is the message sent by
1 	

in
round � , or

F
if
1 	

fails to send any message in round � . We
denote by M,�
l 4 J 4 � � � the set of all runs produced by pro-
tocol l with failure patterns in model J and input pattern
in

�D�
. A problem (or problem specification)
 is defined as

a predicate on runs.

Definition 1 A protocol l solves a problem
 in model
J with input pattern in

� �
if and only if ���DM ,

M �!l 4 J 4 � � ��� �!M satisfies
�� .
3. Simulation and Transformation

The notions of simulation and transformation, although
intuitive, require a precise definition. In particular, some
problems in a given model cannot be transformed in another
model, simply because they cannot be solved in the second
model.

Consider two models J] and J _ , such that J] `qJ _ .
A transformation � takes any protocol l] designed to run
in the strong model J] and converts it into a protocol

3Throughout this paper, we assume for presentation simplicity that pro-
cesses always have a value to send, and we reserve the symbol � for the
very case where a message is not received, as the result of a failure.

l _ &�� �
l] � that runs correctly in the weak model J _ .
For example, J] is �LKNM and J _ is �P�34FQ1R . To avoid am-
biguities, we call a round in the weak model J^_ , a phase.

The transformation of a protocol l] in Jd] to a protocol
l _ in Jd_ is defined through a simulation function, K � U ,
which simulates a run of l] by a run of lX_ .4 For any
process

1
	
executing a protocol lX_ in Jc_ simulating lP] ,

the local state Q of
1 	

contain variables Q 5 Q7�V4 �V23Q 	
and Q 5 Q1Q 	 ,

which maintain the simulated states of protocol l] .5 More
precisely, Q 5 Q7�V4 �V21Q is a set of round numbers, such that, at
the end of any phase

�
, for any round � in Q 5 Q6�V4 �V23Q 	

, Q 5 Q1Q 	�� ���
gives the � -th simulated state, i.e., the simulated state at the
end of round � (Q 5 Q7�V4 �V21Q � 	 & 01�
9 4 Q 5 Q1Q � 	 � � � &�Q). We now
give the formal definitions of our transformation notions,
over an arbitrary set of input values � .

Definition 2 An algorithm � is called a transformation
from model Jd] to model Jc_ , with input pattern in

�D�
,

if there is a corresponding simulation function K � U and
a function � � ; �E; , with the following property: for
any protocol l] and any run MP_ of l _C&��)�
lP] � run-
ning in J _ with input pattern � _ , K � U maps run M _ &m � _ 4 � _ 4 K p _ 4 ME _ n

onto a corresponding simulated run
M] &HK � U �!M _ � such that

(i) M] & m �] 4 �] 4 K p] 4 ME] n and
M] ,jM,�
l] 4 J] 4 � � � ,

(ii) .=/1�1�321. � �
� _ � � .=/1�1�32�. � �
�] � ,
(iii) �=_ & �W] ,
(iv) ��� � , ; � ��� 1o	 ,�. � � �
� ,�K p _@� � 4�� � 5 Q7�V4 �V21Q �

�'K p _ �
� 4�� � 5 Q1Q � ��� &�K p] �
� 4 ��� � ,
(v) ����� , ; � � � 1
	 ,*.=/1�1�121. � �!�]7� �6�!BF.)>� � ��� �

�
�A,aK p _@� � 4 .6� 5 Q7�V4 �V23Q � ,
(vi) ����� 4 � B , ; 4 � G&�� B �6��� 1 	 ,$. �

�'K p _ �
� 4 ��� 5 Q6�V4 �V23Q��jK p _ � � 4 � B � 5 Q7�V4 �V23Q & & � ,
(vii) ��� � , ; � ��� 1 	 ,�. � � �
� ,�K p _ � � 4�� � 5 Q7�V4 �V21Q �� �
� B O �G�6� � B , D���
� � K p _ � � 4�� � 5 Q7�V4 �V23Q � .

Property (i) states that the simulated run should be one of
the runs of the simulated protocol. Property (ii) forces a
correct process to be correct in the simulated run (though
a faulty process may appear correct in the simulated run).
Property (iii) states that the input pattern is preserved by the
simulation. Property (iv) states that any simulated state is
correct w.r.t. lP] . Property (v) forces the simulation to ac-
complish progress. Property (vi) states that each state of lZ]

4In [3], the authors present a problem, called the Strong Dependent
Decision (SDD) problem, which is solvable in a synchronous model, and
show that this problem does not admit any solution in an asynchronous
model augmented with a Perfect failure detector [2] when one process can
crash. This seems to contradict the fact that algorithms designed for the
former model can be run in the latter [13]. The contradiction is in ap-
parence only, and depends on how we define the notion of simulation.

5Contrary to the doubling technique of [13] where each state of the run
in � � simulates at most one state of a run in ��! , we do not restrict our
transformation to simulate only one state of a run of ��! in a state of the
run of � � .

is simulated at most once. Property (vii) forces a process
to simulate states sequentially w.r.t. l] . Apart from Prop-
erty (iii), our definition encompasses the notion of simula-
tion of [13].6

In the following definition, we recall the notion of effec-
tively solving [13] a problem, to indicate that the resolution
is obtained through a simulation function.

Definition 3 For any given function KN�'U , l _ effectively
solves problem
 in model Jd_ with input pattern in

�D�
if

and only if � ��M ,�M,�
lX_ 4 Jc_ 4 �D� � �6�!K � U �
M � satisfies
�� .
The next proposition follows from definitions 2 and 3.

Proposition 4 Let l] be any protocol that solves specifi-
cation
 in model J] . For any given function K � U , if �
is a transformation from J] to J _ , then protocol �)�
l] �
effectively solves
 in model J _ .

4. Shifting Transformation

We present our algorithm to transform any protocol l
written in �LKNM into a protocol l B in a weaker model J
such that l B simulates l , through a simulation function
K � U that we give. For any two distinct processes

1D	
and
1 �

simulating protocol l , we do not necessarily assume that
l 	 & l � . However, we will assume that

1�	
knows the

state machine l � & m Q � 4(p � 4 T ��n executed by
1 �

. We re-
lax this assumption afterwards. Our transformation works
on a round basis: it transforms a single round in �LKNM into
several phases in J . The key to its efficiency is that a phase
is involved in the simulation of more than one round simul-
taneously. We start by giving a general definition of the
notion of shifting transformation, before giving our own.

Let l] be any protocol in model J] , � any transfor-
mation from J] to J _ , and l _ & �)�!l] � the trans-
formed protocol. Roughly speaking, a shifting transforma-
tion is such that any process simulates round � of lZ] after
a bounded number of phases counting from phase � . More
precisely:

Definition 5 A transformation � from model J] to model
J _ is a shifting transformation if and only if there exists a
constant �b,�= , such that, for all �<, ; , � �
�G� &C� �-� .
We call � the shift of the transformation.

Algorithm. In our transformation, all processes collabo-
rate to reconstruct the failure and input patterns of a run
in �LKNM . They accomplish both reconstructions in paral-
lel, one round after another. When processes terminate the

6Indeed, the notion of input pattern does not appear in [13]. In the trans-
formation of [13] from

�������	�
to
���
 ���
���� , each round is transformed in

two phases, which can be defined with � � � ����� � , and ����� � in (v). This
implies that ��� � ��
����! ��#" �	$%�&$%'!� �)(* ,+ and ��� � �-
��#�! 3�H���." �/$%�0$%'�� ��1 .

reconstruction of the patterns for a round, they locally exe-
cute one step of the simulated protocol. If a process realizes
that it is faulty in the simulated failure pattern, this process
simulates a crash in �LK M . To simulate one round in �LK M ,
processes solve exactly one instance of the Interactive Con-
sistency (IC) problem [14]. In the IC problem, each process1o	

is supposed to propose an initial value (
1�	

’s input value in
the round) and eventually decide on a vector of values, such
that (termination) every correct process eventually decides,
(uniform agreement) no two decided vectors are different,
and (validity) for any decision vector 2 , the �4365 compo-
nent of 2 is either the value proposed by

1 �
or
F

, and is
F

only if
1��

fails. We assume that, for any model J among
those we consider, there exists a constant 7 such that all pro-
cesses that decide, decide in at most 7 rounds. Typically 7 is� � � in our �P�34FQ�R � / 4 � � model [6]. An IC algorithm with
these requirements can be derived relatively easily by ex-
tending an existing uniform consensus algorithm in model
J , e.g., [15] (our transformation requires �jO�/98�� when
considering the YZ27/[2��34\7 �	/ 4 � � model [13]). In every phase,
the processes start a new instance of IC, and propose to this
instance the input values received in that phase. The deci-
sion vector corresponds at the same time to a round of the
failure pattern, and of the input pattern.

Figure 1 gives the transformed protocol �)�!l] � for pro-
cess

1 	
, in terms of l] and the input pattern � . For the

sake of simplicity, this protocol is given here in an op-
erational manner (i.e., pseudo-code). During any phase,
many IC instances might be running together. If the con-
dition of the while loop at line 11 (“simulatedRound-th
instance of IC has decided”) is true in a phase

�
of pro-

cess
1
	

, then we denote by :621. �VQW� / / 	 �!QW� US5�7
4 �V2;: M /15�/�: �
the decision vector for the instance of IC in line 13,
��46� 7
5o�32 	 �'Q0� Uj5
7!4 �V2�:6M /15�/�: � the value of the variable��46� 7
5o�32 updated in line 14, �3. � : 	 �!QW� US5�7
4 �V2;:6MP/15�/�: � the
value of the variable �1. � : updated in lines 21 or 23, and
QW�'U*Q7� 	 �'Q0� Uj5
7!4 �V2�:6M /15�/�: � the value of the variable QW� U*Q6�
updated in lines 26 or 28. The following proposition defines
the simulation function K � U in our transformation.

Proposition 6 The simulation K � U for a run
of �)�!l] � , M & m � 4 � 4 K p 4

ME
n
, is defined by

M B & m � B 4 � B 4 K p B 4 ME B n as follows. Let
1 	

be a process in
.=/1�1�32�. � �
� � (

1 	
is such that, for all � , � � � 4 ���,& �!& 4 & 4"� � ,

hence
1 	

does not halt in lines 15 or 31). We consider the
simulation of round � of M B , for any process

1 �
.

(i) � B � � 4 ��� is the value :621. �VQ0�9/ / 	 �
�G� � � � of the
� -th instance of IC.

(ii) if
1�� ,$��4 �97
5o�32 	 � ��� then � B � � 4 ��� & �#. 4 . 4 �
� ,

otherwise � B � � 4 ���@& �'& 4 & 4(� � .
(iii) if � & �

then K p B � � 4"� � &HQ � ,
otherwise K p B � � 4 �G�@&�QW� U�Q7� 	 � ��� � � � .

(iv) if
1 � ,$��4 �97
5o�32 	 � ��� then ME B � � 4 �G�@& F ,

otherwise ME B � � 4 ��� & �3. � : 	 � ��� � � � .

1: ���������
	���
 ��� (� �
���� ��' corresponds to one round of the failure pattern +
2: �������
���������� "!#�
$%�&
 �(' (�
 �)�*� �0$%',+#- �.� � + is the current simulated round number +
3: /�0�132546'879$;:�<./������=�.��/�>?<.4 1�:@
 �A�9B�< (�
 � �	$ � � �9C D�E is the state of protocol ��! for process F B at the end of round

� +
4: �.�G���H�#�I
 �AJ#>?K (set of rounds of protocol � ! which are simulated by � � in the current round +
5: �L�?4 >#:@
 ����M (set of states of protocol ��! which are simulated by ��� in the current round +
6: for phase 	�/�	��N'87,O�7�P�P�P < do
7: ��$�Q
���R
 � receiveInput /�< (receive input value corresponding to SG�-
�� � ��+
8: start IC instance number 	 , and propose /���$�Q
���9<
9: execute one round of all pending IC instances

10: ���G�����#�T
 �A� (has any IC instance decided? +
11: while �������;�����H�L�� T!��
$%� -th instance of IC has decided do
12: �.�H�����#�"
 �A�.�G���H�#�VU�J��������;�����H�L�� T!��
$%�WK (instance

�
��)�*� �0$%',+�- �.� � + has decided +
13: ����X.�Y����!#$Z
 � decision vector of instance �������;�[���H���� "!���$\� (reconstruct patterns +
14: �����Y�[�
	8�]
 �A���������
	��^U=J
Q�B^_Y���LX,�Y����!#$`4 1�:%�AabK (ensure failure pattern has only atomic failures +
15: if Q M 2=���������
	�� then halt (is process F M faulty? +
16: for each Q B 2=c do (adjust

+0' �.
 �
��*� vector with previous failure pattern +
17: if Q�Bb2=�����Y�[�
	8� then
18: ����X.�Y����!#$`4 1�:d
 �Aa
19: for each Q B 2=c do (generate messages +
20: if Q Bfe2=�����Y�[�
	8� then
21: 	�X,g��;4 1�:h
 �AiRB*/������j�.��/��������;�[���H���� "!���$\�Ikl'�<.4 1�:�7m����X.�Y����!�$`4 1�:�7��������
���������� "!#�
$%�*<
22: else
23: 	�X,g��;4 1�:h
 �na
24: for each Q�Bb2=c do (perform state transitions +
25: if Q�B e2=�����Y�[�
	8� then
26: �����=�.��/��������;�����H�L�� T!��
$%�*<.4 1�:%
 �poWB�/������=���./������q�;���������� "!#�
$%�Ikr'L<.4 1�:�7,	#X.g��
79�����q�;���������� "!#�
$%�*<
27: else
28: �����=�.��/��������;�����H�L�� T!��
$%�*<.4 1�:%
 �n�����j�.��/��������
���������� "!#�
$%�Iks'�<.4 1�:
29: �L��4 �������;�[���H���� "!���$\�?:\
 �������=���./������q�;���������� "!#�
$%�*<.4 ��:
30: �����q�;���������� "!#�
$%�t
 �A�������
���������� "!#�
$%�"uv' (increment simulated round counter +
31: if 	"k5�����q�;���������� "!#�
$%�&wrx then halt (is process F M faulty? +

Figure 1. Transformation algorithm (code for process
1 	

)

Proposition 7 The algorithm of Fig. 1 is a shifting
transformation from �LKNM,�	/ 4 � � to �P�34\Q1R � / 4 � � (resp.
TPUS�VQ1QW� / / �	/ 4 � � , YZ2
/[2��34\7 � / 4 � � (where �aO /98��)) where
the shift is the number of rounds needed to solve Interac-
tive Consistency in �P�34FQ1R �	/ 4 � � (resp. TPUj�9Q1QW�9/ / � / 4 � � ,
YZ27/[2��34\7 �	/ 4 � � � .

Transformation Extension. In the transformation of
Fig. 1, the processes only need to send their input value in
a phase, because the protocol itself can be locally simulated
by other processes. We assume here that the processes do
not know the state machine simulated by any other process.
As a result, any process

1 	
needs to send, in addition to the

message of the previous transformation, the content of the
message it would normally send in the simulated protocol,
i.e., the output of function T 	

. Nevertheless, as with our
previous transformation, we would like to start the simu-
lation of a round before the decision of all previous simu-
lations are known. Thus

1 	
cannot know in which precise

state of the protocol it should be at the time it has to generate

a message (remember that the current state is a parameter of
the message output function T 	

).
More precisely, consider any process

1D	
simulating a run

M B & m � B 4 � B 4 K p B 4 ME B n of �LKNM . The idea of the ex-
tended transformation is to maintain, for

1D	
, all simulated

states of K p B that are coherent with previous (terminated)
simulations. Hereafter, these states are called the extended
set of states and denoted by 23Q . For any two processes

1 	
and
1��

simulating the execution of protocol l in �LKNM ,
we denote by U � the message

1��
sends to

1 	
in round � .

Before the end of round � simulation, i.e., in any phase
� B � �d) � B)f� � 7 :>��� , 1 	 does not know the decision
value corresponding to

1 �
’s proposal: (1) as long as

1 	
has

not received U � , the decided value can be any value in A B
(including

F
), and (2) if

1�	
receives U � , the decided value

can either be U � or
F

. To be able to start the next instance
in the next phase,

1
	
generates a new extended set of states.

To generate this set of states,
1�	

computes
pD	

on every state
in the current set of states, with every possible combina-
tion of messages received in phase � (i.e.,

F
values are suc-

cessively substituted by any value of A , and any received

value successively substituted with
F

). To each state in the
extended set of states corresponds a message of l 	

to be
sent in round � by

1
	
. These messages are gathered in a set,

hereafter called the extended message and denoted by 2WU .
For example, consider the case of the �P�14FQ1R ��� 4 ��� model

with �<& A & 0�� 4 � 9 . After phase � , process
1 2

gath-
ers the received values in the vector

� � � F � . The possi-
ble combinations of messages are

� � � F � , � � � � � , � � � �
� ,� � F F � , � � F � � , � � F �
� , � F � F � , � F � � � , � F � � � , � F F � � ,
and

� F F �
� . Process
132

generates the extended set of states
by applying function

p 2
on each combination of messages.

Figure 2 presents our extended transformation algorithm.
For the sake of clarity, we ignore possible optimizations in
this algorithm (e.g., any process can reduce the number of
possible states as it receives more values from other pro-
cesses). We denote by �1. � : � ��� the messages of instance �
received in phase � (we assume that any process sends in
any phase of the underlying IC algorithm, the value it pro-
poses to this instance).

Detailed Description. Consider any process
1�	

simulat-
ing state machine l 	 & m Q 	�4 pD	 4 T 	 n

, and any phase � of the
simulated run M'& m � 4 � 4 K p 4

ME
n

of l . At the beginning
of any phase � , 23Q is the extended set of states and gathers
all the possible states for

1 	
at the end of phase � :�� . We

describe the message generation and the simulation.

Message generation. At the beginning of phase � ,
1 	

re-
ceives an input value � / 1 5�� & ��� � 4 �G� , and computes a new
extended set of states 23Q B and the corresponding extended
message 2WU , which is a set of tuples. A tuple in 2�U is of
the form

m /D5oU �!Q7� � 4 �321. 4 /D5
U �'Q7� B � 4 U n
, and contains (i) the

identifier /D5oU �!Q7� � of a possible state Q7� of
1
	

at the begin-
ning of round � : � , (ii) a combination �121. of messages
received by

1
	
in phase �L:-� , (iii) the identifier /D5oU �!Q7� B �

of the state Q7� B of
1
	

at the beginning of phase � , such that
Q6� B & pD	 �'Q6� 4 �32�. 4 � :*�
� , (iv) the message sent in round � ,
i.e., U & T 	 �!Q7� B 4 ��� � 4 ��� 4 ��� . For each state Q7� in the cur-
rent extended set of states 23Q , and for any combination �32�.
of messages (according to the extended messages of phase
�F: �), 1 	 computes the next state Q7� B & p 	 �!Q7� 4 �321. 4 �G� (when-
ever
1 	

includes a new state Q6� B in 23Q B , it associates a unique
identifier /D5oU �!Q7� B � with Q7� B), and the corresponding mes-
sage U & T 	 �!Q7� B 4 � / 1 5�� 4 ��� . 1 	 sends 2�U and the extended
messages of other running IC instances in phase � .

Simulation. In the following, the variable
Q0� Uj5
7!4 �V2�:6M /15�/�: denotes the next round to be simu-
lated (we consider that the simulation has been performed
up to round QW�'Uj5�7
4 �V2;: M /15�/�: : �). Each process1o	

maintains (1) the simulated state of machine l 	
at

the end of round Q0� Uj5
7!4 �V2�:6M /15�/�: : � (denoted by
Q�Q � QW�'Uj5�7
4 �V2;: M /15�/�: : �
�), and (2) the identifier associated

with the state currently simulated at each process
1 �

, at the
end of round QW� US5�7
4 �V2;: M /15�/�:P:�� , denoted by QW� U � � � .

If the condition of the while loop at line 22
(“ QW�'Uj5�7
4 �V2;: M /15�/�: -th instance of IC has de-
cided”) is true in a phase

�
at process

1�	
, then

: 21. �VQW�9/ / 	 �!QW� Uj5
7!4 �V2;:6M /15�/�: � denotes the decided vector
of messages at line 24, ��46� 7
5o�32 	 �'QW�'Uj5�7
4 �V2;: M /15�/�: � the
value of the variable ��46�97 5
�12 updated in line 25, and
�9�15
21M . � : 	 �!QW� US5�7
4 �V2;: M /15�/�: � the value of the variable
�9�15
21M . � : updated in line 31. Process

1 	
uses the decided

vector : 21. �VQW�9/ / 	 �'QW�'Uj5�7
4 �V2;: M /15�/�: � to update the simu-
lated state of machine l 	

, i.e.,
1 	

adds QW� Uj5
7!4 �V2;:6M /15�/�:
in Q7�V4 �V23Q and computes Q1Q � QW� US5�7
4 �V2;: M /15�/�: � . More
precisely,

1.
1 	

computes the messages �9�15
21M . � : : (1a) if1 � , ��46� 7
5o�32 or :62�.=�9QW�9/ / � � � & F
, then

�9�15
21M . � : � � � & F
, otherwise (1b)

1
	
searches

for the tuple
m Q0� U � � � 4 J 4�� 4�� n

in the extended mes-
sage of

1 �
(generated at phase QW� US5�7
4 �V2;: M /15�/�:),

where J is the set of messages received in round
QW� US5�7
4 �V2;: M /15�/�:c:C� (i.e., the previous value of
�9�15
21M . � :). Let

m QW�'U � � � 4 J 4 Q 4 U n
be this tuple.

QW� U � � � is updated with Q and �9�15
21M . � : � � � with U .

2.
1o	

updates Q1Q � Q0� Uj5
7!4 �V2�:6M /15�/�: � with the statepD	 �'Q�Q � QW�'Uj5�7
4 �V2;: M /15�/�:X: �
� 4 �9�15�21MP. � : 4 QW� US5�7
4 �V2;: -
M /15�/�: � .

If any value in the vector :62�.=�9QW�9/ / is
F

, then the corre-
sponding process is added to ��46�97 5
�32 . If any process adds
itself to ��46�97 5
�32 , it stops. The following propositions assert
the correctness of the extension of our transformation.

Proposition 8 The simulation K � U for a run of � �!l] � ,
M+& m � 4 � 4 K p 4

ME
n

is defined by M B & m � B 4 � B 4 K p B 4 ME B n
as follows. Let

1 	
be a process in .=/1�1�321. � �
� � (

1 	
is such

that, for all � , � �
� 4 ���@&'�'& 4 & 4(� � , hence
1 	

does not halt in
lines 27 or 43). We consider the simulation of round � of
M B , for any process

1 �
.

(i) � B &�� .
(ii) if

1�� ,$��4 �97
5o�32 	 � ��� then � B � � 4 ��� & �#. 4 . 4 �
� ,
otherwise � B � � 4 ���@& �'& 4 & 4(� � .

(iii) K p B �
� 4"� � &HQ 	 and K p B � � 4 �G� & Q1Q 	�� ��� . For any
process

1��
(including

1 	
) not in ��46�97 5
�32 	 � ��� ,

K p B � � 4 ��� is the state of
1 �

at the end of round � ,
such that K p B � � 4(� � & Q � and
K p B � � 4�� �@& p � �!K p B � � 4�� : �
� 4 �9�15
21M . � : 	 � � � 4�� � ,
for each

�
from � to � . Otherwise, for any

1 �
in

��46�97 5
�32 	 � ��� , K p B � � 4 ���@& K p B � � 4 �X: �
� .
(iv) if

1 � ,$��4 �97
5o�32 	 � ��� then ME B � � 4 �G�@& F ,
otherwise ME B � � 4 ��� &>�9�15
21M . � :��
�G� � � � .

Proposition 9 The algorithm of Fig. 2 is a shifting
transformation from �LK M �	/ 4 � � to �P�34FQ1R �	/ 4 � � (resp.

TPUS�VQ1QW� / / �	/ 4 � � , YZ2
/[2��34\7 � / 4 � � (where �aO /98��)) where
the shift is number of rounds needed to solve Interac-
tive Consistency in �P�34FQ1R �	/ 4 � � (resp. TPUj�9Q1QW�9/ / � / 4 � � ,
YZ27/[2��34\7 �	/ 4 � � � .

The same idea can be applied when input values can de-
pend on the state of the processes, and there are finitely
many possible input values (i.e., > � >FO��). Using the tech-
nique described above, a process anticipates on the different
input values that it can receive, to start the next simulations.
When the preceding simulations terminate, the input value
that had correctly anticipated the state of the process is de-
termined, and only the messages and states following from
this input value are kept. The algorithm in Fig. 2 can eas-
ily be adapted to the case where input values depend on the
state of processes.

Note that in both of the above cases, the number of mes-
sages generated may be very high.

5. Performance

We analyze the performance of our transformation tech-
nique, and prove its optimality by introducing several inter-
mediate models, in which processes can omit messages for
a bounded number of rounds before crashing.

Complexity. We denote by 7�� and ��� the number of
phases needed for all processes to respectively decide and
terminate IC, in any run with at most � failures. We define
the phase complexity overhead as the number of additional
phases executed by the transformed protocol l _ in Jc_ ,
w.r.t. the original protocol l] in Jd] . In our transforma-
tions, we overlap the simulation of rounds with a one-phase
interval. The only phase complexity overhead is the number
of phases needed before obtaining the result of the simula-
tion of the first round, which corresponds to 7 � : � . In the
�P�14FQ1R � / 4 � � model, the tight lower bound for reaching a
global decision is 7 � & ��� � phases [4, 9], in every run
where there are at most � failures. Hence the phase com-
plexity overhead in failure-free runs �#�$& � � is exactly one
phase. In terms of messages, our transformation generates
at most a /[7
/��	��> �X> -bit message per process, per phase, and
per IC instance, hence any process sends a /
��� 7
/����6> �X> -bit
message in any phase, in any run with at most � failures. In
the extended transformation, any process maintains at least�
8
���

states for a round simulation. A state (tuple) is coded
using �$&-��7
/�� � > : >7�>�	/ �-�
� 7
/�� � > A > bits, hence any pro-
cess sends a � � /�� �

8
���
-bit message in any phase, in any run

with � failures.

Proposition 10 (Shifting Optimality) Any automatic shift-
ing transformation from a model J] weaker than �LKNM to
any model J _ weaker than J] introduces a shift of at least
7 phases.

Proof (Sketch): We introduce the notion of � -model, in
which a faulty process may exhibit a faulty behavior dur-
ing � phases, and then crashes. More precisely, for any
process

1
	
and any round � in any � -model, we have

� � � 4 ����G& �!& 4 & 4"� � # � � � 4 � ��� � & �#. 4 . 4 � � . For
any model J , 0 �P�14FQ1R 4 TPUj�9Q1QW�9/ / 4 YZ2
/[2��3467 9 , we de-
note by � - J'� / 4 � � the model defined by all failure patterns
in J'�	/ 4 � � which satisfy the previous equation. Note that
TPUS�VQ1QW�9/ / is equivalent to � - TPUS�VQ1QW� / / , and YZ27/[2��34\7 to
� - YZ2
/[2��14\7 .

Our transformations require 7 phases to simulate a round
in �LK M from any � - J'�	/ 4 � � . We consider a problem � ,
such that there exists an algorithm in ���L: �
� - J'� / 4 � � which
solves � in ��� : �
� rounds. We show that any algorithm
solving � in � - J'�	/ 4 � � requires 7 phases, and � can be
solved in �LKNM in one round.

The problem we consider consists in determining the
phase number in which a process

1 	
fails for the first time.

More precisely, each process is supposed to propose a value
from

�
to �X:H� , corresponding to the phase number in which1o	

appears faulty for the first time, and eventually decide
on a phase number, such that (P-termination) any correct
process eventually decides, (P-validity) any decided phase
number was proposed, and (P-agreement) the difference be-
tween any two decisions does not exceed �;:�� phases.

In � - J'� / 4 � � , we need 7 phases to solve this problem,
otherwise we could solve binary consensus in less that 7
phases (contradicting [6]). Assume some algorithm � solve
problem � in less than 7 phases. Consider algorithm � B
defined as follows. If a process proposes � , change it to �
otherwise (the proposed value is

�
) let it unchanged, and

execute algorithm � with the new proposed value. If the
decision in � is � decide � otherwise decide

�
. We ar-

gue that algorithm � B implements a binary consensus algo-
rithm. Validity and termination follow from P-validity and
P-termination. Consider agreement. By P-validity, any de-
cision value is either

�
or � . By P-agreement, the difference

between two decisions does not exceed �a: � , hence all de-
cision values are

�
or � . � B is a binary consensus algorithm

and runs in less that 7 , contradicting [6]. By definition, this
problem is solved in �^:-� rounds in ���^:-� � - J'� / 4 � � . In
� - J'�	/ 4 � � , we have just shown that 7 phases are required.
For any bounded number of rounds � during which we ob-
serve a protocol l , any J'� / 4 � � can be seen as a � - J'�	/ 4 � �
model. We have shown that there is a problem such that
there is no loss of efficiency, in term of time complexity,
to simulate �LKNM rather than any � B - J'� / 4 � � � ��) � B O ���
model. Hence the shifting optimality. �

Determining the exact overhead in terms of message size
complexity is an open issue.

1: ���������
	���
 ��� (� �
���� ��' corresponds to one round of the failure pattern +
2: �������
���������� "!#�
$%�&
 �(' (�
 �)�*� �0$%',+#- �.� � + is the current simulated round number +
3: �.�G���H�#�I
 �AJ#>?K�� �#�?4 >#:@
 �A��M (set of states of protocol ��! which are simulated by ��� in the current round +
4: /�0�132546'879$;:�<./������Z4 1�:d
 ��>8< (all processes start in the � -th state +
5: $%�
������)
 �N' (by convention ��� �H� ��� C �.E �����0+
6: for phase 	�/�	��N'87,O�7�P�P�P < do
7: ��$�Q
���R
 � receiveInput /�< (receive input value corresponding to SG�-
�� � ��+
8: if 	��N' then
9: ���I
 �AJ���MHK��5���
 �AJ��Hk�7�k�79>�7mi"M�/���M�7H��$�Q
�W�.79	8<
	�K

10: else
11: �#���\
 ���
� ���
 �p�
12: for any possible combination 	8��X of $ messages of 	�X,g��;4 	Tks',: do
13: for any possible state �.� of �#� do
14: �.���@
 � o M /����,7�	��LX#7�	8<��Z$%�
�Z/��.����<^
 �p$%�
���.�L	�� $%�
���.�L	b
 �p$%�
������	 uv'
15: �#���\
 �p�#����U=J#�.����K
16: ���
 �A��� U=J���$%�
�Z/��.�9<,7H	���X�7�$%�
�Z/��.� � <,7�i"M9/���� � 79��$�Q
�W�.7�	8<
	�K
17: �#��
 �p�#� �

18: start instance 	 , and propose /����j<
19: execute one phase of all other running instances
20: 	�X,g��;4 	L:\
 � extended messages of instance 	

21: ���G�����#�T
 �A�
22: while �������;�����H�L�� T!��
$%� -th instance of IC has decided do (is there any IC instance decided? +
23: �.�H�����#�"
 �A�.�G���H�#�VU�J��������;�����H�L�� T!��
$%�WK (instance

�
��)�*� �0$%',+�- �.� � + has decided +
24: ����X.�Y����!#$Z
 � decision vector of instance �������;�[���H���� "!���$\� (reconstruct patterns +
25: �����Y�[�
	8�]
 �A���������
	��^U=J
Q�B^_Y���LX,�Y����!#$`4 1�:%�AabK (ensure failure pattern has only all-or-nothing failures +
26: if Q M 2=���������
	�� then (is process F M faulty? +
27: halt (GF M does not perform any step +
28: for each Q�Bb2=c do (adjust

+0' �.
 �
��*� vector with previous failure pattern +
29: if Q�Bb2=�����Y�[�
	8� then
30: ����X.�Y����!#$`4 1�:d
 �Aa
31: for each Q B 2=c do (compose the messages of the round +
32: if Q�Bb2=�����Y�[�
	8� then
33: �H�)Q; "X.g��;4 1�:\
 �Aa
34: else
35: if �������;�����H�L�� T!��
$%�b�(' then
36: �H�)Q; "X,g��;4 1�:@
 �p� such that ����7���7m>*7H��	R2=����X.�Y����!�$`4 1�:
37: else
38: let � and � such that ������� 4 1�:�7��H	#�;�L "X,g��
7
�;79��	V2=����X,�G����!#$ 4 1�:
39: �H�)Q; "X,g��;4 1�:@
 �p� ; ����� 4 1�:d
 ���
40: �H	#�;�L "X.g��t
 � �H�)Q; "X.g��
41: �L��4 �������;�[���H���� "!���$\�?:\
 � o M /��L�?4 �����q�;���������� "!#�
$%��ks',:�7��G	��
�# TX.g��
79�������
���������� "!#�
$%�*<
42: �����q�;���������� "!#�
$%�t
 �A�������
���������� "!#�
$%�"uv'

43: if 	"k5�����q�;���������� "!#�
$%�&wrx then (is process F M faulty? +
44: halt (GF M does not perform any step +

Figure 2. Extended transformation algorithm (code for process
1�	

)

6. Concluding Remarks

In this paper, we concentrated on three different models,
and presented a shifting transformation technique to trans-
late protocols from the perfectly synchronous model into
each of these weaker models. With minor modifications, it
is possible to use a shifting technique to translate protocols
into the Byzantine model [11]. (Roughly speaking, in the
Byzantine model, a faulty, or byzantine, process may arbi-
trarily deviate from its protocol, by sending and relaying
spurious messages, not necessarily according to its proto-
col.) We need however to modify the definition of a simu-
lation (Definition 2), that required some properties to hold
over the complete set of processes . , which is not possible
in the Byzantine model. These properties should rather refer
to the set of correct processes in the original run (this is the
same restriction as in [13]. The transformation algorithm in
Fig. 1 has to be slightly modified: uniform agreement of IC
is turned into non-uniform agreement (i.e., no two correct
processes decide on two different vectors). Indeed, uniform
agreement cannot be ensured in the Byzantine model. Note
that generally speaking, in the Byzantine model, processes
need to know each other’s protocol, possibly to validate re-
ceived messages w.r.t. the simulated protocol (e.g., in [13]).

References

[1] R. A. Bazzi and G. Neiger. Simplifying fault-tolerance: pro-
viding the abstraction of crash failures. Journal of the ACM
(JACM), 48(3):499–554, 2001.

[2] T. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems. Journal of the ACM (JACM),
43(2):225–267, 1996.

[3] B. Charron-Bost, R. Guerraoui, and A. Schiper. Synchronous
system and perfect failure detector: Solvability and effi-
ciency issues. In Proceedings of the IEEE International Con-
ference on Dependable Systems and Networks (DSN), pages
523–532, 2000.

[4] B. Charron-Bost and A. Schiper. Uniform consensus harder
than consensus. Technical Report DSC/2000/028, EPFL,
May 2000.

[5] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui,
and B. Pochon. Distributed programming for dum-
mies: A shifting transformation technique. Tech-
nical Report IC/2003/49, EPFL, July 2003. Avail-
able at http://ic2.epfl.ch/publications/
documents/IC_TECH_REPORT_200349.pdf.

[6] M. J. Fischer and N. A. Lynch. A lower bound for the time to
assure interactive consistency. Information Processing Let-
ters (IPL), 14(4):183–186, June 1982.

[7] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility
of distributed consensus with one faulty process. Journal of
the ACM (JACM), 32(2):374–382, 1985.

[8] V. Hadzilacos. Byzantine agreement under restricted types
of failures (not telling the truth is different from telling lies).
Technical Report 18-83, Department of Computer Science,
Harvard University, 1983.

[9] I. Keidar and S. Rajsbaum. A simple proof of the uni-
form consensus lower bound. Information Processing Let-
ters (IPL), 85(1):47–52, 2002.

[10] L. Lamport and M. Fischer. Byzantine generals and trans-
action commit protocols. Technical Report 62, SRI Interna-
tional, 1982.

[11] L. Lamport, R. Shostak, and L. Pease. The byzantine gener-
als problem. ACM Transactions on Programming Languages
and Systems (TOPLAS), 4(3):382–401, 1982.

[12] Y. Moses and M. R. Tuttle. Programming simultaneous ac-
tions using common knowledge. Algorithmica, 3(1):121–
169, 1988.

[13] G. Neiger and S. Toueg. Automatically increasing the fault-
tolerance of distributed algorithms. Journal of Algorithms,
11(3):374–419, 1990.

[14] L. Pease, R. Shostak, and L. Lamport. Reaching agree-
ment in presence of faults. Journal of the ACM (JACM),
27(2):228–234, 1980.

[15] M. Raynal. Consensus in synchronous systems: a concise
guided tour. Technical Report 1467, IRISA, 2002.

[16] F. B. Schneider. Replication management using the state ma-
chine approach. In S. Mullender, editor, Distributed Systems.
Addison-Wesley, 1993.

