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Abstract. The fair exchange problem is key to trading electronic items
in systems of mutually untrusted parties. In modern variants of such sys-
tems, each party is equipped with a security module. The security mod-
ules trust each other but can only communicate by exchanging messages
through their untrusted host parties, that could drop those messages.
We describe a synchronous algorithm that ensures deterministic fair ex-
change if a majority of parties are honest, which is optimal in terms of
resilience. If there is no honest majority, our algorithm degrades grace-
fully: it ensures that the probability of unfairness can be made arbitrarily
low.

Our algorithm uses, as an underlying building block, an early-stopping
subprotocol that solves, in a general omission failure model, a specific
variant of consensus we call biased consensus. Interestingly, this modular
approach combines concepts from both cryptography and distributed
computing, to derive new results on the classical fair exchange problem.

1 Introduction

1.1 Motivation

Fair exchange (see e.g. [5-7,10-12,14,31]) is a fundamental problem in systems
with electronic business transactions. In fair exchange, the participating parties
start with an item they want to trade for another item. They possess an exe-
cutable description of the desired item, typically a boolean function with which
an arbitrary item can be checked for the desired properties. Furthermore, they
know from which party to expect the desired item and which party is expect-
ing their own item. An algorithm that solves fair exchange must ensure that
every honest party eventually either delivers its desired item or aborts the ex-
change (termination property). The abort option however is excluded if no party
misbehaves and all items match their descriptions (effectiveness property). The
algorithm should also guarantee that, if the desired item of any party does not
match its description, then no party can obtain any (useful) information about
any other item (fairness property).

Fair exchange is easily solvable using a trusted third party through which all
items can be exchanged [13]. The involvement of the trusted third party can be



reduced using optimistic schemes where participation of the trusted third party
is only necessary if something goes wrong [1]. The context of this paper is one
where the trusted third party is a virtual entity, distributed within all untrusted
parties, as we explain below.

We consider in this paper a system where each party hosts a security mod-
ule that is tamper proof (Fig. 1). Recently, manufacturers have begun to equip
hardware with such modules: these include for instance the “Embedded Secu-
rity Subsystem” within the recent IBM Thinkpad, or the IBM 4758 secure co-
processor board [15]. In fact, a large body of computer and device manufacturers
has founded the Trusted Computing Group (TCG) [32] to promote this idea.
Besides security modules being tamper proof, the software running within the
security modules is certified and they can communicate through secure channels.
In certain settings, the overall system can even assumed to be synchronous, i.e.,
it is reasonable to assume an upper bound on the relative speeds of honest parties
(and their security modules) as well as on the communication delays between
them. However, dishonest parties can still drop messages exchanged between the
underlying security modules in order to violate the fairness of the exchange in
their favor, i.e., obtain an item without giving away their own.
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Fig. 1. Hosts and security modules.

The contribution of this paper is a synchronous distributed algorithm aimed
at exchanging electronic items among multiple untrusted parties, each hosting
a security module. The algorithm provides the two following complementary
features:

1. If a majority of parties is honest, then the algorithm deterministically guar-
antees the termination, effectiveness and fairness properties of fair exchange.
This is optimal in terms of resilience: we indeed show that, even in a syn-
chronous model with security modules, no deterministic algorithm solves fair
exchange if half of the parties are dishonest.

2. If at least half of the parties turn out to be dishonest, then our algorithm
degrades gracefully in the following sense. It still guarantees the termina-
tion and effectiveness properties of fair exchange, as well as ensures that the



probability of violating fairness can be made arbitrarily low. We supply the
probability distribution that optimizes the average complexity of the algo-
rithm, in terms of its number of communication rounds, and we show that
the probability of violating fairness is inversely proportional to the average
algorithm complexity.

Our algorithm is made of three phases, and we give the intuition underlying
each phase below.

1. In the first phase, which we call the initialization phase, the security mod-
ules exchange the items that are supposed to be traded by their untrusted
hosts. These items are not delivered by the security modules to their un-
trusted hosts: this is only performed if the third phase (below) terminates
successfully. Any security module can decide here to abort the exchange if
some item is missing or does not match its expected description. The secu-
rity module hosted by the party that initiates the exchange also selects here
a random number k that it disseminates to all other security modules. The
role of this random number is crucial in the second phase of the algorithm.

2. In the second phase, which we call the fake phase, all security modules ex-
change messages during k£ rounds; each round following the same commu-
nication pattern as in the third phase (below). The fact that the random
number k, determined in the first phase, is not accessible to the untrusted
parties is fundamental here. Roughly speaking, the goal of the fake phase is
to make the probability, for any number of dishonest parties to successfully
guess when the actual agreement phase is taking place (third phase below),
arbitrarily low. If any dishonest party drops a message towards a honest
party in this fake phase, the security module hosted by the latter simply
aborts the exchange and forces other modules to abort the exchange as well,
thus penalizing any dishonest host that might try to bias the exchange in its
favor.

3. In the third phase, which we call the agreement phase, the security modules
solve a problem we call biased consensus. In this problem, the processes (in
our case the security modules) start from an initial binary value (a proposal)
and need to decide on a final binary value: either to abort the exchange or
commit it (and deliver the items to their untrusted hosts). Unlike in consen-
sus [17], but like in NBAC (non-blocking atomic commit) [9,30], the problem
is biased towards 0: no process can decide 1 if some process proposes 0 (to
avoid trivial solutions, the processes are supposed to decide 1 if no process
fails or proposes 0). The agreement aspect of this problem is however differ-
ent from consensus and NBAC; we simply require here that, if some process
decides 1, then no correct process decides 0. We consider an early stopping
algorithm that solves this problem in a model with general omissions, along
the lines of [28].

Underlying our main contribution, i.e., a new gracefully degrading fair ex-
change algorithm, we contribute in bridging the gap between security problems



(fair exchange) and traditional distributed computing problems (consensus-like
problems). We show indeed that deterministic fair exchange in a model with secu-
rity modules is equivalent to biased consensus. By proving that biased consensus
is impossible in a synchronous model [24] with general omission failures [29] if
half of the processes can be faulty, we establish a lower bound for fair exchange
in a model with tamper proof modules.

1.2 Roadmap

Section 2 defines our system model. Section 3 recalls the fair exchange prob-
lem, introduces biased consensus, and shows their equivalence in a model with
security modules. We also state the impossibility of deterministic fair exchange
without a honest majority, which motivates our notion of gracefully degrading
fair exchange. Section 4 describes our gracefully degrading fair exchange algo-
rithm and states its correctness. Section 5 concludes the paper by discussing
related work.

2 Model

The system we consider is composed of a set of processes, some modeling un-
trusted hosts and the other modeling security modules. These processes commu-
nicate by exchanging messages.

2.1 Untrusted hosts and security modules

More precisely, the set of processes we consider is divided into two disjoint classes:
untrusted hosts (or simply hosts) and security modules. Two processes connected
by a physical channel are said to be adjacent. We assume that there exists a
fully connected communication topology between the hosts, i.e., any two hosts
are adjacent. Furthermore, we assume that every host process P4 is adjacent
to exactly one security module process G4 (i.e., there is a bijective mapping
between security modules and hosts): we say that Py is associated with G 4. No
two security modules are adjacent. In other words, for any two security modules
G 4 and Gp to communicate, they need to do so through their hosts P4 and Pg.
This indirection provides the abstraction of an overlay network at the level of
security modules. We call the part of the system consisting of security modules,
and the virtual communication links between them, the security subsystem. We
also assume that every host (resp. security module) has the knowledge about the
entire set of other hosts (resp. security modules) that participate in the protocol.
We call the part of the system consisting of hosts and the communication links
between them the untrusted system. The notion of association can be extended
to systems, meaning that, for any given untrusted system, the associated security
subsystem is the system consisting of all security modules associated to any host
in that untrusted system.



2.2 Security modules and virtual channels

Security modules are interconnected by a virtual communication network with
bidirectional channels over the physical communication network among the hosts.
For simplicity, we denote the participants processes (the security modules) by
Gi,...,Gp. We assume that between any two security modules G; and G, the
following properties are guaranteed: (1) Message contents remain secret from
unauthorized entities; (2) If a message is delivered at G, then it was previously
sent by G;; (3) Replayed messages are detected; (4) Message contents are not
tampered with during transmission, i.e., any change during transmission will be
detected and the message will be discarded; (5) If a message is sent by G; to G;
and G is ready to receive the message, then the message will be delivered at G
within some known bound A on the waiting time.

2.3 Trust and adversary model

Security modules can be trusted by other security modules or hosts, and hosts
cannot be trusted by anybody. Hosts may be malicious, i.e., they may actively
try to fool a protocol by not sending any message, sending wrong messages, or
even sending the right messages at the wrong time. We assume however that
hosts are computationally bounded, i.e., brute force attacks on secure channels
are not possible. A malicious host may inhibit all communication between its
associated security module and the outside world, yielding a channel in which
messages can be lost.

A host misbehaves if it does not correctly follow the prescribed algorithm and
we say that the host is dishonest. Otherwise it is said to be honest. Misbehavior
is unrestricted (but computationally bounded as we pointed out). Security mod-
ules always follow their protocol, but since their associated hosts can inhibit all
communication, this results in a system model of security modules with unreli-
able channels (the model of general omission [29], i.e., where messages may not
be sent or received). In such systems, misbehavior (i.e., failing to send or receive
a message) is sometimes termed failure. We call security modules associated
with honest hosts correct, whereas those associated with dishonest hosts faulty.
In a set of n hosts, we use ¢t to denote a bound on the number of hosts which
are allowed to misbehave and f the number of hosts which actually do misbe-
have (f <t). Sometimes we restrict our attention to the case where t < n/2, i.e.,
where a majority of hosts is assumed to be honest. We call this the honest/correct
magority assumption.

Our model of the adversary is based on the strongest possible attack, the
case in which all of the f dishonest hosts collude. We assume that adversary
knows all the algorithms and probability distributions used.

3 Variations on Fair Exchange and Impossibility Results

In this section we recall the definition of fair exchange (FE), and we show that
this problem, at the level of untrusted hosts, is in a precise sense equivalent to



a problem that we call biased consensus (BC), at the level of the underlying
security modules. Then, we state that biased consensus is impossible if half of
the processes can be faulty and derive the impossibility of fair exchange if half
(or more) of the hosts are dishonest. This motivates our definition of a weaker
variant of fair exchange, the gracefully degrading FE.

3.1 Fair exchange

Definition 1 (Fair Exchange). An algorithm solves fair exchange (FE) if it
satisfies the following properties [1,27]

— (Timeliness) Every honest host eventually terminates.

— (Effectiveness) If no host misbehaves and if all items match their descriptions
then, upon termination, every host has the expected item.

— (Fairness) If the desired item of any host does not match its description, or
any honest host does not obtain any (useful) information about the expected
item, then no host can obtain any (useful) information about any other host’s
item.

In case a host terminates without receiving the expected item, that host
receives an abort indication (denoted L). The Timeliness property ensures that
every honest host can be sure that at some point in time the algorithm will
terminate. The Effectiveness property states what should happen if all goes
well. Finally, the Fairness property postulates restrictions on the information
flow for the case where something goes wrong in the protocol.* Note that the
first precondition of the Fairness property (“if the desired item of any host does
not match the description...”) is very important. Without this condition, a
“successful” outcome of the exchange would be possible even if an item does not
match the expected description, which should clearly be considered unfair.

3.2 Biased Consensus

Consider the following variant of consensus, we call biased consensus in a model
where processes can fail by general omissions [29].

Definition 2 (Biased Consensus). An algorithm solves biased consensus (BC)
if it satisfies the following properties:

— (Termination) Every correct process eventually decides.

— (Non-Triviality) If no process is faulty or proposes 0, then no correct process
decides 0.

— (Validity) No process decides 1 if some process proposes 0.

(Biased Agreement) If any process decides 1, then no correct process decides

0.

4 We use here the concept of information flow to define fairness in a way that cleanly
separates the distinct classes of safety, liveness, and security properties in the spec-
ification of the problem [26].



Processes invoke biased consensus using primitive BCpropose(vote), vote
being a binary value, 0 or 1. Possible decisions are also 0 (abort) and 1 (commit).
Termination, Non-Triviality and Validity are the same as in NBAC, whereas the
Biased Agreement is weaker than the Agreement property of NBAC [30].

We show below that FE and BC are equivalent in our model.

FairExchange(myitem, description, source, destination) returns item {
(send myitem to destination over secure channel)
timed wait for (expected item i from source over secure channel)
(check description on 1)
if (check succeeds and no timeout)
then vote := 1 else vote := 0 endif
result := BCpropose(vote)
if result = 1 then return i else return (abort) endif

Fig. 2. Using biased consensus to implement fair exchange: code of every host.

Theorem 1. Biased consensus is solvable in the security subsystem, iff fair ex-
change is solvable in the associated untrusted system.

Proof. (1) Assume that we have a solution to BC in the security subsystem
consisting of security modules Gy, ..., G,. Now consider the algorithm depicted
in Fig. 2. This is a wrapper around the BC solution that solves FE at the level
of the hosts. In other words, it is a reduction of FE into BC in our model.
In the algorithm, a host hands to the associated security module its item and
the executable description of the desired item, as well as identifiers of the hosts
with which items should be exchanged. The security module exchanges the item
with its partners, then checks the received item (initialization phase). Finally
all security modules agree on the outcome using BC (agreement phase). The
proposal value for BC is 1 if the check was successful and no abort was requested
by the host in the meantime. If BC terminates with the process deciding 1,
then the security module releases the item to the host. We now discuss each of
the properties of fair exchange. The Timeliness property of FE is guaranteed
by the Termination property of BC and the synchronous model assumption.
Consider Effectiveness and assume that all participating hosts are honest and
all items match their descriptions. All votes for BC will be 1. Now the Non-
Triviality property of BC guarantees that all processes (recall that every process
is correct) will decide 1 and subsequently return the item to their hosts. Consider
now Fairness and observe that, in our adversary model, no dishonest host can
derive any useful information from merely observing messages exchanged over
the secure channels. The only way to receive information is through the interface
of the FairExchange procedure. If one item does not match the description at
some process, then this process will engage in BC with a vote = 0 (note that



this will happen even if the associated host is dishonest). Validity of BC implies
that the exchange results in no process deciding 1, so none of the hosts receives
anything from the exchange. Additionally, if some honest host receives nothing
through the exchange, then the Biased Agreement property of BC implies that
no host can receive anything.

(2) Conversely, BC can be implemented using FE by invoking at every process
Gi.51

BCpropose(vote;) = FairExchange(vote;, 1, Gi—1, Giy1).

Here we assume that if FE returns (abort) instead of the item, BC returns 0.
So the votes, being exchange items in this case, are exchanged in a circular
fashion among security modules. It is not difficult to see that FE properties
guarantee the properties of BC. This is immediate for Termination and Non-
Triviality. Consider now Validity and assume that G; proposes 0 to BC. The
item description checking at G, will fail and the first part of FE Fairness
(“If the desired item of any host does not match its description...”) guarantees
that every process that decides in BC decides 0. The second part of Fairness
guarantees Biased Agreement.5 a

Theorem 2. Consider a synchronous system where processes can fail by general
omissions. No algorithm solves biased consensus if [ 5] processes can be faulty.

We omit the proof of the Theorem 2 due to the lack of space. The proof can
be found in the full version of the paper [2].

A direct corollary of the Theorems 1 and 2 leads to derive the following
result:

Theorem 3. Consider our model of untrusted hosts and security modules. No
algorithm solves fair exchange if half of the hosts can be dishonest.

3.3 Early Stopping Biased Consensus Algorithm

The BC algorithm we give here (in Fig. 3) is an adaptation of the early-stopping
synchronous consensus algorithm of [28]. This algorithm solves BC if there is a
majority of correct processes (t < n/2). It is early stopping in the sense that
every process terminates in at most min(f + 2,t + 1) rounds. There are mainly
two differences with the consensus algorithm of [28]: (1) the processes agree on
a vector of initially proposed values rather then on a set of those (in the case
of consensus); (2) we also introduce dummy messages to have a full information
protocol [24], i.e., to have a uniform communication pattern in every round. In
other words, where in the original algorithm of [28] process G; did not send a
message to process G; in round r, in our algorithm process G; sends a dummy

5To be precise, G1 invokes FairEzchange(votei,l,Grn,G2) and Gy invokes
FairExchange(voten, 1, Gn—1,G1).

6 Note that, in contrast to BC, FE satisfies an information-flow (i-e., security) property
[26]. This is why it was necessary to argue about the special properties of security
modules when reducing FE to BC and not vice versa.



BCpropose(vote;) returns decision {

1: Vote; := L"; Vote,[i] := vote;; new; := L™; new;i] := vote;;

2:  locked; := 0; suspected; :== 0; % r=0 %

3: forr:=1,2,....,t+1do % r: round number %

4: begin_ round

5: foreach p; do

6: if p; € suspected; then dummy := 1 else dummy := 0 endif

T send (news, locked;, dummy) to G;

8: enddo

9: new; := 1"

10: foreach G; ¢ suspected; do

11: if (new;j,locked;, dummy = 0) has been received from G; then
12: foreach m € [1...n] do

13: if (new;[m] # L) and (Vote;[m] = L) then

14: Votei[m] := new;[m]; new;[m] := new;[m]

15: locked; := locked; U locked,;

16: endif

17: enddo

18: else

19: if (G; ¢ locked;) then suspected; := suspected; U {G;} endif
20: endif

21: enddo

22: if (|suspected;| > t) then return (0) endif

23: if (G; ¢ locked;) then

24: if (r > |suspected;|) or (locked; # () then locked; := locked; U {G;} endif
25: else

26: if (Jlocked;| > t) then decide(V ote;) endif

27: endif

28: end_ round
29:  decide(V ote;)

}

Procedure decide(V ote) returns decision {

30: if (Im,1 <m < n, s.t.(Vote[m] = L) or (Vote[m] = 0)) then
31: return (0)

32: else
33: return (1)
34: end

}

Fig. 3. Pseudocode of a synchronous, early stopping Biased Consensus algorithm: code
of process G;.



message m to process G, but process G; disregards m. Our solution assumes
that all BC protocol messages have the same size.” The motivation for having a
full information protocol and uniform message size, will be explained in Section 4.

The changes we make to the algorithm of [28] do not affect the correctness of
the algorithm. The difference is that we introduce the procedure decide(V ote)
(lines 30-34, Fig. 3), where Vote is a vector of initially proposed values processes
agree on. Basically, every process G; stores information about the value initially
proposed by some process G; at Vote;[j]. If the process G; does not know the
value that process G, proposed, then Vote;[j] = L. Roughly, a correct process
does not learn the value proposed by process G;, if G; is faulty. 8

We now give and prove the properties of our BC algorithm. We do not prove
here that all processes that invoke decide() function (lines 30-34) agree on the
vector Vote (this includes all correct processes, if ¢ < n/2). Reader interested
in this proof should refer to [28]. As discussed above, our algorithm inherently
satisfies this property, given ¢t < n/2. To summarize, our algorithm satisfies
Non Triviality, Validity and Biased Agreement properties of BC. Furthermore,
it satisfies the Farly Stopping property:

— (Early Stopping) Every correct process decides in at most min(f + 2,¢+ 1)
rounds.

Early Stopping property is inherited from the original algorithm. Consider
Non Triviality. Assume that all processes are correct and all propose 1. In this
case, all processes agree on vector Vote = 1™. Therefore decide() returns 1 at
every process. Consider now Biased Agreement and note that, if any process
decides 1 it must have invoked decide() and Vote = 1. This implies that
every correct process invokes decide(), evaluates the same vector Vote that
processes agreed on and, therefore, returns 1. Consider now Validity. If some
process G; proposed vote; = 0 every process G; that invokes decide() (if any)
has Vote;[j] = 0 or Vote;[j] = L , as processes agree on the vector Vote and
the coordinate j of Vote is either L or vote;. Therefore no process can decide
1. Note that Validity holds for any t¢.

3.4 Gracefully Degrading Fair Exchange

The impossibility of solving FE (deterministically) if half of the processes can
be dishonest, motivates the introduction of the following variant of the problem.

Definition 3 (Gracefully Degrading Fair Exchange). An algorithm solves
gracefully degrading fair exchange (GDFE) if it satisfies the following properties:

" This could be implemented by meeting the maximal size of BC message by padding
all message of BC algorithm to reach this size.

8 With different implementations of the decide () procedure, the algorithm solves differ-
ent problems. For example, if decide(V ote) would return a minimum of all (non-_1)
coordinates, the algorithm would solve consensus, which is precisely the case in [28].



— The algorithm always satisfies the Timeliness and Effectiveness properties of
fair exchange.

— If a majority of hosts are honest, then the algorithm also satisfies the Fairness
property of fair exchange.

— Otherwise (if there is no honest majority), the algorithm satisfies Fairness
with a probability p (0 < p < 1) such that the probability of unfairness (1—p)
can be made arbitrarily low.

4 A Gracefully Degrading Fair Exchange Algorithm

4.1 Description

Our GDFE algorithm is described in Figure 4. We assume that all processes
involved in the algorithm know each other. The process with the lowest number
is the initiator. We also assume a synchronous communication model [24] in
the security subsystem. Basically, our algorithm can be viewed as an extension
of the algorithm of Figure 2, i.e., our reduction of deterministic fair exchange
to biased consensus. However, whereas the algorithm of Figure 2 is made of
an ingtialization phase followed by an agreement (BC) phase, the algorithm of
Figure 4 introduces a fake phase between these two phases. This is the key to
graceful degradation, i.e., to minimizing the probability of unfairness in the case
when ¢ > n/2. Basically, we do not run the BC algorithm immediately after the
exchange of items (i.e., unlike in Fig. 2), but at some randomly picked round. In
the meantime the processes exchange fake messages and, if necessary, react to
the behavior of hosts. If any process detects a host misbehavior, i.e., a message
omission, it aborts the algorithm immediately (line 15) and does not participate
in BC.? Tt is important to notice that the underlying BC algorithm guarantees
that no process decides 1 if some process does not participate in the algorithm
(this missing process might have proposed 0). This is the way of penalizing any
host that misbehaves in the first two phases of the algorithm.

The FEarly Stopping property of the underlying BC algorithm is essential for
minimizing the probability for the adversary to violate fairness (as we discuss in
the next subsection): in short, the early stoping BC algorithm we consider has
two vulnerable rounds: if the adversary misses them, BC and the corresponding
exchange terminate successfully. In addition, the introduction of dummy mes-
sages within the BC algorithm is necessary to solve the security requirement of
our gracefully degrading fair exchange algorithm.

In our BC algorithm of Fig. 3, every process in every round sends exactly one
message to every other process, but some (dummy) messages are tagged to be
disregarded by the receiving process. This is necessary in order to make sure that
the adversary has no means to distinguish the fake phase from the agreement
phase (i.e., the BC algorithm), we make use of the same communication pattern

9 [25] uses a similar idea of choosing a random number of rounds and hiding it

from the adversary to solve probabilistic non-repudiation (which is a special form of
probabilistic fair exchange).



in both phases, i.e., the same distribution and sizes of the exchanged messages:
Every process sends a fixed-size message to every other process in every round,
both in the fake phase and in the BC algorithm. Messages in fake phase are,
therefore, padded before sending, to the size of BC message. Hence, the adversary
is not able to determine when BC starts, neither by observing when security
modules send and receive messages, nor by observing the size of these messages.

GDFairExchange(myitem, description, source, destination) returns item {

01: if (G; is initiator) then % initialization phase - round 0

02: (pick a random number k according to a given distribution)
03: foreach G; # destination do send (L, k) to G; enddo

04: send (myitem, k) to destination

05: else

06: send (myitem, L) to destination

07: endif

08: if ((item,*) has been received from source) and
(item matches description) and ((x, k) has been received from initiator) then

09: vote; := 1; k; := k; item,; := item
10: else

11: return (L)

12: endif

13: for round :=1,2,...,k; do % fake phase - k rounds

14: send (padded vote;) to all

15: if not((vote) has been received from all processes) then return (L) endif
16: enddo

17 wote; := BCpropose(vote;) % agreement phase - Biased Consensus

18: if (vote; = 1) then return (item;) else return (L) endif

}

Fig. 4. Pseudocode of the Gracefully Degrading Fair Exchange algorithm: code of
process Gj.

4.2 Correctness of GDFE Algorithm
Theorem 4. The algorithm of Figure 4 solves gracefully degrading fair exchange.

Proof. The Timeliness property is guaranteed by the fact that we consider a
synchronous system and the Termination property of BC.

Consider Effectiveness and assume that all participating hosts are honest
and all items match their descriptions. All security modules will enter and exit
the fake phase having vote = 1, so all security modules will BCpropose 1. By the
Non Triviality property of BC every module returns 1 and subsequently returns
the expected item to its host.

Now we consider Fairness. It is important here to recall that the security
modules are tamper-proof and no information leaks from them apart from what



is explicitly released through their interface. We first prove a preliminary lemma.
For convenience, if the security module returns L to its host, we say that security
module aborts the GDFE algorithm.

Lemma 1. If the first round in which some security module G; aborts the GDFE
algorithm is round i (0 < i < k), then at the end of round i + 1 every security
module has aborted the GDFE algorithm.

Proof. Because G; has aborted the GDFE algorithm at the end of round ¢, no
security module will receive G;’s vote in round ¢+ 1. From line 15, it can be seen
that every security module will abort the algorithm at latest at the end of round
i+ 1 (some modules might have aborted the algorithm in round ¢, like G;). O

Consider the case in which the first misbehavior of some of the dishonest
hosts occurs in the round ¢ where 0 < ¢ < k (misbehavior in round 0 includes
the initiator’s misbehavior or some dishonest host sending the wrong item).
According to Lemma 1, by the end of the round i + 1 < k, all security modules
will abort the algorithm, so Fairness is preserved.

Note that Lemma 1 does not hold for the k-th round. Some dishonest hosts
can cut the channels for the first time in that round in such way that some
security modules receive all messages and some do not. Hence some modules
will BCpropose 1 and others will abort the algorithm at the end of round %k and
will not participate in BC. Because the modules that invoked consensus cannot
distinguish this run from the run in which some faulty module proposed 0 and
failed immediately in such way that it did not send or receive any message, all
security modules that had invoked BC will return 0. At the end, none of the
hosts gets the item.

The last possibility is that the first misbehavior occurs during the execution
of the BC. This means that every security module has proposed 1 to BC. If there
is a majority of honest hosts, the Biased Agreement property of BC guarantees
Fairness. Indeed, Fairness can be violated only if some security module returns
the expected item to its host, while some correct security module returns | to
its honest host. From line 18, it is obvious that this would be possible only if
some security module returns 1 from BC, while some correct security module
returns 0 which contradicts the Biased Agreement property.

If the adversary controls half or more of the hosts Fairness could be violated
if, and only if, the adversary cuts one of the first two rounds of BC. However,
this could occur only if the adversary successfully guesses in which round BC
starts. Indeed, because our BC algorithm is early stopping, in order to succeed,
the adversary must cut one of the first two rounds of BC and this has to be its
first misbehavior in a particular algorithm run. In the following, we prove that if
this case occurs, i.e., if there is no honest majority, probability of unfairness can
be made arbitrarily low by choosing an appropriate distribution of the random
number of fake rounds.

The number k of rounds in the second phase of the algorithm is chosen
randomly by the initiator of the exchange according to a given distribution
(Bo, B1,-..) ie., Pr(k = i) = B;. We assume this distribution to be public. The



adversary performs the attack in a given round by dropping a certain subset
of messages sent to, or received by, the hosts it controls, i.e., by cutting the
channels. When the adversary cuts channels at more than n/2 hosts in the same
round, we say that he cuts the round. Since the adversary does not know in which
round BC starts, the best attack consists in choosing a value ¢ according to the
distribution (8p, f1, - . . ), starting from which adversary cuts all the rounds until
the end of the exchange. Cutting messages at less that n/2 hosts, or cutting non-
consecutive rounds, cannot improve the probability of success of the adversary.
We define the probability of unfairness I' s, p,....) as the maximum probability
that an adversary succeeds, given the distribution (8o, f1,... ), and the average
complezity in terms of number of fake rounds as Az, 5,,...) = > ;>1 i

Lemma 2. Let (8o, 51,...) denote the probability distribution of the value k.
The probability of unfairness (for the algorithm of Figure /) is
Ligopi,...) = T?ggi(ﬁi + Bit1)-

Proof. Let ; be the probability that the attack succeeds if it starts at round ¢
(i > 0). We already know that ;< = 0 and that v;>,1+2 = 0. We have therefore:

=00, 2=00+P1, 3=01+02..., vi=PFi—2a+Bi—1,...

According to the probability distribution (8y, 51, . .. ), the maximum probability
of unfairness I'ig, g, ... is therefore I, 3, ...y = max;>o(v;) = max;>2(5o, Bi—2+
Bi—1) = max;>o0(6; + Bit1)- O

We define the probability distribution that we call bi-uniform, as well as the
optimal probability distribution for the algorithm of Figure 4.

Definition 4. We say that (Bo, 51, -..) is a bi-uniform probability distribution
of parameter t on the interval [0, k] if Vi > 0, ; + Biy1 = [Kil] and $1 =t if

k 1s odd, and 1 = 0 if K is even. ’

Definition 5. We say that a probability distribution (8o, 31,...) is optimal (for
the algorithm of Figure 4) if there is no other probability distribution (3,51, ...)
such that 3" > 0, Vi > 0, B; + Biy1 < I, Bi -‘rﬁéJrl < I and /1([361511___) <

Ao .-

The following lemma states our optimality result in terms of probability of un-
fairness.

Lemma 3. The optimal probability distribution (for the algorithm of Figure 4)

is the bi-uniform probability distribution of parameter 0. Moreover, if the distrib-

ution is defined on [0, k| with k even, the probability of unfairness is I'vi-uniform =
2

= and the average complexity, in terms of the number of fake rounds, is
& 10

Abi—uniform =3
Due to the lack of space, we omit here the formal proof of Lemma 3. The
proof can be found in the full version of the paper [2]. a

10Tt can be shown that our GDFE algorithm satisfies Tvi-uniform/ Ebi-uniform  ~
2/ Api-uniform, Where = is the probability that all processes successfully terminate



5 Concluding Remarks

It was shown in [16] that deterministic two-party fair exchange is impossible
without a trusted third party. Published results on multi-party protocols focus
on reducing the necessary trust in the third party [7,20], or on contract sign-
ing [8,21], a special form of fair exchange. In [22] it was shown that, in a syn-
chronous system with computational security, a majority of honest processes can
simulate a centralized trusted third party (and hence solve fair exchange) using
cryptography. In a somewhat stronger model, [18] gives the solution for secure
multi-party computation in a synchronous system with unconditional security,
that also assumes a majority of honest processes. The use of security modules in
fair exchange was already explored in the two-party context: in particular, [34]
employs smart cards as security modules to solve two-party fair exchange in an
optimistic way, whereas [3] describes a probabilistic solution to two-party fair
exchange.!! Idea of using a distributed trusted third party in solving two-party
fair exchange was exploited in [4].

Recent works [19,23] have solved various forms of secure multi-party compu-
tation (SMPC) for any number of dishonest parties (¢ < n). As fair exchange is
usually considered as a special case of a SMPC, it can be tempting to conclude
that these results also apply to fair exchange. However, in the relaxed defini-
tions of SMPC considered in [23] and, implicitly in [19], fairness is not always
required, as discussed in [23]. We consider in this paper contexts where fairness
is mandatory. In this sense, results shown in this paper are rather complementary
to those that establish the possibility of solving SMPC for any ¢t < n.
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the algorithm; rephrasing the result of [33] in our context would mean that the op-
timal for a randomized biased consensus is I'/=Z > 1/A (instead of 2/4). We claim
that the factor 2 in our case is due to the fact that we ensure biased agreement with
a correct majority.
Two-party fair exchange is clearly simpler than the multi-party fair exchange. In-
formally, a deterministic solution with honest majority in the two-party case, i.e.,
when both (all) participating hosts are honest, is possible in a single communication
round. On the other hand, two rounds of communication are minimum for the de-
terministic solution to biased consensus (and, therefore, for fair exchange) with the
honest majority.
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