
Gracefully Degrading Fair Exchange with Security Modules
(Extended Abstract)

Gildas Avoine Felix Gärtner Rachid Guerraoui Marko Vukolić

Abstract. The fair exchange problem is key to trading electronic items in systems of mutually un-
trusted parties. In modern variants of such systems, each party is equipped with a tamper proof secu-
rity module. The security modules trust each other but can only communicate by exchanging messages
through their host parties. These hosts are untrusted and could intercept and drop those messages.

We describe a synchronous algorithm that ensures deterministic fair exchange if a majority of parties
are honest, which is optimal in terms of resilience. If there is no honest majority, our algorithm degrades
gracefully: it ensures that the probability of violating fairness can be made arbitrarily low. We prove
that this probability is inversely proportional to the average complexity of the algorithm in terms of its
number of communication rounds, and we supply the corresponding optimal probability distribution.

Our algorithm uses, as an underlying building block, an early stopping subprotocol that solves, in
a model with general omission failures, a specific variant of consensus we call biased consensus. Our
modular approach contributes in bridging the gap between modern security (i.e., based on security
modules) and traditional distributed computing (i.e., agreement with omission failures).

Category: Regular and student paper (Marko Vukolić and Gildas Avoine are full time students).
Author affiliations: G. Avoine, R. Guerraoui, M. Vukolić: EPFL, Switzerland; F. Gärtner: RWTH
Aachen University, Germany.
Contact author: Marko.Vukolic@epfl.ch, EPFL, CH-1015 Lausanne, Switzerland; Tel: +41 21
693 81 23; Fax: +41 21 693 75 70.
Number of pages: 10 (without references and optional appendices).
Keywords: fair exchange; security; consensus; omission failures.

1 Introduction

1.1 Motivation

Fair exchange is a fundamental problem in systems with electronic business transactions. In fair
exchange, the participating parties start with an item they want to trade for another item. They
possess an executable description of the desired item, typically a boolean function with which an
arbitrary item can be checked for the desired properties. Furthermore, they know from which party
to expect the desired item and which party is expecting their own item. An algorithm that solves fair
exchange must ensure that every honest party eventually either delivers its desired item or aborts
the exchange (termination property). The abort option however is excluded if no party misbehaves
and all items match their descriptions (effectiveness). The algorithm should also guarantee that, if
the desired item of any party does not match its description, then no party can obtain any (useful)
information about any other item (fairness property).

Fair exchange is easily solvable using a trusted third party through which all items can be
exchanged [6]. The involvement of the trusted third party can be reduced using optimistic schemes
where participation of the trusted third party is only necessary if something goes wrong [1]. The

context of this paper is one where the trusted third party is a virtual entity, distributed within all
untrusted parties, as we explain below.

We consider in this paper a system where each party hosts a security module that is tamper proof
(Fig. 1). Recently, manufacturers have begun to equip hardware with such modules: these include
for instance smart cards or special microprocessors. Examples include the “Embedded Security
Subsystem” within the recent IBM Thinkpad or the IBM 4758 secure co-processor board [7]. In
fact, a large body of computer and device manufacturers has founded the Trusted Computing Group
(TCG) [21] to promote this idea. Because their hardware is tamper proof, the software running
within the security modules is certified and they can communicate through secure channels. In
certain settings, the overall system can even assumed to be synchronous, i.e., it is reasonable to
assume an upper bound on the relative speeds of honest parties (and their security modules) as well
as on the communication delays between them. However, dishonest parties can still drop messages
exchanged between the underlying security modules in order to violate the fairness of the exchange
in their favor, i.e., obtain an item without giving away their own.

wired or wireless channel between hosts
secure channel (over physical channel)

security
module

untrusted host

security
module

untrusted host

Fig. 1. Hosts and security modules.

The contribution of this paper is a synchronous distributed algorithm aimed at exchanging
electronic items among untrusted parties, each hosting a security module. The algorithm provides
the two following complementary features:

1. If a majority of parties is honest, then the algorithm deterministically guarantees the termina-
tion, effectiveness and fairness properties of fair exchange. This is optimal in terms of resilience:
we indeed show that, even in a synchronous model with security modules, no deterministic
algorithm solves fair exchange if half of the parties are dishonest.

2. If at least half of the parties turn out to be dishonest, then our algorithm degrades gracefully
in the following sense. It still guarantees the termination and effectiveness properties of fair
exchange, as well as ensures that the probability of violating fairness can be made arbitrarily low.
We supply the probability distribution that optimizes the average complexity of the algorithm,
in terms of its number of communication rounds, and we show that probability of violating
fairness is inversely proportional to the average algorithm complexity.

Our algorithm is made of three phases, and we give the intuition underlying each phase below.

1. In the first phase, which we call the initialization phase, the security modules exchange the
items that are supposed to be traded by their untrusted hosts. These items are not delivered by

2

the security modules to their untrusted hosts: this is only performed if the third phase (below)
terminates successfully. Any security module can decide here to abort the exchange if some
item is missing or does not match its expected description. The security module hosted by the
party that initiates the exchange also selects here a random number k that it disseminates to
all other security modules. The role of this random number is crucial in the second phase of the
algorithm.

2. In the second phase, which we call the fake phase, all security modules exchange messages
during k rounds; each round following the same communication pattern as in the third phase
(below). The fact that the random number k, determined in the first phase, is not accessible to
the untrusted parties is fundamental here. Roughly speaking, the goal of the fake phase is to
make the probability, for any number of dishonest parties to successfully guess when the actual
agreement phase is taking place (third phase below), arbitrarily low. If any dishonest party
drops a message towards a honest party in this fake phase, the security module hosted by the
latter simply aborts the exchange and forces other modules to abort the exchange as well, thus
penalizing any dishonest host that might try to bias the exchange in its favor.

3. In the third phase, which we call the agreement phase, the security modules solve a problem
we call biased consensus. In this problem, the processes (in our case the security modules) start
from an initial binary value (a proposal) and need to decide on a final binary value: either to
abort the exchange or commit it (and deliver the items to their untrusted hosts). Unlike in
consensus [9], but like in NBAC (non-blocking atomic commit) [5, 20], the problem is biased
towards 1: no process can decide 1 if some process proposes 0 (to avoid trivial solutions, the
processes are supposed to decide 1 if no process fails or proposes 0). The agreement aspect of this
problem is however different from consensus and NBAC; it is also biased towards 1: we simply
require here that, if some process decides 1, then no correct process decides 0. We consider an
early stopping algorithm that solves this problem in a model with general omissions, along the
lines of [17].

Besides our main contribution, i.e., a new gracefully degrading fair exchange algorithm, our
paper contributes in bridging the gap between security problems (fair exchange) and traditional
distributed computing problems (consensus-like problems). We show indeed that deterministic fair
exchange in a model with security modules is equivalent to biased consensus. By proving that biased
consensus is impossible in a synchronous model [13] with general omission failures [18] if half of
the processes can be faulty we directly establish a lower bound result for fair exchange in a model
with tamper proof modules.

1.2 Roadmap

Section 2 defines our system model. Section 3 recalls the fair exchange problem, introduces biased
consensus, and shows their equivalence in a model with security modules. We also state the im-
possibility of deterministic fair exchange without a honest majority which motivates our notion of
gracefully degrading fair exchange. Section 4 describes our gracefully exchange fair exchange algo-
rithm and states its correctness. Section 5 concludes the paper by discussing some related work.
Most of the proofs are given in the optional appendices.

3

2 Model

The system we consider is composed of a set of processes, some modeling untrusted hosts and the
other modeling security modules. These processes communicate by exchanging messages.

2.1 Untrusted hosts and security modules

More precisely, the set of processes we consider is divided into two disjoint classes: untrusted hosts
(or simply hosts) and security modules. Two processes connected by a physical channel are said
to be adjacent. We assume that there exists a fully connected communication topology between
the hosts, i.e., any two hosts are adjacent. Furthermore, we assume that every host process PA

is adjacent to exactly one security module process GA (i.e., there is a bijective mapping between
security modules and hosts): we say that PA is associated with GA. No two security modules are
adjacent. In other words, for any two security modules GA and GB to communicate, they need to do
so through their hosts PA and PB. This indirection provides the abstraction of an overlay network
at the level of security modules. We call the part of the system consisting of security modules,
and the virtual communication links between them, the security subsystem. We call the part of the
system consisting of hosts and the communication links between them the untrusted system. The
notion of association can be extended to systems, meaning that, for any given untrusted system,
the associated security subsystem is the system consisting of all security modules associated to any
host in that untrusted system.

2.2 Security modules and virtual channels

Security modules are interconnected by a virtual communication network with bidirectional chan-
nels over the physical communication network among the hosts. For simplicity, we denote the
participants processes (the security modules) by G1, . . . , Gn. We assume that between any two
security modules Gi and Gj , the following properties are guaranteed: (1) Message contents remain
secret from unauthorized entities; (2) If a message is delivered at Gj , then it was previously sent
by Gi; (3) Message contents are not tampered with during transmission, i.e., any change during
transmission will be detected and the message will be discarded; (4)If a message is sent by Gi to
Gj and Gj is ready to receive the message, then the message will be delivered at Gj within some
known bound ∆ on the waiting time.

2.3 Trust and adversary model

Security modules can be trusted by other security modules or hosts, and hosts cannot be trusted
by anybody. Hosts may be malicious, i.e., they may actively try to fool a protocol by not sending
any message, sending wrong messages, or even sending the right messages at the wrong time. We
assume however that hosts are computationally bounded, i.e., brute force attacks on secure channels
are not possible. Security modules are supposed to be cheap devices without their own source of
power. They rely on power supply from their hosts. A host may inhibit all communication between
its associated security module and the outside world, yielding a channel in which messages can be
lost.

A host misbehaves if it does not correctly follow the prescribed algorithm and we say that the
host is dishonest. Otherwise it is said to be honest. Misbehavior is unrestricted (but computation-
ally bounded as we pointed out). Security modules always follow their protocol, but since their

4

associated hosts can inhibit all communication, this results in a system model of security modules
with unreliable channels (the model of general omission [18], i.e., where messages may not be sent
or received). In such systems, misbehavior (i.e., failing to send or receive a message) is sometimes
termed failure. We call security modules associated with honest hosts correct, whereas those asso-
ciated with dishonest hosts faulty. In a set of n hosts, we use t to denote a bound on the number
of hosts which are allowed to misbehave and f the number of hosts which actually do misbehave
(f ≤ t). Sometimes we restrict our attention to the case where t < n/2, i.e., where a majority of
hosts is assumed to be honest. We call this the honest/correct majority assumption.

Our model of the adversary is based on the strongest possible attack, the case in which all of
the f dishonest hosts collude. We assume that adversary knows all the algorithms and probability
distributions used.

3 Variations on Fair Exchange

In this section we recall the definition of fair exchange (FE), and we show that this problem, at the
level of untrusted hosts, is in a precise sense equivalent to a problem that we call biased consensus
(BC), at the level of the underlying security modules. Then, we state that biased consensus is
impossible if half of the processes can be faulty and derive the impossibility of fair exchange if a
majority of hosts can be dishonest (the detailed proof can be found in Appendix A). This motivates
our definition of a weaker variant of fair exchange, the gracefully degrading FE.

3.1 Fair exchange

Definition 1 (Fair Exchange). An algorithm solves fair exchange (FE) if it satisfies the following
properties [1,16]

– (Timeliness) Every honest host eventually terminates.
– (Effectiveness) If no host misbehaves and if all items match their descriptions then, upon ter-

mination, every host has the expected item.
– (Fairness) If the desired item of any host does not match its description, or any honest host

does not obtain any (useful) information about the expected item, then no host can obtain any
(useful) information about any other host’s item.

In case a host terminates without receiving the expected item, that host receives an abort
indication (denoted ⊥). The Timeliness property ensures that every honest host can be sure that
at some point in time the algorithm will terminate. The Effectiveness property states what should
happen if all goes well. Finally, the Fairness property postulates restrictions on the information
flow for the case where something goes wrong in the protocol.1 Note that the first precondition of
the Fairness property (“if the desired item of any host does not match the description. . . ”) is very
important. Without this condition, a “successful” outcome of the exchange would be possible even
if an item does not match the expected description, which should clearly be considered unfair.

1 We use here the concept of information flow to define fairness in a way that cleanly separates the distinct classes
of safety, liveness, and security properties in the specification of the problem [15].

5

3.2 Biased Consensus

Consider the following variant of consensus, we call biased consensus in a model where processes
can fail by general omissions [18].

Definition 2 (Biased Consensus). An algorithm solves biased consensus (BC) if it satisfies the
following properties:

– (Termination) Every correct process eventually decides.
– (Non-Triviality) If no process is faulty or proposes 0, then no correct process decides 0.
– (Validity) No process decides 1 if some process proposes 0.
– (Biased Agreement) If any process decides 1, then no correct process decides 0.

Processes invoke biased consensus using primitive BCpropose(vote), vote being a binary value, 0
or 1. Possible decisions are also 0 (abort) and 1 (commit). Termination, Non-Triviality and Validity
are the same as in NBAC, whereas the Biased Validity is weaker than the Agreement property of
NBAC [20]

We show below that FE and BC are equivalent in our model. To prove this claim, we first show
that FE can be reduced to BC.

FairExchange(myitem, description, source, destination) returns item {
〈send myitem to destination over secure channel〉
timed wait for 〈expected item i from source over secure channel〉
〈check description on i〉
if 〈check succeeds and no timeout〉
then vote := 1 else vote := 0 endif
result := BCpropose(vote)
if result = 1 then return i else return 〈abort〉 endif

}

Fig. 2. Using biased consensus to implement fair exchange: code of every host.

Theorem 1. Biased consensus is solvable in the security subsystem, iff fair exchange is solvable
in the associated untrusted system.

Proof. (1) Assume that we have a solution to BC in the security subsystem consisting of security
modules G1, . . . , Gn. Now consider the algorithm depicted in Fig. 2. This is a wrapper around
the BC solution that solves FE at the level of the hosts. In other words, it is a reduction of
FE into BC in our model. In the algorithm, a host hands to the associated security module its
item and the executable description of the desired item, as well as identifiers of the hosts with
which items should be exchanged. The security module exchanges the item with its partners, then
checks the received item (initialization phase). Finally all security modules agree on the outcome
using BC (agreement phase). The proposal value for BC is 1 if the check was successful and no
abort was requested by the host in the meantime. If BC terminates with the process deciding 1,
then the security module releases the item to the host. We now discuss each of the properties of
fair exchange. The Timeliness property of FE is guaranteed by the Termination property of BC
and the synchronous model assumption. Consider Effectiveness and assume that all participating

6

hosts are honest and all items match their descriptions. All votes for BC will be 1. Now the Non-
Triviality property of BC guarantees that all processes (recall that every process is correct) will
decide 1 and subsequently return the item to their hosts. Consider now Fairness and observe that,
in our adversary model, no dishonest host can derive any useful information from merely observing
messages exchanged over the secure channels. The only way to receive information is through
the interface of the FairExchange procedure. If one item does not match the description at some
process, then this process will engage in BC with a vote = 0 (note that this will happen even if
the associated host is dishonest). Validity of BC implies that the exchange results in no process
deciding 1, so none of the hosts receives anything from the exchange. Additionally, if some honest
host receives nothing through the exchange, then the Biased Agreement property of BC implies
that no host can receive anything.

(2) Conversely, BC can be implemented using FE by invoking

BCpropose(votei) = FairExchange(votei, 1, Gi−1, Gi+1)

at every process Gi.2

Here we assume that if FE returns 〈abort〉 instead of the item, BC returns 0. So the votes,
being exchange items in this case, are exchanged in a circular fashion among security modules. It
is not difficult to see that FE properties guarantee the properties of BC. This is immediate for
Termination and Non-Triviality. Consider now Validity and assume that Gj proposes 0 to BC. The
item description checking at Gj+1 will fail and the first part of FE Fairness (“If the desired item
of any host does not match its description. . . ”) guarantees that every process that decides in BC
decides 0. The second part of Fairness guarantees Biased Validity.3 ut

Theorem 2. Consider a synchronous system where processes can fail by general omissions. No
algorithm solves biased consensus if dn

2 e processes can be faulty.

We give in optional Appendix A a detailed proof of this theorem, based on a partitioning of
the processes. Note that this partitioning technique is different from the one traditionally used to
prove consensus impossibility results (such as in [19]). In short, this is because, in consensus, if the
processes of one partition all propose 0 and the processes of the other all propose 1, we clearly end
up with two different decisions and a contradiction. This does not apply to biased consensus and
the proof is slightly more involved. 4

A direct corollary of the Theorems 1 and 2 leads to derive the following result:

Theorem 3. Consider our model of untrusted hosts and security modules. No algorithm solves fair
exchange if half of the hosts can be dishonest.

3.3 Gracefully Degrading Fair Exchange

The impossibility of solving fair exchange (deterministically) if half of the processes can be dishon-
est, motivates the introduction of the following variant of the problem.

2 To be precise, G1 invokes FairExchange(vote1, 1, Gn, G2) and Gn invokes FairExchange(voten, 1, Gn−1, G1)
3 Note that, in contrast to BC, FE satisfies an information-flow (i.e., security) property [15]. This is why it was

necessary to argue about the special properties of security modules when reducing FE to BC and not vice versa.
4 A similar difficulty arises from proving the impossibility for NBAC; indeed our result directly applies to NBAC

which is stronger than biased consensus.

7

Definition 3 (Gracefully Degrading Fair Exchange). An algorithm solves gracefully degrad-
ing fair exchange (GDFE) if it satisfies the following properties:

– The algorithm always satisfies the Timeliness and Effectiveness properties of fair exchange.
– If a majority of hosts are honest, then the algorithm also satisfies the Fairness property of fair

exchange.
– Otherwise (if there is no honest majority), the algorithm satisfies Fairness with a probability p

(0 < p < 1) such that the probability of unfairness (1− p) can be made arbitrarily low.

4 A Gracefully Degrading Fair Exchange Algorithm

4.1 Overview

Our GDFE algorithm is described in Figure 3. We assume that all processes involved in the al-
gorithm know each other. The process with the lowest number is the initiator. We also assume
synchronous communication model [13] in the security subsystem. Basically, our algorithm can be
viewed as an extension of the algorithm of Figure 2, i.e., our reduction of deterministic fair exchange
to biased consensus. However, whereas the algorithm of Figure 2 is made of an initialization phase
followed by an agreement (BC) phase, the algorithm of Figure 3 introduces a fake phase between
these two phases. This is the key to graceful degradation, i.e., to minimizing the probability of
unfairness in the case when t ≥ n/2. Basically, we do not run the BC algorithm immediately after
the exchange of items (i.e., unlike in Fig. 2), but at some randomly picked round. In the meantime
the processes exchange fake messages and, if necessary, react to the behavior of hosts. If any pro-
cess detects host misbehavior, i.e., a message omission, it aborts the algorithm immediately (line
15) and does not participate in BC.5 It is important to notice that the underlying BC algorithm
guarantees that no process decides 1 if some process does not participate in the algorithm (this
missing process might have proposed 0). This is the way of penalizing any host that misbehaves in
the first two phases of the algorithm.

The BC algorithm we use here is an adaptation of the early-stopping synchronous consensus
algorithm of [17]. This algorithm solves BC if there is a majority of correct processes (t < n/2). It
is early stopping in the sense that every process terminates in at most min(f + 2, t + 1) rounds.
This feature is important in minimizing the probability for the adversary to violate fairness (as we
discuss in the next subsection): in short, the BC algorithm we consider has two vulnerable rounds:
if the adversary misses them, the exchange terminates successfully. There are mainly two differences
with the consensus algorithm of [17]: (1) the processes agree on a vector of initially proposed values
rather then on a set of those (in the case of consensus); (2) we also introduce dummy messages to
have a full information protocol [13], in order to have a uniform communication pattern in every
round, as we explain below. (Our BC algorithm is given in Fig. 4 of Appendix B).

To make sure that the adversary has no means to distinguish the fake phase from the agreement
phase (i.e., the BC algorithm), we make use of the same communication pattern in both phases,
i.e., the same distribution and sizes of the exchanged messages: Every process sends a fixed-size
message to every other process in every round, both in the fake phase and in the BC algorithm.
Messages in fake phase are, therefore, padded before sending, to the size of BC message. Hence,
the adversary is not able to determine when BC starts, neither by observing when security modules
send and receive messages, nor by observing the size of these messages.
5 [14] uses a similar idea of choosing a random number of rounds and hiding it from the adversary to solve

probabilistic non-repudiation (which is a special form of probabilistic fair exchange).

8

GDFairExchange(myitem, description, source, destination) returns item is

01: if 〈Gi is initiator〉 then % initialization phase - round 0
02: 〈pick a random number k according to a given distribution〉
03: foreach Gj 6= destination do send (⊥, k) to Gj enddo
04: send (myitem, k) to destination
05: else
06: send (myitem,⊥) to destination
07: endif
08: if ((item, ∗) has been received from source) and (check description on item succeeds) and

((∗, k) has been received from initiator) then
09: votei := 1; ki := k; itemi := item
10: else
11: return (⊥)
12: endif

13: for round := 1, 2, . . . , ki do % fake phase - k rounds
14: send 〈padded votei〉 to all
15: if not((vote) has been received from all processes) then return (⊥) endif
16: enddo

17: votei := BCpropose(votei) % agreement phase - Biased Consensus
18: if (votei = 1) then return (itemi) else return (⊥) endif
end % of GDFairExchange

Fig. 3. Pseudocode of the Gracefully Degrading Fair Exchange algorithm: code of process Gi.

4.2 Correctness

Theorem 4. The algorithm of Figure 3 solves gracefully degrading fair exchange.

The detailed proof of Theorem 4 and other theorems of this section can be found in optional
Appendix C. Here, we emphasize the case when the adversary controls half or more of the hosts. In
addition, we define and give the optimal probability distribution of the random number k in this
case.

If there is no honest majority, Fairness could be violated. However, this could occur only if the
adversary successfully guesses in which round BC starts. Indeed, because our BC algorithm is early
stopping, in order to succeed, the adversary must cut one of the first two rounds of BC and this
has to be its first misbehavior in a particular algorithm run.

The number k of rounds in the second phase of the algorithm is chosen randomly by the initiator
of the exchange according to a given distribution (β0, β1, . . .) i.e., Pr(k = i) = βi. We assume this
distribution to be public. The adversary performs the attack in a given round by dropping a certain
subset of messages sent to, or received by, the hosts it controls, i.e., by cutting the channels. When
the adversary cuts channels at more than n/2 hosts in the same round, we say that it cuts the
round. Since the adversary does not know in which round BC starts, the best attack consists in
choosing a value i according to the distribution (β0, β1, . . .), starting from which adversary cuts
all the rounds until the end of the exchange. Cutting messages at less that n/2 hosts, or cutting
non-consecutive rounds, cannot improve the probability of success of the adversary.

We define the probability of unfairness Γ(β0,β1,...) as the maximum probability that an adversary
succeeds, given the distribution (β0, β1, . . .), and the average complexity in terms of number of fake
rounds as Λ(β0,β1,...) =

∑
i≥1 iβi.

9

Theorem 5. Let (β0, β1, . . .) denote the probability distribution of the value k. The probability of
unfairness (for the algorithm of Figure 3) is

Γ(β0,β1,...) = max
i≥0

(βi + βi+1).

Furthermore, we define the probability distribution that we call bi-uniform, as well as the
optimal probability distribution for the algorithm of Figure 3.

Definition 4. We say that (β0, β1, . . .) is a bi-uniform probability distribution of parameter t on
the interval [0, κ] if ∀i ≥ 0, βi + βi+1 = 1

dκ+1
2 e and β1 = t.

Definition 5. We say that a probability distribution (β0, β1, . . .) is optimal (for the algorithm of
Figure 3) if there is no other probability distribution (β′0, β

′
1, . . .) such that ∃Γ > 0, ∀i ≥ 0, βi +

βi+1 ≤ Γ, β′i + β′i+1 ≤ Γ and Λ(β′0,β′1,...) < Λ(β0,β1,...).

In other words, a probability distribution (β0, β1, . . .) is optimal if there is no: (1) probability
distribution (β′0, β

′
1, . . .) and (2) probability of unfairness Γ such that the average complexity of

(β′0, β
′
1, . . .), in terms of the number fake rounds, is lower that the average complexity of (β0, β1, . . .).

The following theorem states our optimality result and proves that the probability of unfairness
can be made arbitrarily low, by making the algorithm complexity higher.

Theorem 6. The optimal probability distribution (for the algorithm of Figure 3) is the bi-uniform
probability distribution of parameter 0. Moreover, if the distribution is defined on [0, κ] with κ even,
the probability of unfairness is Γbi-uniform = 2

κ+2 and the average complexity, in terms of the number
of fake rounds, is Λbi-uniform = κ

2 .6

5 Concluding Remarks

It was shown in [8] that deterministic two-party fair exchange is impossible without a trusted third
party. We are not aware of any impossibility result for fair exchange between more than two parties.
Published results on such multi-party protocols focus on reducing the necessary trust in the third
party [3,10], or focus on contract signing [4,11], a special form of fair exchange. In [12] it was shown
that, in a synchronous system with cryptography, a majority of honest processes can simulate a
centralized trusted third party (and hence solve fair exchange). The use of security modules in fair
exchange was already explored in the two-party context: in particular, [23] employs smart cards
as security modules to solve two-party fair exchange in an optimistic way, whereas [2] describes a
probabilistic solution to two-party fair exchange.

Acknowledgments

We are very grateful to Partha Dutta for his crucial contribution in the impossibility proof of
Appendix A, and to Bastian Pochon for his useful comments on the specification of biased consensus.
6 It can be shown that our GDFE algorithm satisfies Γbi-uniform/Ξbi-uniform ≈ 2/Λbi-uniform, where Ξ is the probability

that all processes successfully terminate the algorithm; rephrasing the result of [22] in our context would mean
that the optimal for a randomized biased consensus is Γ/Ξ ≥ 1/Λ (instead of 2/Λ). We believe that the factor 2
in our case is due to the fact that we ensure biased agreement with a correct majority.

10

References

1. N. Asokan, M. Schunter, and M. Waidner. Optimistic protocols for fair exchange. In T. Matsumoto, editor, 4th
ACM Conference on Computer and Communications Security, pages 8–17, Zurich, Switzerland, Apr. 1997. ACM
Press.

2. G. Avoine and S. Vaudenay. Fair exchange with guardian angels. In The 4th International Workshop on
Information Security Applications – WISA 2003, Lecture Notes in Computer Science, Jeju Island, Korea, August
2003. Springer-Verlag.

3. F. Bao, R. Deng, K. Q. Nguyen, and V. Varadharajan. Multi-party fair exchange with an off-line trusted neutral
party. In Proceedings of the 10th International Workshop on Database & Expert Systems Applications, pages
858–862, Florence, Italy, 1–3 Sept. 1999. IEEE Computer Society Press.

4. B. Baum-Waidner and M. Waidner. Round-optimal and abuse-free multi-party contract signing. In 27th Inter-
national Colloquium on Automata, Languages and Programming (ICALP ’2000), volume 1853 of Lecture Notes
in Computer Science, pages 524–535, Geneva, Switzerland, July 2000. Springer-Verlag.

5. P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database Systems. Addi-
son-Wesley, Reading, MA, 1987.

6. H. Bürk and A. Pfitzmann. Value exchange systems enabling security and unobservability. Computers & Security,
9(8):715–721, 1990.

7. J. G. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van Doorn, S. W. Smith, and S. Weingart. Building the IBM
4758 secure coprocessor. IEEE Computer, 34(10):57–66, Oct. 2001.

8. S. Even and Y. Yacobi. Relations amoung public key signature systems. Technical Report 175, Computer Science
Department, Technicon, Haifa, Israel, 1980.

9. M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with one faulty process.
Journal of the ACM, 32(2):374–382, Apr. 1985.

10. M. K. Franklin and G. Tsudik. Secure group barter: Multi-party fair exchange with semi-trusted neutral parties.
In Financial Cryptography – FC ’98, volume 1465 of Lecture Notes in Computer Science, pages 90–102, Anguilla,
British West Indies, Feb. 1998. Springer-Verlag.

11. J. A. Garay and P. MacKenzie. Abuse-free multi-party contract signing. In Distributed Computing – DISC ’99,
volume 1693 of Lecture Notes in Computer Science, pages 151–165, Bratislava, Slovak Rep., 27–29 Sept. 1999.
Springer-Verlag.

12. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game — a completeness theorem for protocols
with honest majority. In Proceedings of the 19th ACM Symposium on the Theory of Computing (STOC), pages
218–229, 1987.

13. N. Lynch. Distributed Algorithms. Morgan Kaufmann, San Mateo, CA, 1996.
14. O. Markowitch and Y. Roggeman. Probabilistic non-repudiation without trusted third party. In Proceedings of

the 2nd Workshop on Security in Communication Networks, 1999.
15. J. McLean. A general theory of composition for a class of “possibilistic” properties. IEEE Transactions on

Software Engineering, 22(1):53–67, Jan. 1996. Special Section—Best Papers of the IEEE Symposium on Security
and Privacy 1994.

16. H. Pagnia, H. Vogt, and F. C. Gärtner. Fair exchange. The Computer Journal, 46(1), 2003.
17. P. R. Parvédy and M. Raynal. Optimal early stopping uniform consensus in synchronous systems with process

omission failures. Technical Report PI 1509, IRISA, Jan. 2003.
18. K. J. Perry and S. Toueg. Distributed agreement in the presence of processor and communication faults. IEEE

Transactions on Software Engineering, 12(3):477–482, Mar. 1986.
19. M. Raynal. Consensus in synchronous systems: a concise guided tour. In Proc. Nineth IEEE Pacific Rim Int.

Symposium on Dependable Computing (PRDC’02), Tsukuba (Japan), Dec. 2002.
20. D. Skeen. Non-blocking commit protocols. In Proc. ACM SIGMOD Conf., page 133, Ann Arbor, MI, Apr.-May

1981.
21. Trusted Computing Group. Trusted computing group homepage. Internet: https://www.

trustedcomputinggroup.org/, 2003.
22. G. Varghese and N. A. Lynch. A tradeoff between safety and liveness for randomized coordinated attack.

Information and Computation, 128(1):57–71, 1996.
23. H. Vogt, F. C. Gärtner, and H. Pagnia. Supporting fair exchange in mobile environments. ACM/Kluwer Journal

on Mobile Networks and Applications (MONET), 8(2), Apr. 2003.

11

A Impossibility of Biased Consensus without Correct Majority

We consider the synchronous model of [13], with general omission failure model [18]. Processes
proceed in synchronous rounds and may fail by omitting to send or to receive a message, or both.

Note that the properties of Biased Consensus (BC) imply that: (a) if some process propose
0, then no process decides 1, and (b) (non-uniform agreement) no two correct processes decide
differently. Also by definition, NBAC (non blocking atomic commit) is stronger than BC.

Theorem 2. No algorithm solves biased consensus if dn
2 e processes can be faulty.

Proof. We divide the set of processes into two sets, S1 and S2, each containing at most dn
2 e processes.

In a given run of BC algorithm, the k-round configuration C denotes the configuration of the system
at the end of round k in that run. We define some runs which extend a k-round configuration as
follows: run1(C) is a run in which, after round k, the processes in S2 fail in such a way that, in
every round after round k and for each i ∈ {1, 2}: (1) processes in Si receive messages from other
processes in Si, and (3) no process in Si receives any message from any process in S3−i. Basically,
the processes in S2 fail by send omission while sending message to processes in S1, and fail by
receive omission when receiving message from processes in S1. We define run2(C) symmetrically: a
run in which, after round k, the processes in S1 fail in such a way that, in every round after round
k and each i ∈ {1, 2}: (1) the processes in Si receive messages from other processes in Si, and (3)
no process in Si receives any message from any process in S3−i.

Here processes in S1 fail by send omission while sending message to processes in S2, and fail by
receive omission when receiving messages from processes in S2. It is important to observe that no
process can distinguish run1(C) from run2(C).

We denote by val1(C) the decision value of processes in S1 in run1(C). Since all processes in
S1 are correct, they all decide on the same value in run1(C). Since no process in S1 can distinguish
run1(C) from run2(C), the processes in S1 decide val1(C) in run2(C) as well. Similarly, val2(C)
denotes the decision value of processes in S2 in run2(C), and hence, in run1(C) as well.

Suppose by contradiction that there is an algorithm A that solves BC when dn
2 e processes can

fail. Consider a run r of A in which every process proposes 1 and no process is faulty. By the
Non Triviality property of BC, every process decides 1 in r, say at round z. Denote by Ck the
configuration of the system at the end of round k in r. We now try to determine val1(Ck) and
val2(Ck).

We claim that val1(C0) is 0. To see why, notice that the processes in S1 are correct in run1(C0)
and they never receive any message from the processes in S2. Thus, processes in S1 cannot distin-
guish run1(C0) from run1(D), where D is an initial configuration in which processes in S1 propose
1 and processes in S2 propose 0. From Validity, processes in S1 decide 0 in run1(D), and hence, in
run1(C0). Thus val1(C0) is 0. Similarly, we can show that val2(C0) is 0.

Clearly, val1(Cz) is 1, because all processes decide (or rather, has already decided) 1 in run1(Cz).
Similarly, val2(Cz) is 1.

We now claim that for all rounds i such that 0 ≤ i ≤ z, val1(Ci) = val2(Ci). Assume that
val1(Ci) = 0 and val2(Ci) = 1. (The contradiction for val1(Ci) = 1 and val2(Ci) = 0, is symmet-
ric.) Consider run1(Ci). The processes in S1 are correct in run1(Ci) and they decide val1(Ci) = 0.
The processes in S2 are faulty in run1(Ci), but they cannot distinguish run1(Ci) from run2(Ci)
and hence, decide val2(Ci) = 1 in run1(Ci). Thus run1(Ci) violates Biased Agreement.

12

Thus, for every round i such that 0 ≤ i ≤ z, val1(Ci) = val2(Ci). Thus there is a round j
such that val1(Cj) = val2(Cj) = 0 and val1(Cj+1) = val2(Cj+1) = 1. Consider the following j + 1
round configuration C ′ that is obtained by extending Cj as follows: processes in S2 fail (actually
commit send omission) such that: (1) for i ∈ {1, 2}, the processes in Si receive messages from other
processes in Si, (2) no process in S1 receives any message from S2 in round j + 1, but (3) the
processes in S2 receive the message from every process in S1.

Observe that S2 cannot distinguish C ′ from Cj+1 and S1 cannot distinguish C ′ from the (j +1)-
round configuration of run1(Cj). Consider a run r′ that extends C ′ in which S2 omits to send and
receive a message from S1. Notice that S1 is correct in r′ and S2 is faulty in r′. However, S2 cannot
distinguish r′ from run2(Cj+1), and hence, decides val2(Cj+1) = 1 at the end of round z in r′.
Furthermore, S1 cannot distinguish r′ from run1(Cj), and hence, decides val1(Cj) = 0 at the end
of round z in r′. Clearly, r′ violates Biased Agreement.

B Early Stopping Biased Consensus Algorithm

As we pointed out in the Section 4, our biased consensus algorithm of Figure 4 is an adaptation
of the synchronous early stopping uniform consensus algorithm of [17]. Our modifications with
respect to the algorithm of [17] is that we have processes agree on a vector of initially proposed
values (V ote), rather then on the set of those. This is a minor change that does not affect the
properties of the algorithm. Basically, every process i stores information about the value initially
proposed by some process j at V otei[j].

In addition, we introduce dummy messages to solve the security requirement of our gracefully
degrading fair exchange algorithm and to have the uniform communication pattern. In other words,
in our biased consensus solution, every process in every round sends exactly one message to every
other process, but some (dummy) messages are tagged to be disregarded by the receiving process.
Our solution assumes that every BC protocol message has the same size.7

We now give and prove the properties of our BC algorithm. We do not prove here that all
processes that invoke decide() function (lines 30-34) agree on the vector V ote (this includes all
correct processes if t < n/2). Reader interested in this proof should refer to [17]. As discussed
above, our algorithm inherently satisfies this property, given t < n/2. To summarize, our algorithm
satisfies the following properties:

– (Early Stopping) Every correct process decides in at most min(f + 2, t + 1) rounds.
– (Non Triviality) If no process is faulty or proposes 0, then no correct process decides 0.
– (Validity) No process decides 1 if some process proposes 0.
– (Biased Agreement) If any process decides 1, then no correct process decides 0.

Early Stopping property is inherited from the original algorithm. Consider Non Triviality. As-
sume that all processes are correct and all propose 1. In this case, all processes agree on vector
V ote = 1n. Therefore decide() returns 1 at every process. Consider now Biased Agreement and
note that, if any process decides 1 it must have invoked decide() and V ote = 1n. This implies
that every correct process invokes decide(), evaluates the same vector V ote that processes agreed
on and, therefore, returns 1. Consider now Validity If some process pj proposed votej = 0 every
process pi that invokes decide() (if any) has V otei[j] = 0 or V otei[j] = ⊥ , as processes agree on
7 This could be implemented by meeting the maximal size of BC message by padding all message of BC algorithm

to reach this size.

13

BCpropose(votei) returns decision is

1: V otei := ⊥n; V otei[i] := votei; newi := ⊥n; newi[i] := votei;
2: lockedi := ∅; suspectedi := ∅; % r=0 %
3: for r := 1, 2, ..., t + 1 do % r: round number %
4: begin round
5: foreach pj do
6: if pj ∈ suspectedi then dummy := 1 else dummy := 0 endif
7: send (newi, lockedi, dummy) to Gj

8: enddo
9: newi := ⊥n

10: foreach Gj /∈ suspectedi do
11: if (newj , lockedj , dummy = 0) has been received from Gj then
12: foreach m ∈ [1 . . . n] do
13: if (newj [m] 6= ⊥) and (V otei[m] = ⊥) then
14: V otei[m] := newj [m]; newi[m] := newj [m]
15: lockedi := lockedi ∪ lockedj

16: endif
17: enddo
18: else
19: if (Gj /∈ lockedi) then suspectedi := suspectedi ∪ {Gj} endif
20: endif
21: enddo
22: if (|suspectedi| > t) then return (0) endif
23: if (Gi /∈ lockedi) then
24: if (r > |suspectedi|) or (lockedi 6= ∅) then lockedi := lockedi ∪ {Gi} endif
25: else
26: if (|lockedi| > t) then decide(V otei) endif
27: endif
28: end round
29: decide(V otei)
end % of Biased Consensus

Procedure decide(V ote) is
30: if (∃m, 1 ≤ m ≤ n, s.t.(V ote[m] = ⊥) or (V ote[m] = 0)) then
31: return (0)
32: else
33: return (1)
34: end
end % of decide

Fig. 4. Pseudocode of a synchronous, early stopping Biased Consensus algorithm: code of process Gi.

14

the vector V ote and the coordinate j of V ote is either ⊥ or votej . Therefore no process can decide
1. Note that Validity holds for any t.

C Correctness of GDFE Algorithm and Optimal Probability Distribution

Theorem 4. The algorithm of Figure 3 solves gracefully degrading fair exchange.

The Timeliness property is guaranteed by the fact that we consider a synchronous system and
the Termination property of the underlying BC algorithm.

Consider Effectiveness and assume that all participating hosts are honest and all items match
their descriptions. All security modules will enter and exit the fake phase having vote = 1, so all
security modules will BCpropose 1. By the Non Triviality property of BC every module returns 1
and subsequently returns the expected item to its host.

Now we consider Fairness. It is important here to recall that the security modules are tamper-
proof and no information leaks from them apart from what is explicitly released through their
interface. We first prove a preliminary lemma. For convenience, if the security module returns ⊥ to
its host, we say that security module aborts the GDFE algorithm.

Lemma 1. If the first round in which some security module Gj aborts the GDFE algorithm is
round i (0 ≤ i < k), then at the end of round i + 1 every security module has aborted the GDFE
algorithm.

Proof. Because Gj has aborted the GDFE algorithm at the end of round i, no security module will
receive Gj ’s vote in round i + 1. From line 15, it can be seen that every security module will abort
the algorithm at latest at the end of round i + 1 (some modules might have aborted the algorithm
in round i, like Gj). ut

Consider the case in which the first misbehavior of some of the dishonest hosts occurs in the
round i where 0 ≤ i < k (misbehavior in round 0 includes the initiator’s misbehavior or some
dishonest host sending the wrong item). According to Lemma 1, by the end of the round i+1 ≤ k,
all security modules will abort the algorithm, so Fairness is preserved.

Note that Lemma 1 does not hold for the k-th round. Some dishonest hosts can cut the channels
for the first time in that round in such way that some security modules receive all messages and
some do not. Hence some modules will BCpropose 1 and others will abort the algorithm at the
end of round k and will not participate in BC. Because the modules that invoked consensus cannot
distinguish this run from the run in which some faulty module proposed 0 and failed immediately
in such way that it did not send or receive any message, all security modules that had invoked BC
will return 0. At the end, none of the hosts gets the item.

The last possibility is that the first misbehavior occurs during the execution of the BC. This
means that every security module has proposed 1 to BC. If there is a majority of honest hosts,
the Biased Agreement property of BC guarantees Fairness. Indeed, Fairness can be violated only
if some security module returns the expected item to its host, while some correct security module
returns ⊥ to its honest host. From line 18, it is obvious that this would be possible only if some
security module returns 1 from BC, while some correct security module returns 0 which contradicts
the Biased Agreement property.

If the adversary controls half of more of the hosts Fairness could be violated. As pointed out
in Section 4, this is possible only if the adversary cuts one of the first two rounds of BC. Here, we

15

prove Theorems 5 and 6 and show that even if there is no honest majority, probability of proba-
bility of unfairness can be made arbitrarily low and that it is inversely proportional to the average
complexity in terms of fake rounds. This completes the proof of Theorem 4. In addition, Theorem 6
gives the optimal probability distribution of the value k.

Theorem 5. Let (β0, β1, . . .) denote the probability distribution of the value k. The probability of
unfairness (for the algorithm of Figure 3) is

Γ(β0,β1,...) = max
i≥0

(βi + βi+1).

Proof. Let γi be the probability that the attack succeeds if it starts at round i (i > 0). We already
know that γi≤k = 0 and that γi>k+2 = 0. We have therefore:

γ1 = β0, γ2 = β0 + β1, γ3 = β1 + β2, . . . , γi = βi−2 + βi−1, . . .

According to the probability distribution (β0, β1, . . .), the maximum probability of unfairness
Γ(β0,β1,...) is therefore

Γ(β0,β1,...) = max
i>0

(γi) = max
i≥2

(β0, βi−2 + βi−1) = max
i≥0

(βi + βi+1).

ut

Example 1. If (β0, β1, . . . , βκ) is the uniform distribution on the interval [0, κ], then βi = 1
κ+1 if

0 ≤ i ≤ κ and βi = 0 otherwise. We have therefore Γuniform = max0≤i≤κ−1(βi + βi+1) = 2
κ+1 and

the average complexity in terms of fake rounds is in this case Λuniform = κ
2 .

Note that Definition 4 of Section 4 implies that, for bi-uniform distribution βi = 1

dκ+1
2 e − t if i

is even and βi = t if i is odd. Moreover, t is necessarily equal to 0 if κ is even and 0 ≤ t ≤ 1

dκ+1
2 e if

κ is odd.

Theorem 6. The optimal probability distribution (for the algorithm of Figure 3) is the bi-uniform
probability distribution of parameter 0. Moreover, if the distribution is defined on [0, κ] with κ even,
the probability of unfairness is Γbi-uniform = 2

κ+2 and the average complexity in terms of number of
fake rounds is Λbi-uniform = κ

2 .

Proof. First, we prove that if the probability distribution (β0, β1, . . .) is optimal, then it is bi-
uniform. In order to prove this assertion, we give Lemma 2.

Lemma 2. Let (β0, β1, . . .) denote the probability distribution of the value k. Let γi be the proba-
bility that the attack succeeds if it starts at round i (i > 0). We have

∑
i≥1 γi = 2.

Proof. We have γ1 = β0, γ2 = β0 + β1, γi = βi−2 + βi−1, . . . We have therefore

∑
i≥0

γi = β0 +
∑
i≥2

(βi−2 + βi−1) =

∑
i≥0

βi

 +

β0 +
∑
i≥1

βi

 = 2
∑
i≥0

βi = 2.

ut

16

Let Γ be the probability of unfairness and Λ by the average complexity in terms of number of fake
rounds; we have

Γ = max
i≥0

(βi + βi+1) = max
i≥2

(γi) and Λ =
∑
i≥1

iβi.

Since
∑

i≥1 γi is constant,
∑

i≥2 iγi is obviously minimum when the first γis are maximum, that is
equal to Γ . Indeed, suppose that exists j ≥ 0 such that

γi = Γ if i < j and γj < Γ, (1)

then ∃ε > 0 such that γj = Γ − ε. We have so∑
i≥2

iγi =
∑
i≥2
i6=j

iγi + j(Γ − ε) + `ε

where ` > j (because ` ≤ j contradicts Eq. 1). So j(Γ − ε) + `ε > jΓ implying that if γis are not
maximum then

∑
i≥2 iγi is not minimum. Since γ0 = β0 and ∀i ≥ 2 γi = βi−2 + βi−1 = Γ , we have∑
i≥1

iγi = β0 +
∑
i≥2

iβi−1 +
∑
i≥2

iβi−2

= β0 +

∑
i≥1

iβi +
∑
i≥0

βi − β0

 +

∑
i≥1

iβi + 2
∑
i≥0

βi


= 2

∑
i≥1

iβi + 3

= 2Λ + 3

So Λ being maximum implies that ∀i ≥ 0 βi + βi+1 = Γ which further implies that (β0, β1, . . .) is
bi-uniform. Note that if (β0, β1, . . . , βκ) is a finite probability distribution, then γi = βi−2 + βi−1

for 2 ≤ i ≤ κ + 1, γκ+2 = βκ and γi = 0 if i > κ + 2.
We prove now that the bi-uniform probability distribution of parameter t is optimal when

t = 0. As previously, we argue that
∑

i≥1 iβi is minimum when the first βis are maximum. Since
∀i ≥ 0 βi + βi+1 = Γ , the probability distribution is optimal if βi = 0 when i is odd, that is when
t = 0. Since βi = 0 when i is odd, we suppose that κ is even. So, if (β0, β1, . . . , βκ) is a bi-uniform
probability distribution of parameter 0 such that κ is even, we have

Γbi-uniform =
1⌈

κ+1
2

⌉ =
2

κ + 2

and
Λbi-uniform =

∑
i≥1

iβi =
∑
i≥1

i even

iΓbi-uniform =
(κ + 2)κ

4
Γbi-uniform =

κ

2
.

ut

17

