
Linguistic Support for Distributed Programming Abstractions
�

Christian Heide Damm Patrick Thomas Eugster
�

Rachid Guerraoui
Microsoft Business Solutions Sun Microsystems Distr. Progr. Laboratory, EPFL

DK-2950 Vedb, Denmark CH-8604 Volketswil, Switzerland CH-1015 Lausanne, Switzerland

Abstract

What abstractions are useful for distributed program-
ming? This question has constituted an active area of re-
search in the last decades and several candidate abstrac-
tions have been proposed, including remote method invo-
cations, tuple spaces and publish/subscribe. How should
such abstractions be offered to the programmer? Should
they sit besides centralized programming abstractions in the
core of a language? Should they rather sit within external
libraries? Should they benefit from specific compiler sup-
port? These questions are also important but have sparked
less enthousiasm.

This paper contributes to addressing these questions in
the context of Java and the type-based publish/subscribe
(TPS) abstraction, an object-oriented variant of the pub-
lish/subscribe paradigm. We present an experience that
compares implementations of TPS in (1) a variant of Java
we designed to inherently support TPS, (2) standard Java,
and (3) Java augmented with genericity.

We derive from our implementation experience general
observations on what features a programming language
should support in order to enable a satisfactory library im-
plementation of TPS, and finally, also alternative abstrac-
tions In particular, we (re-) insist here on the importance of
providing genericity and reflective features in the language,
and point out the very fact that current efforts towards pro-
viding such features are still insufficient.

1. Introduction

When designing and implementing a distributed middle-
ware, one of the first questions to address is which abstrac-
tion to provide to the programer. Typical answers to this
question are remote procedure call or publish/subscribe. A

� Financially supported by the Swiss National Science Foundation -
NCCR / PRN MICS IP 5.2�
Contact author. Former affilation: Distributed Programming Labora-
tory, EPFL, patrick.eugster@epfl.ch

second, complementary, question then is how to implement
the abstraction within the middleware.

One common technique, particularly employed in single-
language academic settings, consists in an integration of
the distributed programming abstraction with the program-
ming language through specific primitives. That is, the dis-
tributed programming abstractions sit in the language, as
first class citizens besides traditional centralized abstrac-
tions (e.g., [8]). This approach might be motivated by per-
formance and type safety, but might hamper portability and
flexibility of the considered programming language, which
is a strong concern in distributed settings since it is still not
clear which are the relevant abstractions.

A second approach is to rely on compilation for gen-
erating the glue between the abstraction (i.e., the middle-
ware) and the applications relying on it. This approach can
also provide type safety, and as shown by the success of
RPC/RMI, seems to yield appealing results for program-
mers (cf. CORBA).

As illustrated by efforts in the Java community, which
culminated in the introduction of the dynamic proxy as a
mechanism supporting remote method invocations (RMI)
without specific (pre)compilation, simple and general lan-
guage features can offer very good support for implement-
ing specific abstractions, e.g., for distributed programming,
in a type-safe and elegant manner. A third approach to im-
plementing specific abstractions for distributed program-
ming consists precisely in implementing those abstractions
in a type-safe manner by using only such simple and gen-
eral language features.

The motivation of this work was to find out whether
such an approach can be adopted for alternative abstrac-
tions to RMI, and more precisely for the type-based pub-
lish/subscribe (TPS) abstraction [6], a variant of the pub-
lish/subscribe interaction scheme. Roughly speaking, TPS
is to publish/subscribe what the RMI is to the RPC: namely,
an object-oriented variant of the paradigm. Just like RMI,
TPS can be integrated with a programming language, yet
can as well be implemented in a way which enforces inter-
operability (à la CORBA).

This paper compares three implementations of TPS. The

first implementation is based on Java ��� , which is a variant
of Java that we devised with specific primitives for support-
ing the TPS interaction style [6]. The second implementa-
tion [7] is based on standard Java. The third implementation
is based on Generic Java (GJ) [4], an extension of Java that
provides genericity (and is underlying Sun’s efforts for in-
tegrating genericity into Java at version 1.5).

We consider four comparison axes: (1) simplicity, (2)
flexibility, (3) type safety, and (4) performance. Through
this comparison, we point out how inherent reflective and
generic capabilities could enable a satisfactory library im-
plementation of TPS, refraining from any language exten-
sions. While the importance of these capabilities has al-
ready been pointed out in other contexts, this paper argues,
through TPS and Java, that current support of the capabili-
ties in mainstream languages are still not sufficient for dis-
tributed computing.
Roadmap. The rest of the paper is organized as follows.
Section 2 briefly overviews the TPS paradigm. Section 3
contains a short introduction to the three implementations
of TPS. Sections 4-7 examine the approaches according to
the four above-mentioned aspects. Section 8 summarizes
the comparison and discusses a selected design alternative.
Section 9 concludes the paper.

2. Type-based publish/subscribe

The basic publish/subscribe paradigm offers the illusion
of a “software bus” interconnecting components in a dis-
tributed application, leading to the decoupling of these com-
ponents.

2.1. Overview of type-based publish/subscribe

Type-based publish/subscribe [6] (TPS) is a recent
object-oriented variant of the publish/subscribe interac-
tion style. In TPS, publishers publish instances of native
types, i.e., event objects, and subscribers subscribe to par-
ticular types of objects. A subscription can furthermore
have a content filter associated, which is based on the pub-
lic members of the type, including fields as well as meth-
ods. Since event objects are instances of application-defined
types, they are first-class citizens. The main contract that
the design of such types involves is the subtyping of a ba-
sic event type.

TPS is general, in the sense that it can be used to imple-
ment the traditional content-based publish/subscribe (e.g.,
[1]), and hence also subject-based publish/subscribe (e.g.,
[10]). In a single-language setting, TPS can exploit the type
system of the language at hand. TPS can, however, also be
put to work in a heterogeneous environment [3].

2.2. A challenging abstraction

By enabling the expression of content-based queries
based on event methods, TPS offers new possibilities, but
also poses new challenges related to the native language
connection. Design issues include how to translate the ac-
tion of “subscribing to a type”, and how to express type-
safe content filters in the programming language itself, in a
way that does not violate encapsulation, yet allows for opti-
mizations when applying these filters. Clearly, TPS mainly
aims at ensuring [6] (1) type-safety and (2) encapsulation
with (3) application-defined event types (the first two re-
quirements could be trivially satisfied with predefined event
types). Since TPS aims at large-scale, decentralized appli-
cations in which performance is a primary concern, (4) open
content filters are important to enable optimizations in the
filtering and routing of events, i.e., the underlying com-
munication infrastructure must be granted insight into sub-
scriptions. Last but not least, a form of (5) Quality of Ser-
vice (QoS) expression is crucial in any distributed context
where partial failures are an issue and application require-
ments on this issue change drastically.

2.3. Running example

We describe below an example application, which is
used throughout this paper to examine how our three im-
plementations handle these challenges.

A stock market publishes stock quotes, and stock bro-
kers subscribe to these stock quotes. A stock quote is an of-
fer to buy a certain amount of stocks of a company at a cer-
tain price, and it may be implemented as shown in Figure 1.

Figure 2 illustrates a situation, where process p1
publishes a stock quote, i.e., an instance of the type
StockQuote. Process p2 has subscribed to the
StockQuote type and thus receives the stock quote pub-
lished by p1. Process p3 has subscribed to the Event
type, which is the basic event type and a supertype of
StockQuote, and it thus receives all published events, in-
cluding the stock quote from p1.

In the examples given in the rest of this paper, we will be
interested in stocks from the “Telco” Group that cost less
than 100$. Given a stock quote q, this interest can be ex-
pressed as follows:
q.getPrice() < 100 &&
q.getCompany().indexOf("Telco")!= -1

3. Three implementations

This section gives a short introduction to the three im-
plementations of TPS that we have considered. The first ap-
proach augments Java with primitives for TPS, resulting in
a dialect of Java called Java ��� . The second approach is an

public class StockQuote implements Event {
private String company;
private float price;
private int amount;
public String getCompany() { return company; }
public float getPrice() { return price; }
public int getAmount() { return amount; }
public StockQuote(String company, float price,

int amount)
{

this.company = company; this.price = price;
this.amount = amount;

}
}

Figure 1. Simple stock quote events

p1 p2 p3

StockQuote events

Events

publishing a

StockQuote

subscribing

to StockQuote

events

receiving the

StockQuote

from p1

subscribing

to all

events

receiving the

StockQuote

from p1

Figure 2. Type-based publish/subscribe

implementation of TPS in standard Java, while the last ap-
proach is based on GJ, which adds genericity to Java.

3.1. Java �	� implementation

Java ��� [6] is a dialect of Java designed to support TPS
through specific primitives:

publish Expression;
subscribe (EventType Identifier) Block Block;

The publish primitive publishes an event. The
subscribe primitive generates a subscription to an
event type. The first block represents a content filter re-
ferring to the actual event through an identifier, and the
second block represents an event handler which is exe-
cuted every time an event passes the filter and uses the
same identifier. The subscribe primitive returns an ex-
pression of type Subscription, representing a han-
dle for that subscription. Publishing a stock quote boils
down to the following:

StockQuote q =
new StockQuote("TelcoOps", 80, 10);

publish q;

Subscribing to stock quotes can be expressed as follows:

interface DAC extends java.util.Collection {
boolean add(Object event);
Object get();
boolean contains(Object event);
boolean contains(Subscriber subscriber,

Condition contentFilter);
...

}
interface Subscriber {
void notify(Object event, String subject);

}
interface Condition {
boolean conforms(Object event, String subject);

}
Figure 3. API of the Java implementation

Subscription s = subscribe (StockQuote q)
{

return (q.getPrice() < 100 &&
q.getCompany().indexOf("Telco")!=-1);

}
{

System.out.println("Offer: " + q.getPrice());
};

s.activate();

Note that the content filter is expressed in Java with the ex-
act same code as in Section 2.3 above.

3.2. Java implementation

Our Java implementation described in this sec-
tion is based on our Distributed Asynchronous Col-
lections (DACs) [7]. DACs are abstractions of ob-
ject containers (e.g., a DAC can be queried with the
contains(Object) method), which however differ
from conventional collections by being asynchronous and
essentially distributed. A DAC is thus not centralized on a
single host, and operations may be invoked on it through lo-
cal proxies from various nodes of a network. A DAC may
also be used in an asynchronous way; instead of invok-
ing the synchronous contains(Object) method, you
can invoke the contains(Subscriber,...)method
passing a callback object, which will be notified when-
ever a new matching element is inserted into the DAC (cf.
Figure 3).

Expressing ones interest in receiving notifications when-
ever an object is inserted into a DAC can be viewed as sub-
scribing to the objects, or events, belonging to that DAC.
Similarly, inserting objects into a DAC can be viewed as
publishing those events, since all subscribers will be noti-
fied of the new event. In this sense, a DAC may represent
a subject, and publishing and subscribing to events corre-
sponds to inserting events and expressing interest in inserted
events, respectively. By mapping types to subjects, a DAC
can be used to support TPS. A subscription to an event type
(and implicitly, its subtypes) is issued through a DAC repre-

class StockQuoteSubscriber implements Subscriber
{
public void notify(Object event, String subj)
{

StockQuote q = (StockQuote)event;
System.out.println("Offer:" + q.getPrice());

}
}

Condition telcoCondition =
new Equals("getCompany.indexOf",

new Object[]{"Telco"},
new Integer(-1));

Condition priceCondition =
new Compare(".getPrice",

new Object[]{new Integer(100)}, -1);
Condition contentFilter =
telcoCondition.not().and(priceCondition);

Subscriber subscriber =
new StockQuoteSubscriber();

DAC stockQuotes = new DAS("StockQuote");
stockQuotes.contains(subscriber, contentFilter);

Figure 4. Subscribing with DACs

senting that type, which might require the creation of a new
DAC for that type if none is available.

Figure 4 illustrates how a stock broker issues a subscrip-
tion through a DAC representing type StockQuote (the
instantiated DAC class DAS [7] reflects reliable delivery).
The awkward appearance of the filter is motivated by the
special requirements on content filters, such as its undergo-
ing of deferred evaluation to enforce prior optimization (see
Section 7).

Similarly, the stock market publishes quotes through the
DAC representing the type StockQuote like this:

DAC stockQuotes = new DAS("StockQuote");
StockQuote q =
new StockQuote("TelcoOps", 80, 10);

stockQuotes.add(q);

3.3. GJ implementation

In the previously described Java implementation of TPS,
a DAC is used to represent a specific type, yet nothing
would prevent, at least at the time of compilation, an at-
tempt of inserting non-conformant events into a DAC. Even
if all published events inserted into a given DAC are of the
correct type, the programmer has to manually cast events to
the desired type upon receiving them. Using genericity, il-
legal inserts and manual type casts can be avoided.

The generic library approach is based on GJ [4], which
is an extension of Java with support for genericity through
parametric polymorphism. With parametric polymorphism,
we obtain typed DACs without generating type-specific
code, and nevertheless avoid explicit type casts. The result-
ing generic DACs (GDACs) and associated types are shown
in Figure 5. As a result of the typed GSubscriber, there

interface GDAC<T> {
boolean add(T event);
T get();
boolean contains(T event);
boolean contains(GSubscriber<T> subscriber,

GCondition<T> contentFilter);
...

}
interface GSubscriber<T> {
void notify(T event);

}
interface GCondition<T> {
boolean conforms(T event);

}
Figure 5. API of the GJ implementation

is no longer a need for a subject name parameter in the call-
back method.

Using this generic version of DACs, stock quotes can be
published like this:

GDAC<StockQuote> stockQuotes =
new GDAS<StockQuote>(StockQuote.class);

StockQuote q =
new StockQuote("TelcoOps", 80, 10);

stockQuotes.add(q);

Subscriptions expressed through GDACs come very close
to subscriptions expressed with DACs, and we will leave it
to the reader to see how the example in Figure 4 can be mod-
ified to use GDACs. Please note that the parameter passed
to the GDAC constructor above is necessary, since GJ does
not provide runtime type information.

4. Simplicity

Simplicity is a (subjective) measure of the effort neces-
sary (1) for a programmer to learn and use the considered
implementation of TPS, and (2) for third parties to read and
understand TPS-related code. Clearly, distributed applica-
tions can become very complex, and a powerful yet simple
programming abstraction can reduce the burden on the de-
veloper. Simplicity does not necessarily favor a language in-
tegration. Indeed, a programmer acquainted with other pub-
lish/subscribe systems might find it easier to shift from one
Java library to another, than to learn a “new” language.

4.1. Content filters

In our Java ��� implementation, the content filters are
truly expressed in the programming language at hand, mak-
ing them simple to express for programmers familiar with
that language. There are, however, restrictions on what vari-
ables can be accessed inside content filters. Indeed, to make
filters easily transferable in a distributed environment, only
final variables declared outside the filter can be used,
and these can only be of primitive object types, such as
Integer or Float, including String (see [6]).

Our Java and GJ implementations on the other hand in-
troduce a form of subscription language, based partly on
an API, and partly on the native invocation semantics of
Java. Primitive conditions are reified as Condition ob-
jects, and are logically combined through method calls on
them. Unfortunately, even simple constraints lead to poorly
readable code (see the telcoCondition used in Figure
4). In addition, many errors, e.g., a wrong number of pa-
rameters, are only detected at runtime. Clearly, content fil-
ters in this subscription scheme enforce encapsulation at a
high price in terms of simplicity.

4.2. QoS

The limited form of QoS expressed through the spe-
cific (G)DAC type, e.g., (G)DAS for reliable communica-
tion (see [7]), enables the use of the same event types with
different and maybe even incompatible QoS: a publisher
can publish events of a given type through a (G)DAC offer-
ing best-effort guarantees, while a party subscribed to that
type has expressed its desire for receiving all published in-
stances by subscribing to a DAC reflecting reliable deliv-
ery. With the current (G)DAC implementations, developers
are expected to ensure manually that (G)DACs used with
the same type of events are of the same type as well.

This risk of potential mismatch has been strongly re-
duced in our Java ��� implementation by expressing the QoS
through the events themselves. QoS are associated with
event types, which are in fact the only “contract” between
publishers and subscribers.

4.3. Receiving events

In our Java and GJ implementations, a subscriber must
implement a notify() method, which is invoked upon
reception of an event. This method is implemented by a
callback object — an event handler — and passed to the
(G)DAC upon subscription. The code for such an event han-
dler, i.e., a class that implements (G)Subscriber, is iso-
lated in a specific class, leading to a scattering of the code
related to single subscriptions.

In our Java ��� implementation, the above event handler
is viewed as a closure, whose signature is implicitly given as
part of the syntax of the subscription expression, and all the
code related to a subscription is colocated, making it easy to
understand what the subscription does. Given that the con-
tent filter and the event handler are two sides of the same
story, it seems more adequate to concentrate these at the
same place.

Verdict: Our TPS-specific language primitives in Java ���
offer a very concise syntax: subscription expressions are
compact and use a subset of native Java syntax, which
makes them easily understandable.
The Java and GJ implementations both suffer from pos-
sible mismatches in QoS. In addition, filter expression in
these two approaches suffers from a heavy syntax, and in
particular from the lack of custom operator overloading
inherent to Java when combining simple conditions.

5. Flexibility

By the flexibility of an implementation of pub-
lish/subscribe, we mean the extent to which it can be used
to devise applications based on publish/subscribe with var-
ious requirements. This aspect is important, because an
implementation of publish/subscribe which is very spe-
cific, and hence limited, can quite easily provide good
simplicity and readability.

5.1. Content filters

All three implementations allow for arbitrarily complex
content filters. However, the Java and GJ implementations
have a rather cumbersome way of expressing content fil-
ters, and it is thus likely that programmers are tempted to
shift at least parts of the content filters to the event han-
dlers, with serious consequences on performance. This is
slightly counterbalanced by giving developers the possibil-
ity of writing their own conditions — only slightly — be-
cause such custom conditions must provide several hooks
in order to nevertheless enforce optimizitions.

In our Java ��� implementation, it makes no difference to
the programmer if the filtering is done in the content fil-
ter or in the event handler, since these are expressed in the
same language. By the absence of reified conditions, such
as in the Java and GJ approaches, specific conditions can be
implemented by integrating their logic into the events, how-
ever only prior to deployment.

5.2. QoS

In our Java ��� implementation, the QoS is specified in
the type of the event. Although this solution would also
have been possible in the other implementations, these as-
sociate QoS with the channel abstractions, as it is done in
many other publish/subscribe systems. The already men-
tioned possible conflicts between QoS of publishers and
subscribers in this case can diminish simplicity, but poten-
tially increases flexibility.

The QoS framework used in the Java and GJ implemen-
tations can itself be more easily extended, by adding, de-
riving, and combining new (G)DAC types, since these re-

flect the guarantees they offer. In our Java ��� implemen-
tation, such a customization becomes more difficult. Al-
though new abstract event types similar to Reliable etc.
can be added to the framework to reflect new kinds of ser-
vices, these types are decoupled from the actual algorithms
implementing them. Any extension of the QoS framework
hence currently requires the intervention of one of its devel-
opers.

Verdict: A library will always be more flexible than a
solution integrated in the language, since the latter type
of solution is more tedious to modify. Should there arise
new needs at some point, which require changing the pub-
lish/subscribe system, a library in Java or GJ is easier to
change than Java ��� .

6. Type safety

Most recent object-oriented programming languages are
statically typed, aiding the developer in devising reliable ap-
plications. Distributed applications bring an increased de-
gree of complexity, and it becomes even more important
here to assist developers by providing them with mecha-
nisms to ensure type safety in remote interactions.

We compare here how the different implementations en-
sure type safety, one of the two main driving forces behind
TPS. Obviously, the potential level of type safety that can
be achieved depends on the considered language itself, and
mechanisms such as reflection can be misused to willingly
introduce type errors.

6.1. Publishing and receiving events

In our Java implementation, publishing an event corre-
sponds to inserting the event into an untyped collection
(DAC). It is impossible to ensure at compilation that an
event is published through a DAC that represents the type of
that event (or a subtype), and symmetrically, there is a high
risk that a subscriber casts events to a wrong type. These
type coercions strongly contradict our requirements for type
safety, since an event consumer might not be able to fore-
see the types of events that it will receive.

In our Java ��� implementation, publishing and receiv-
ing events is completely type-safe. In the GJ implementa-
tion, both publishing and receiving events is type-safe, pro-
vided that the involved GDACs have been correctly initial-
ized: due to the absence of runtime information on type pa-
rameters in GJ, a class meta-object is expected by GDAC
constructors (see Section 3), which can lead to possible mis-
matches.

6.2. Content filters

The content filters in our Java ��� implementation are
completely type-safe, since they are type-checked by the
compiler. In the other two implementations, content filters
are expressed partially through strings, putting type-safety
at stake. Type checks can however be performed at runtime
in predefined content filters (e.g., Equals and Compare,
see Section 3.2), through the introspection capabilities of
Java.

Note, however, that the developer, though not using re-
flection explicitly to define which methods (and arguments)
are to be used to query events, has to be aware of the fact
that reflection is used underneath to find the appropriate
methods: unlike with static invocations in Java, the dynamic
types of the specified invocation arguments are used to iden-
tify the appropriate methods.

Verdict: Not surprisingly, type safety increases in the
GJ implementation compared to the Java implementation,
and increases further with Java ��� , where there can be no
“type unsafety” related to TPS.
The GJ implementation ensures type safety when publish-
ing and receiving events, yet can not provide such guaran-
tees for content filters. In latter context, type safety would
however be more important, as Java programmers are used
to untyped collections.

7. Performance

Last but not least, we present the most significant results
of our performance measurements realized with the three
different approaches. We actually measure the overhead of
the GJ and Java approaches with respect to Java ��� .

7.1. Setting

We have used the same simple architecture as testbed
for all three implementations. That architecture is charac-
terized by a class-based dissemination, i.e., every event
class is mapped to an IP Multicast channel. The test ap-
plication involved three types; a type Event, its sub-
type StockQuote, and a subtype of the latter type,
StockRequest. Since the filter evaluation seen is essen-
tially the same in all three approaches, we have focused on
type-based filtering.

The measurements presented here concentrate on the la-
tency of publishing events, which refers to the average time
(ms) that is required to publish an event (perceived by the
publisher) onto the corresponding channel. [5] provides in-
formation on further measures.

1.005

1.01

1.015

1.02

1.025

1.03

1.035

1.04

1.045

1
0
0
0
0

2
0
0
0
0

3
0
0
0
0

4
0
0
0
0

5
0
0
0
0

6
0
0
0
0

7
0
0
0
0

8
0
0
0
0

9
0
0
0
0

1
E
+
0
5

3
E
+
0
5

5
E
+
0
5

8
E
+
0
5

1
E
+
0
6

Number of events

L
a
te

n
c
y
 (

m
s
)

JavaG-TPS

JavaPS-TPS

Figure 6(a). Latency of publishing: Java ��� vs GJ

1.01

1.012

1.014

1.016

1.018

1.02

1.022

1.024

1.026

1.028

1.03

5
0
0
0
0

6
0
0
0
0

7
0
0
0
0

8
0
0
0
0

9
0
0
0
0

1
E
+
0
5

3
E
+
0
5

5
E
+
0
5

8
E
+
0
5

1
E
+
0
6

Number of Events

L
a

te
n
c
y

 (
m

s
) Event

StockQuote

StockRequest

Figure 6.(b). Latency with event types

7.2. Library vs language integration

The two library implementations differ from the imple-
mentation of Java ��� , in that upon publishing an event, the
precise channel for the corresponding class has to be found.
In the case of Java ��� , a simple publish() method is au-
tomatically added to every event class, which automatically
pushes the event onto the fitting channel.

This difference is visible in Figure 6(a), where we com-
pare the GJ implementation (the Java implementation
yielded similar results) with our Java ��� implementa-
tion. One can see that the latency of publishing an event
in the case of GJ is increased by runtime type checks per-
formed to obtain the appropriate channel. The latency
varies here with the number of events published in a
row (due to a “warm-up” effect observed with IP Mul-
ticast). As the figure conveys, the difference in latency
remains nearly the same with a varying number of pub-
lished events.

7.3. The cost of subtyping

The performance of the library approaches is condi-
tioned by the number of different subtypes whose instances

are published through a given (G)DAC. The second set of
measurements relates to the GJ implementation, and intends
to compare the latencies obtained with the various event
types published through a GDAC for the uppermost type.
Figure 6(b) conveys the very fact that the system performs
best for the uppermost type of the hierarchy (Event) and
that the performance degrades as we go down this hierar-
chy. This was expected, since publishing a StockQuote
through a GDAC for type Event in our architecture in-
volves a lookup of the corresponding channel in an internal
structure (and possibly the creation of the channel). This
lookup in the case of the StockRequest type, requires
even more effort.

Verdict: The latency observed when publishing events
is slightly, but clearly, smaller in the case of Java ���
than with the Java or GJ implementations. This latency
becomes even more important as the events published
through a (G)DAC are of an increasing number of dif-
ferent subtypes of the event type represented by that
(G)DAC. (Optimizations are of course possible.)

8. Discussion

This section first presents a summary of how the three
implementations perform with respect to the chosen com-
parison aspects, and then, presents an alternative program-
ming language mechanism for improving the library imple-
mentation(s).

Java GJ Java ���
Simplicity

 +
Flexibility + + �
Type safety �
 +
Performance

 +

Table 1. Comparison summary
(� insufficient,
 acceptable, + good)

8.1. Summary

Table 1 summarizes the results of the previous sections.
Clearly, our Java ��� implementation comes off best, with
the GJ implementation coming in second. The weak points
of the GJ implementation mainly result from its unsatisfac-
tory expression of content filters. This is not fully surpris-
ing, as Java ��� was motivated by the obvious lacks mani-
fested by the Java language with respect to TPS, after some
of those lacks had already been addressed by using a “fu-
ture” version of Java incorporating genericity.

8.2. Dynamic proxies

Especially for the library implementations of TPS there
are many alternative design choices, and many tradeoffs
involved (see [5]). The weakest point of both these ap-
proaches, as mentioned above, is related to the unwieldy
content filter expression. Dynamic proxies, a simple mech-
anism for behavioral reflection in Java, can improve type
safety in filter expression. For instance, the asynchronous
contains()method in DACs can be modified to return a
dynamic proxy which “registers” the invocations performed
on it:

GDAC<StockQuote> stockQuotes = ...;
StockQuote q = stockQuotes.contains(...);
q.getCompany().equals("TelcoOps");

The expression of interest in stock quotes of a given com-
pany through a proxy q reveils however the weaknesses of
dynamic proxies. Only strict equality can be expressed, and
attributes of primitive types can not be matched. Indeed, as
operators such as � or also �� are not reified as method in-
vocations (this would come with operator overloading, see
Section 4). Furthermore, the above code would fail at run-
time, as dynamic proxies can only be created for interfaces.

9. Conclusions

In the face of today’s heterogenity across platforms, we
believe that designers of future languages should foresee a
general support for distributed programming abstractions.

Although TPS is surely not the last paradigm for dis-
tributed programming, the constraints imposed by TPS
should be kept in mind when conceiving such sup-
port. As shown by the difficulty in expressing content fil-
ters, TPS, as a paradigm emphasizing scalability and
performance, requires a strong interaction with the na-
tive programming language. We argue that reflection, just
like genericity, as faces of extensibility, are the key con-
cepts for a general language support of distributed program-
ming. With inherent and uniform reflective capabilities
and genericity, we believe one could implement a (1) sim-
ple to use, (2) flexible, (3) type safe, and (4) performant
TPS library in the language itself, and also alternative ab-
stractions for distributed programming such as tuple spaces
and RMI (see [5]).

Pointing out the very fact that, to be extensible, an
object-oriented language should be generic and reflective
is not new (e.g., [9]). In this paper we have identified a pre-
cise case for this argument in the area of distributed com-
puting, and illustrated how our case poses more stringent
demands than those previously expressed and partially ad-
dressed without distribution in mind. We insist on the fact
that, in the face of modern abstractions for distributed pro-
gramming such as TPS, genericity needs to be provided in

a form that includes runtime support for type parameters,
and that reflection has to go beyond simple message reifica-
tion (considered sufficient in the context of RMI, e.g., [2]).
We pointed out the very fact that the current support in Java
for genericity and reflection, from our perspective, is clearly
insufficient.

Acknowledgements

We are very grateful to Gilad Bracha, Martin Odersky,
and Ole Lehrmann Madsen for commenting on an earlier
version of this paper.

References

[1] M. Aguilera, R. Strom, D. Sturman, M. Astley, and T. Chan-
dra. Matching Events in a Content-Based Subscription Sys-
tem. In Proceedings of the 18th ACM Symposium on Prin-
ciples of Distributed Computing (PODC ’99), pages 53–62,
Nov. 1999.

[2] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and
A. Yonezawa. Abstracting Object Interactions Using Com-
position Filters. In Proceedings of the 7th European Confer-
ence on Object-Oriented Programming (ECOOP ’93), pages
152–184, July 1993.

[3] S. Baehni, P. Eugster, R. Guerraoui, and P.Altherr. Pragmatic
Type Interoperability. In Proceedings of the 23rd IEEE In-
ternational Conference on Distributed Computing Systems
(ICDCS ’03), May 2003.

[4] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Mak-
ing the Future Safe for the Past: Adding Genericity to the
Java Programming Language. In Proceedings of the 13th
ACM Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA ’98), pages 183–200,
Oct. 1998.

[5] C. Damm, P. Eugster, and R. Guerraoui. Abstractions for
Distributed Interaction: Guests or Relatives? Technical Re-
port DSC/2001/052, Swiss Federal Institute of Technology
in Lausanne, June 2000.

[6] P. Eugster, R. Guerraoui, and C. Damm. On Objects and
Events. In Proceedings of the 16th ACM Conference on
Object-Oriented Programming Systems, Languages and Ap-
plications (OOPSLA 2001), pages 131–146, Oct. 2001.

[7] P. Eugster, R. Guerraoui, and J. Sventek. Distributed Asyn-
chronous Collections: Abstractions for Publish/Subscribe In-
teraction. In Proceedings of the 14th European Conference
on Object-Oriented Programming (ECOOP 2000), pages
252–276, June 2000.

[8] B. Liskov and R. Sheifler. Guardians and Actions: Linguis-
tic Support for Robust, Distributed Programs. In Conference
Record of the 9th ACM Symposium on Principles of Pro-
gramming Languages (POPL ’82), 1982.

[9] G. Steele. Growing a language. Higher-Order and Symbolic
Computation, 12(3):221–236, Oct. 1999.

[10] TIBCO. TIB/Rendezvous White Paper.
http://www.rv.tibco.com/, 1999.

