
Failure Detection Lower Bounds

on Registers and Consensus

(Preliminary Version)

C. Delporte-Gallet †, H. Fauconnier †, and R. Guerraoui ‡

†Laboratoire d’Informatique Algorithmique: Fondements et Applications

Université Paris VII - Denis Diderot

‡Distributed Programming Laboratory

Swiss Federal Institute of Technology in Lausanne

Abstract

This paper addresses the problem of determining the weakest failure detector to implement consensus
in a message passing system when t out of n processes can crash (including when n/2 ≤ t < n − 1),
by addressing the problem of determining the weakest failure detector to implement a register. We
complement and, in a precise sense, generalise previous results on the implementability of consensus and
registers in a message passing model (augmented with the failure detector abstraction).

• Category: Regular.

• Contact Author: Rachid Guerraoui. LPD EPFL CH1015 Lausanne, Switzerland. Tel: 41 21 693 52
72. Fax: 41 21 693 75 70.

1 Introduction

This paper considers an asynchronous distributed system augmented with the failure detector abstraction [4].
The system is made of n processes that communicate through reliable channels but t among these processes
can fail by crashing [9]. The system is asynchronous in the sense that there is no timing assumption on
communication delays and process relative speeds. In fact, timing assumptions [6] are encapsulated within
the failure detector abstraction: a distributed oracle that provides each process with hints about failures
that have occurred in the system.

Several classes of failure detectors were proposed in the literature, each gathering a set of failure detectors
that ensure some abstract axiomatic properties. In particular, three interesting classes were identified in [4]:
the class P of Perfect failure detectors that eventually suspect all crashed processes and never make false
suspicions, the class S of Strong failure detectors that eventually suspect all crashes and never make false
suspicions on at least one correct process (if there is such a process), and the class ♦S of Eventually Strong
failure detectors that eventually suspect all crashes and eventually never make false suspicions on at least
one correct process (if there is such a process).

In [4], two algorithms using failure detectors were proposed to implement the consensus problem. In
consensus, the processes propose an initial value and correct processes (those that do not crash) need to
decide one among these values, such that no two processes decide differently [9]. We consider in this paper
the uniform variant of consensus, which precludes any disagreement among two processes, even if one of
them ends up crashing [13]. We will come back to the impact of this assumption in Section 6. The first
algorithm of [4] implements consensus with any failure detector of S for any t, whereas the second algorithm
implements consensus with any failure detector of ♦S if t < n/2. It was furthermore shown [5] that there

1

is an algorithm that transforms any failure detector D that implements consensus into a failure detector of
♦S. In the parlance of [5], ♦S is the weakest to implement consensus if t < n/2.

When t ≥ n/2, ♦S is not the weakest for consensus [4]. What is then the weakest failure detector class
for consensus when t ≥ n/2? The question remained open for more than a decade now.

In a recent companion paper [7], we addressed this question for the specific case where t ∈ {n, n−1}. We
first restricted the universe of failure detectors to those, we called realistic, that cannot predict the future.
Basically, we focused on determining the weakest failure detector class among those that provide information
about past failures and cannot provide information about failures that will occur [14, 7]. Although failure
detectors that predict the future are permitted in [4], they cannot be implemented even in the synchronous
model of [20], where process relative speeds and communication delays are bounded, and these bounds are
known. Note that ♦S is the weakest among realistic classes for consensus if t < n/2.

We then showed that, among realistic failure detectors, P is the weakest for consensus when t ∈ {n, n−1}.
(We also showed that in this case the classes P and S are the same.) The case where t ∈ {n, n−1} is actually
very specific. What happens when n/2 ≤ t < n− 1? This question turns out to be challenging: none of the
failure detector classes defined so far in the literature, including those of [4] (e.g., S), is actually the weakest
for consensus if n/2 ≤ t < n− 1.

The motivation of this work was precisely to address this question. While doing so, we faced another
interesting problem: determining the weakest failure detector class to implement a register when n/2 ≤ t ≤ n.
What we actually mean here is to determine the weakest failure detector class to implement a wait-free
atomic register in the sense of [3] 1, i.e., to implement a data abstraction accessed through read() and write()
operations such that, despite concurrent accesses and failures of processes, (1) every operation invoked by
a correct process eventually returns, (2) although it spans over an interval time, every operation appears
to have been executed at a single point in time in this interval, and (3) every read operation returns the
last value written. In a purely asynchronous message passing system model (e.g., without failure detectors)
a register can be implemented iff t < n/2 [3]. To implement a register when n/2 ≤ t ≤ n, we need some
information about failures. Several authors considered augmenting an asynchronous model with registers
and failure detectors (e.g., [19, 22]) but, to our knowledge, the question of the exact failure detector class
that implements a register in a message passing model was never addressed for n/2 ≤ t ≤ n.

This paper defines a new generic failure detector class Pk (k-Perfect). Instances of this generic class
are determined by the integer k (0 ≤ k ≤ n). Failure detectors of class Pk eventually suspect all crashed
processes and do not falsely suspect more than max(n− k − 1, 0) processes at every process. The processes
might permanently disagree here on their perception on which processes have crashed, i.e., on the subset of
n− k− 1 processes each process falsely suspects. They might even change their mind about which processes
they falsely suspect. For k < n/2, failure detectors of class Pk can be implemented in an asynchronous
system if up to t < n/2 processes can crash, i.e., they do not encapsulate any timing assumption. For
k ≥ n− 1, Pk is P , i.e., Pn−1 = Pn = P .

We show that, if we assume that t processes can crash, then P t × ♦S is the weakest class to implement
consensus. To prove our result, we prove the interesting intermediate result that, if we assume that t processes
can crash, then P t is the weakest to implement a register. Our results hold among realistic failure detectors:
the very fact that we exclude failure detectors that can predict the future is meaningful from a practical
perspective [7], yet it has however some impact on our theoretical results, as we discuss in Section 6.
To summarize, the contributions of this paper are the following:

1. We introduce a new failure detector class Pk, and assuming that t processes can crash, we show that
(among realistic failure detectors):

2. Pt is the weakest to implement a register, and

3. Pt × ♦S is the weakest to implement consensus.

For the case where n/2 ≤ t < n− 1, we hence address the open questions of the weakest failure detector
classes to implement consensus and atomic register. We also show that, in this case, S is strictly stronger
than Pt × ♦S, revisiting the first glance intuition that S might have been the weakest for consensus with

1The wait-free notion was introduced in [16] and the notion of atomic register was introduced in [18].

2

n/2 ≤ t < n− 1. For t ∈ {n, n− 1}, and given that in this case P t is P , our result comes down to the result
of [7] as far as consensus is concerned, and we address the open question of the weakest failure detector to
implement an atomic register if any number of processes can crash. For n/2 > t, and given that in this case
Pt can be implemented in an asynchronous system, our result simply comes down the known result that,
with a majority of correct processes, no timing assumption is needed to implement an atomic register [3],
and that ♦S is the weakest for consensus [5].

Interestingly, the decoupled structure of our weakest failure detector class for consensus (i.e.,P t × ♦S)
conveys its double role: P t encapsulates the information about failures needed to ensure the safety part of
consensus (i.e., to implement a register that will lock the consensus value and prevent disagreement), whereas
♦S encapsulates the information about failures needed to ensure the liveness part of consensus (i.e., to ensure
that some correct will eventually stop being suspected and store a decision value in the register). We prove
our results using simple algorithm reductions (like in [5] but unlike in [14]). Hence, by determining the
weakest failure detector class to implement a register (or consensus), we determine what exact information
about failures processes need to know and effectively compute to implement a register (or consensus).

The rest of the paper is organized as follows. In Section 2, we sketch our system model and, in particular,
we specify the universe of failure detectors within which we identify the weakest for consensus and atomic
register. Section 3 defines our generic failure detector class Pk. We compare instances of this class, and
position them with respect to various failure detector classes introduced in the literature. Section 4 shows
(sufficient condition) that, if t processes can crash, then P t implements a register. We then simply reuse the
result of [19] to derive the fact than P t × ♦S implements consensus. Section 5 shows (necessary condition)
that if t processes can crash, then any failure detector that implements a register can be transformed into a
failure detector of P t. We then simply reuse the fact that consensus can implement a register and the result
of [5] to show that any failure detector that implements consensus can be transformed into a failure detector
of Pt × ♦S. Section 6 concludes the paper by discussing the scope of our results. For space limitation,
detailed proofs of our results are given in the appendix.

2 System model

Our model of asynchronous computation with failure detection is the FLP model [9] augmented with the
failure detector abstraction [4, 5]. A discrete global clock is assumed, and Φ, the range of the clock’s ticks,
is the set of natural numbers. The global clock is used for presentation simplicity and is not accessible to
the processes. We sketch here the fundamentals of the model. The reader interested in specific details about
the model should consult [5, 7].

2.1 Failure patterns and environments

We consider a distributed system composed of a finite set of n processes Π = {p1, p2, . . . , pn} (|Π| = n ≥ 3).
A process p is said to crash at time τ if p does not perform any action after time τ (the notion of action is
recalled below). Failures are permanent, i.e., no process recovers after a crash. A correct process is a process
that does not crash. A failure pattern is a function F from Φ to 2Π, where F (τ) denotes the set of processes
that have crashed through time τ . The set of correct processes in a failure pattern F is noted correct(F).
We say that a process p is alive at time τ if p is not in F (τ). An environment E is a set of failure patterns.
Environments describe the crashes that can occur in a system. In this paper, we consider environments,
denoted by Et, composed of all failure patterns with at most t crashes.

2.2 Failure detectors

Roughly speaking, a failure detector D is a distributed oracle which gives hints about failure patterns. Each
process p has a local failure detector module of D, denoted by Dp. Associated with each failure detector D
is a range RD (when the context is clear we omit the subscript) of values output by the failure detector. A
failure detector history H with range R is a function H from Π×Φ to R. For every process p ∈ Π, for every
time τ ∈ Φ, H(p, τ) denotes the value of the failure detector module of process p at time τ , i.e., H(p, τ)
denotes the value output by Dp at time τ . A failure detector D is defined as a function that maps each

3

failure pattern F to a set of failure detector histories with range RD. D(F) denotes the set of possible failure
detector histories permitted for the failure pattern F , i.e., each history represents a possible behavior of D
for the failure pattern F .

In [4], any function of the failure pattern is a failure detector, including a function that, for a time τ ,
outputs information about crashes that will occur after τ . We restrict ourselves here to (realistic [7]) failure
detectors D as functions of the past, i.e., we exclude failure detectors that can predict the future (we will
come back to the ramifications of this assumption in Section 6). A failure detector cannot distinguish at
a time τ two failure patterns based on what will happen after τ . More precisely, ∀F, F ′ ∈ En, ∀τ ∈ Φ
s.t. ∀τ1 ≤ τ, F (τ1) = F ′(τ1), we have the following realism property: ∀H ∈ D(F), ∃H ′ ∈ D(F ′) s.t.
∀τ1 ≤ τ, ∀p ∈ Π : H(p, τ1) = H ′(p, τ1).

Three classes of failure detectors introduced in [4] are of interest in this paper. These classes do all
have range R = 2Π: for any failure detector D in these classes, any failure pattern F , and any history H
in D(F), H(p, τ) is the set of processes suspected by process p at time τ . (1) The class of Perfect failure
detectors (P) gathers all those that ensure strong completeness, i.e., eventually every process that crashes is
permanently suspected by every correct process, and strong accuracy, i.e., no process is suspected before it
crashes. (2) The class of Strong failure detectors (S) gathers those that ensure strong completeness and weak
accuracy, i.e., some correct process is never suspected (if there is such a process). (3) The class of Eventually
Strong failure detectors (♦S) gathers those that ensure strong completeness and eventual weak accuracy, i.e.,
eventually, some correct process is never suspected (if there is such a process). Note that, in the context of
this paper, we restrict these classes to failures detectors that are realistic.

2.3 Algorithms

An algorithm using a failure detector D is a collection A of n deterministic automata Ap (one per process
p). Computation proceeds in steps of the algorithm. In each step of an algorithm A, a process p atomically
performs the following three actions: (1) p receives a message from some process q, or a “null” message
λ; (2) p queries and receives a value d from its failure detector module Dp (d ∈ RD is said to be seen
by p); (3) p changes its state and sends a message (possibly null) to some process. This third action is
performed according to (a) the automaton Ap, (b) the state of p at the beginning of the step, (c) the
message received in action 1, and (d) the value d seen by p in action 2. The message received by a process is
chosen non-deterministically among the messages in the message buffer destined to p, and the null message
λ. A configuration is a pair (I, M) where I is a function mapping each process p to its local state, and M is
a set of messages currently in the message buffer. A configuration (I, M) is an initial configuration if M = ∅
(no message is initially in the buffer): in this case, the states to which I maps the processes are called initial
states. A step of an algorithm A is a tuple e = (p, m, d, A), uniquely defined by the algorithm A, the identity
of the process p that takes the step, the message m received by p, and the failure detector value d seen by p
during the step. A step e = (p, m, d, A) is applicable to a configuration (I, M) if and only if m ∈ M ∪ {λ}.
The unique configuration that results from applying e to configuration C = (I, M) is noted e(C).

2.4 Schedules and runs

A schedule of an algorithm A is a (possibly infinite) sequence S = S[1]; S[2]; . . . S[k]; . . . of steps of A. A
schedule S is applicable to a configuration C if (1) S is the empty schedule, or (2) S[1] is applicable to C,
S[2] is applicable to S[1](C) (the configuration obtained from applying S[1] to C), etc.

Let A be any algorithm and D any failure detector. A run of of A using D is a tuple R =< F, H, C, S, T >
where H is a failure detector history and H ∈ D(F), C is an initial configuration of A, S is an infinite schedule
of A, T is an infinite sequence of increasing time values, and (1) S is applicable to C, (2) for all k ≤ |S|
where S[k] = (p, m, d, A), we have p 6∈ F (T [k]) and d = H(p, T [k]), (3) every correct process takes an infinite
number of steps, and (4) every message sent to a correct process p is eventually received by p.2

2In fact, our results and proofs hold with a weaker assumption where we only require that (4’) every message sent by a
correct process to a correct process p is eventually received by p.

4

2.5 Implementability

An algorithm A implements a problem B using a failure detector D in an environment Et if every run of A
using D in Et satisfies the specification of B. We say that D implements B in Et if there is an algorithm
that implements B using D in Et. We say that a failure detector D1 is stronger than a failure detector D2 in
environment Et (D2 �t D1) if there is an algorithm (called a reduction algorithm) that transforms D1 into
D2 in Et, i.e., that can emulate the output D2 using D1 in Et [4]. The algorithm does not need to emulate
all histories of D2. It is required however that, for every run R =< F, H, C, S, T > where H ∈ D1(F),
the output of the algorithm with R be a history of D2(F). We say that D1 is strictly stronger than D2
in environment Et (D2 ≺t D1) if D2 �t D1 and ¬(D1 �t D2). We say that D1 is equivalent to D2 in
environment Et (D1 ≡t D2), if D2 �t D1 and D1 �t D2.

Finally, we say that a failure detector D is the weakest to implement a problem B in environment Et if (a.
sufficient condition) D implements B in Et and (b. necessary condition) any failure detector that implements
B is stronger than D in Et.

3 k-Perfect failure detectors

3.1 Definitions

We define in this section the generic class of k-Perfect (Pk) failure detectors, where 0 ≤ k ≤ n. This class
is generic in the sense that its semantics depend on the value of the integer k. Failure detectors of class Pk

output, at each process p and each time τ , a list of suspected processes Pk(p, τ) (i.e., the range of Pk is 2Π).
These failure detectors ensure strong completeness as well as the following k-accuracy property: at any time
τ , no process suspects more than n− k − 1 processes that are alive at time τ . More precisely:

• k- Accuracy: ∀p ∈ Π, ∀τ ∈ Φ |Pk(p, τ) \ F (τ)| ≤ max(n− k − 1, 0).

For k ≥ n − 1, processes do not make false suspicions and Pk is P . For k < n − 1, processes can make
false suspicions and can even permanently disagree on the processes they falsely suspect. To better illustrate
the behavior of a k-Perfect failure detector, consider a system of 5 processes {p1, p2, p3, p4, p5} and the case
k = 2. The failure detector should eventually suspect permanently all crashed processes and should not
falsely suspect more that 2 processes at every process. Consider a failure pattern where p1 and p2 crash.
It can be the case that after some time τ , p3 permanently suspects {p1, p2, p4, p5}, p4 permanently suspects
{p1, p2, p3, p5}, and p5 permanently suspects {p1, p2, p3, p4}. It can also be the case that after some time τ ,
p5 forever alternately suspects {p1, p2, p3} and {p1, p2, p4}.

The idea of limited accuracy is not new. Failure detectors of S already provide a limited form of accuracy,
with respect to those of P , in the sense that they only need to ensure weak accuracy: they can falsely suspect
correct processes, as long as there is one correct process that is never suspected. Our notion of limited
accuracy is different in that processes do not need to agree on a process they never suspect, as conveyed by
our example above and specified by our Proposition 3.3 below. In [11, 21], the notion of accuracy was further
limited in the sense that only a subset of the processes need to satisfy it: again, and even if we consider the
case of weak accuracy, the subset of processes should still agree on some process not to suspect. In [4], the
authors introduced the notion of k-Mistaken failure detectors as those that can make k false suspicions. In
our case, except when k ∈ {n−1, n} (Perfect failure detection), a failure detector of Pk can make an infinite
number of mistakes.

We also define here the failure detector class P t × ♦S. This class gathers failure detectors D of range
2Π×2Π, such that given H1 a history of a failure detector of P t and H2 a history of a failure detector of ♦S,
for each process p and at each time τ , the value of the failure detector module Dp is a pair (H1(p, τ), H2(p, τ)).

3.2 Relationships

In the following, we give some general properties of Pk failure detectors. Certain properties follow trivially
from the definition. Others are less trivial and we prove them in the appendix.

5

Proposition 3.1 ∀t, k, k′ ∈ [0, n], k ≤ k′ ⇒ Pk �t Pk′

.

Proposition 3.2 ∀t, t′ ∈ [n/2, n− 1], t′ < t ⇒ Pt′ ≺t Pt.

We already pointed out the fact that Pn−1 = Pn = P . We state below a relationship between P t and S.

Proposition 3.3 ∀t ∈ [1, n− 2], P t × ♦S ≺t S.

We show (later in the paper) that, for any t, P t × ♦S is the weakest failure detector class for consensus
in Et. Hence, a corollary of Proposition 3.3 above is that S is not the weakest for consensus in Et if t < n−1.
Note that we have shown in [7] that P (and hence Pn−1 and Pn) is equivalent to S in E(n−1) and En.3

We state below some relationships between Pk and ⊥, the empty failure detector that never outputs
anything: ⊥ can thus be implemented in an asynchronous system. Through these relationships, we point
out some situations in which Pk can be implemented in an asynchronous system.

Proposition 3.4 ∀t ∈ [0, n− 1], Pn−t−1 ≡t ⊥.

Proposition 3.5 ∀t, t′ ∈ [0, dn/2e − 1], P t′ ≡t ⊥.

To get an intuition of the implementability of Pk in an asynchronous system (i.e., the equivalence with
⊥), consider a system of 5 processes and an environment where a majority of the processes are correct. We
can implement P2 if up to 2 processes can crash as follows: processes periodically exchange messages, and
every process waits for 3 messages and suspects the processes from which it did not receive messages (the
complete algorithm is given in the appendix).

Given that (as we show in the next section), for any t ∈ [0, n], P t is the weakest for register in Et, clearly,
Pk cannot be implemented in an asynchronous system in any Et where k ≥ t ≥ n/2.

4 The sufficient conditions

In this section, we show that, in any environment Et, (1) any failure detector of P t implements a register,
and (2) any failure detector of P t×♦S implements consensus. To show (2), we reuse the fact that consensus
can be implementable with registers and any failure detector of ♦S (in any environment) [19]. To show (1),
we first give an algorithm (Figure 1) that implements a 1-writer–1-reader atomic register (for any reader
or writer) using a failure detector of P t. Then, as in [1], we use the fact that a N -writer–M -reader atomic
register can be implemented from 1-writer–1-reader atomic registers (see [15] for a tutorial on relationships
between registers).

Our register implementation (Figure 1) is an adaptation of [3]. Roughly speaking, whereas [3] uses the
assumption of a majority of correct processes to ensure a quorum property for read and write operations, we
make use of Pt to ensure that quorum property. Basically, each process maintains the current value of the
register. In order to perform its read (resp write) operation, the reader (resp the writer) sends a message to
all and waits until it receives acknowledgments from (1) at least max(n− t, 1) processes, and (2) from every
process that is not suspected by its failure detector module.

Proposition 4.1 With any failure detector of P t, Algorithm 1 implements a 1-reader–1-writer atomic reg-
ister (for any reader or writer) in environment Et.

Corollary 4.2 Any failure detector of P t implements a (n-writer–n-reader) register in Et.

Corollary 4.3 Any failure detector of P t × ♦S implements consensus in Et.

3Remember that we consider realistic restrictions.

6

1 Every process p (including pw and pr) executes the following code:
2 Initialization:
3 current := ⊥
4 last write := −1

5 upon receive (WRITE, y, s) from the writer
6 if s > last write then

7 current := y

8 last write := s

9 send(ACK WRITE, s) to the writer

10 upon receive (READ, s) from the reader
11 send(ACK READ, last write, current, s) to the reader

12 Code for pw the (unique) writer:
13 Initialization:
14 seq := 0 /* sequence number */

15 procedure write(x)
16 send(WRITE, x, seq) to all

17 wait until receive (ACK WRITE, seq)
from all processes not in Pt

pw

and from at least max(n − t, 1) processes

18 seq := seq + 1
19 end write

20 Code for pr the (unique) reader:
21 Initialization:
22 rc := 0 /* reading counter */

23 function read()
24 send(READ, rc) to all

25 wait until receive (ACK READ, ∗, ∗, rc)
from all processes not in Pt

pr

and from at least max(n − t, 1) processes

26 a := max{v | (ACK READ, v, ∗, rc) is a received message}
27 if a > last write then

28 current := v such that (ACK READ,a, v, rc) is a received message
29 last write := a

30 return(current)
31 end read

Figure 1: Implementation of an 1-writer–1-reader atomic register

5 The necessary conditions

In this section, we show that, in any environment Et, (1) any failure detector class that implements a register
is stronger than P t, and (2) any failure detector class that implements consensus is stronger than P t × ♦S.

To state (1) we give an algorithm in Figure 2 that emulates, with any failure detector D that implements
a 1-writer–n-reader register for any writer, a failure detector of P t. We only describe the algorithm: its proof
is given in the appendix. To state (2), we use (1) above plus the very fact that, (2.1) one can implement a
register using (uniform) consensus (e.g., through a fault-tolerant state machine replication approach [24]),
and (2.2) any failure detector class that implements a consensus is stronger than ♦S [5].

The idea of the algorithm of Figure 2 is the following. We use exactly one 1-writer–n-reader register
per process, and we also denote by p the register of process p. Each process p is the writer of its register.
Periodically, each process writes in its register alternatively two different values: v0 and v1. The very fact
that the register has been implemented using a failure detector D has the nice consequence that, for any
write operation that terminates at some time τ , all processes that have not crashed by time τ , except at
most max(n − t − 1, 0) processes, have participated in the operation (the very fact that D is realistic is
important here). A failure detector of P t is emulated through a distributed variable where every process
basically outputs (suspects) the list of processes that did not participate in a write operation. More precisely,
each process p maintains, for each register r, a list of participants and the sequence number of the last write

7

operation seen by the process p on r. Every message exchanged in the context of an operation is tagged
with these lists and the sequence numbers of the last write operation on each register. When p ends its write
operation, it suspects all processes that are not in its list for p. The details on how processes update the
lists, as well as the sequence numbers of the write operations, are given in Figure 2.

/* Process p repeatedly writes v0, v1 on register p */
/* Outputp is the output of the emulated failure detector */

1 Initialization:
2 ∀i : L[i] = ∅; last write[i] := 0;

/*L[p] is the list of participants in the write (last write[i]) operation on the register p */
/*all messages are tagged with (L, last write)*/

3 When p begins a new write operation on its register (register p)
4 last write[p] := last write[p] + 1
5 L[p] := {p}

6 When p ends the current write operation on its register (register p)
7 Outputp = Π − L[p]

8 When p receives a message m with tag M, lw

9 forall i do

10 switch:

11 case lw[i] > last write[i]:L[i] := M [i] ∪ {p}
12 case lw[i] = last write[i]:L[i] := L[i] ∪ M [i]
13 case lw[i] < last write[i]:skip

14 last write[i] := max(last write[i], lw[i])

Figure 2: TD→Pt - Emulation at process p of a failure detector in P t from a register implementation using
a failure detector.

Proposition 5.1 For any failure detector class D that implements a register in Et, we have: Pt �t D.

From Proposition 5.1 and Corollary 4.2, we deduce:

Theorem 5.2 For any t, P t is the weakest failure detector class to implement a register in environment Et.

Given that a register cannot be implemented in asynchronous systems in environment Et for n ≤ 2t [1], we
deduce:

Corollary 5.3 If t ≥ n/2 then P t cannot be implemented in an asynchronous system in Et.

Let D be any failure detector that implements consensus in Et. From [5], D can be transformed into a
failure detector of ♦S in environment Et.

Proposition 5.4 For any failure detector class D that implements consensus in Et, we have: Pt×♦S �t D.

From Proposition 5.4 and Corollary 4.3, we deduce that:

Theorem 5.5 For any t, P t×♦S is the weakest failure detector class to implement consensus in environment
Et.

6 Concluding remarks

We discuss here the scope of our lower bound failure detection results. We first discuss the universe of failure
detectors among which we determine the weakest class, then we consider the environment within which we
state and prove our results, and finally we come back to the relationship between registers and consensus
and the impact of uniformity.

8

6.1 The failure detector universe

Our results hold among the original universe of failure detectors defined in [4], with one exception however:
we exclude failure detectors that can guess the future [7]. These failure detectors cannot be implemented
even in a synchronous system (in the sense of [20]).4 From a theoretical perspective, excluding such failure
detectors has clearly an impact. For instance, there is a class (denoted by M in [12]) of failure detectors
that output exactly the list of faulty processes since time 0, and which implement consensus and registers
for any number of possible crashes. This class is incomparable with P t (this is not completely trivial and we
give the proof in the appendix A-6.1) Hence, our results do not hold within the overall original universe of
failure detectors [4]: this might explain why the questions we address in this paper remained open for more
than a decade.

6.2 The environments

Strictly speaking, our failure detection lower bound result on consensus does not generalize the result of [5].
Whereas [5] shows that any failure detector that implements consensus in any environment can be trans-
formed into a failure detector of ♦S, we show that any failure detector that implements consensus in any
environment where up to t processes can crash (Et), for any t, can be transformed into a failure detector
of Pt × ♦S. Our result generalizes the result of [5] for environments of the form Et. It is not applicable to
arbitrary environments, say where two specific processes p1 and p2 cannot crash in the same failure pattern.

6.3 The uniformity of consensus

We considered throughout the paper the uniform variant of consensus. If we consider a correct-restricted
variant of consensus [23], where two process can decide differently, as long as one of them is faulty, then
Pt×♦S is not the weakest for consensus for t ≥ n/2 in Et. Indeed, consider the class P< of failure detectors
(given in [10]) and defined through the strong accuracy property of P and the following partial completeness
property: if a process pi crashes, then eventually every correct process pj such that j > i permanently
suspects pi.

5 There is an algorithm given in [10] that implements correct-restricted consensus with P< for
any t. For t ≥ n/2, P< is not stronger than P t in Et (this is not completely trivial and we give the proof in
the appendix A-6.2). For t ≥ n/2, P t × ♦S is thus not the weakest for consensus in Et (we generalize here
the observation of [7] for t ∈ {n−1, n}). In a sense, the equivalence we state in the paper between consensus
in Et and ♦S plus a register resilient to t crashes does not hold for correct-restricted consensus, i.e., the latter
does not always lead to implement a register in a message passing model (augmented with failure detectors).

Acknowledgements

Comments from Partha Dutta, Corine Hari, Idit Keidar, Petr Kouznetsov, and Bastian Pochon helped
improve the quality of the presentation of this paper.

References

[1] H. Attiya and J. Welch. Distributed Computing. Fundamentals, Simulations, and Advanced Topics. McGraw-Hill,
1998.

[2] K. Birman and R. van Renessee. Reliable Distributed Computing with the Isis Toolkit. IEEE Computer Society
Press, 1993.

4Systems as in [8] that enforce perfect failure detection by explicitly crashing processes, make sure that these processes are
suspected after they have crashed, i.e, they do not predict the future. It is not clear however how our results apply to systems
that somehow predict failures by turning suspicions into exclusions from the group [2].

5As with the failure detector class Ωi, introduced in [22], P< has a restricted completeness: some faulty process might never
be suspected. However, the two classes are different: with P<, completeness is restricted a priori: the only faulty process that
might never be suspected (by any one) is pn. With Ωi, except when i = 1, any faulty process might never be suspected (by
any one).

9

[3] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing Memory Robustly in Message Passing Systems. Journal of the
ACM, 42(1), January 1995.

[4] T. Chandra and S. Toueg. Unreliable Failure Detectors for Reliable Distributed Systems. Journal of the ACM,
43(2), March 1996.

[5] T. Chandra, V. Hadzilacos and S. Toueg. The Weakest Failure Detector for Solving Consensus. Journal of the
ACM, 43(4), July 1996.

[6] C. Dwork, N. Lynch and L. Stockmeyer. Consensus in the presence of partial synchrony. Journal of the ACM,
35(2), 1988.

[7] C. Delporte-Gallet, H. Fauconnier and R. Guerraoui. A Realistic Look at Failure Detectors. Proceedings of the
IEEE International Conference on Dependable Systems and Networks, Washington DC, June 2002.

[8] C. Fetzer. Enforcing Perfect Failure Detection. Proceedings of the IEEE International conference on Distributed
Computing Systems, Phoenix, April 2001.

[9] M. Fischer, N. Lynch and M. Paterson. Impossibility of Distributed Consensus with One Faulty Process. Journal
of the ACM, 32(2), 1985.

[10] R. Guerraoui. Revisiting the Relationship Between the Atomic Commitment and Consensus Problems. Proceed-
ings of the International Workshop on Distributed Algorithms, Springer Verlag (LNCS 972), 1995.

[11] R. Guerraoui and A. Schiper. Γ-Accurate Failure Detectors. Proceedings of the International Workshop on
Distributed Algorithms, Springer Verlag (LNCS 1151), 1996.

[12] R. Guerraoui. On the Hardness of Failure Sensitive Agreement Problems. Information Processing Letters, 79,
2001.

[13] V. Hadzilacos. On the Relationship Between the Atomic Commitment and Consensus Problems. Proceedings of
the International Workshop on Fault-Tolerant Distributed Computing, Springer Verlag (LNCS 448), 1986.

[14] J. Halpern and A. Ricciardi. A Knowledge-Theoretic Analysis of Uniform Distributed Coordination and Failure
Detectors. Proceedings of the ACM Symposium on Principles of Distributed Computing, 1999.

[15] P. Jayanti. Wait-free Computing. Proceedings of the International Workshop on Distributed Algorithms, Springer
Verlag (LNCS 972), 1995.

[16] L. Lamport. Concurrent Reading and Writing. Communications of the ACM, 20(11), 1977.

[17] L. Lamport. Time, clocks and the ordering of events in a distributed system. Communications of the ACM,
21(7), 1979.

[18] L. Lamport. On Interprocess Communication (parts I and II). Distributed Computing, 1, 1986.

[19] W-K. Lo and V. Hadzilacos. Using Failure Detectors to Solve Consensus in Asynchronous Shared-Memory
Systems. Proceedings of the International Workshop on Distributed Algorithms, Springer Verlag (LNCS 857),
1994.

[20] N. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[21] A. Mostéfaoui and M. Raynal. k-Set Agreement with Limited Accuracy Failure Detectors. Proceedings of the
ACM Symposium on Principles of Distributed Computing, 2000.

[22] G. Neiger. Failure Detectors and the Wait-Free Hierarchy. Proceedings of the ACM Symposium on Principles
of Distributed Computing, 1995.

[23] G. Neiger and S. Toueg. Simulating Synchronized Clocks and Common Knowledge in Distributed Systems. Journal
of the ACM, 40(2), April 1993.

[24] F. Schneider. Replication Management using the State Machine Approach. Chapter in Distributed Systems,
Addison-Wesley, 1993.

10

Optional Appendix

A-1 Preliminary

Given a run R =< F, H, C, S, T >, for presentation simplicity, we assume that the time T is the set of
positive integers. Given R =< F, H, C, S, T >, the partial run of R up to time τ is Rτ =< F, H ′, C, S′, T ′ >
such that T ′ = {1, . . . , τ}, H ′, the partial history up to time τ , is the restriction to T ′ of the failure history
H , and S′ is the initial segment up to τ of S (S ′ = S[1]; . . . ; S[τ)). 6 Note that, if the failure detector is
realistic, then R′

τ =< F ′, H ′, C, S′, T ′ > is also a partial run if F and F ′ are identical up to time τ .
Most of the following impossibility proofs are based on standard partitioning arguments. In these argu-

ments, we exhibit some indistinguishable runs. Intuitively, two partial runs R and R′ are indistinguishable
for a process p, that does not crash in R and R′, if and only if (1) p takes steps at the same time in R and
R′, (2) failure detectors histories are the same for p in R and R′, and (3) p receives the same messages in R
and R′. In this case, at each time, the state of p are the same in R and R′.

Given a partial run up to time τ , Rτ =< F, H, C, S, T >, and a set of processes E, SdE will denote the
restriction of S to E.

Let E0 and E1 be two sets of processes, H0 a function from E0 × {1, . . . , τ0} to 2Π, and H1 a function
from E1 ×{1, . . . , τ1} to 2Π. Given a failure detector D and a failure pattern F , we say that H0 and H1 are
compatible if there exists a history G in D(F) such that for all (p, τ) ∈ E0 × {1, . . . , τ0} G(p, τ) = H0(p, τ)
and for all (p, τ) ∈ E1 × {1, . . . , τ1} G(p, τ) = H1(p, τ). Intuitively, H0 and H1 are possible partial histories
for processes in E0 and E1 and if they are compatible there exists an history that gives these two partial
histories for processes in E0 and E1.

Then, roughly speaking, the partitioning argument proceeds as follows. Let A and B = Π \ A be two
sets of processes and R and R′ two partial runs up to time τ0. If (1) up to time τ0, the failure patterns of
R and R′ are identical, (2) at time τ ≤ τ0 some process in A receives a message m from B in R, then at
time τ , m has been sent in R′, (3) at time τ ≤ τ0 some process in B receives a message m from A in R′,
then at time τ , m has been sent in R, and (4) the restriction to A of the partial history of R is compatible
with the restriction to B of the partial history of R′, then there exists a run R′′ such that R′′dA = RdA and
R′′dB = R′dB.

Note that if the failure detector is not realistic, condition (1) is not sufficient: we have to ensure that the
whole failure patterns of R and R′ are the same.

A-2 Proofs of Section 2

Before proving the fact that the class of realistic failure detectors is closed under reduction, precise some
definitions.

Consider environment Et, recall that algorithm A is a reduction algorithm of failure detector D into
failure detector D′ if and only if, given a failure pattern F ∈ Et and H any failure history in D(F), A(H),
the histories of outputs of A is a failure history in D′(F). In fact, the reduction algorithm A using the failure
detector D implements the failure detector AD defined as follows: for each failure pattern F , AD(F) is the
set {A(H)|H ∈ D(F)}. Remark that D′ � D if and only if for every failure patterns F , AD(F) ⊆ D′(F).

The notion of reduction has been defined for the general class of failure detectors. The following propo-
sitions prove that this notion can be restricted to the class of realistic failure detectors.

Lemma 1 If D is a realistic failure detector and A is a reduction algorithm, then AD is a realistic failure
detector.

Proof. Consider F and F ′ two failure patterns identical up to time τ0, and H ∈ AD(F). Let R =<
F, H0, C, S, T > be the run of A that output H . As D is realistic there exists some H1, an history in D(F ′),
such that for all p and all τ ≤ τ0 H0(p, τ) = H1(p, τ). Then there exists a run R′ =< F ′, H1, C, S′, T > of
A such that the partial run of R′ up to time τ0 and the partial run of R up to time τ0 are indistinguishable

6Note that in such a partial run F is a failure pattern for the whole run: F (τ) is defined for all integer τ .

11

and then output the same history up to time τ0. Thus, if H ′ is the output of R′, then for all τ ≤ τ0, for all
H(p, τ) = H ′(p, τ).

In the following, and only to the end of this section, we do not assume that the failure detectors are realistic.
Let Real be the class of all realistic failure detectors.

Proposition 2 Let D2 and D1 be two failure detectors (not necessary realistic). For all t, if D2 �t D1 then
D2 ∩ Real �t D1 ∩Real

Proof. Let A a reduction algorithm of D1 into D2. As D1 ∩ Real ⊆ D1, then AD1∩Real ⊆ D2. From
Lemma 1, AD1∩Real is realistic too and then AD1∩Real ⊆ D2 ∩ Real proving that D2 ∩ Real �t D1 ∩ Real.

A-3 Proofs of Section 3

Proposition 3.2 is a general property that is not used elsewhere in the paper. For the sake of presentation
we prove it here although its proof uses the Corollary 4.2 that will be proved later (Section A-4).

Proposition 3.2 ∀t, t′ ∈ [n/2, n− 1], t′ < t ⇒ Pt′ ≺t Pt.

Proof. We prove first the following lemma:

Lemma 3 If t ∈ [n/2, n− 1] then there is no algorithm implementing an atomic 1-writer–1-reader atomic
register with P t−1 in Et environment.

Proof of lemma. Assume by contradiction Lemma 3 is false. The proof uses a classical partition argument.
Let pw be the writer and pr the reader. As n ≤ 2t, then there is a set W of n− t processes containing

pw and a set R of n − t processes containing pr such that W and R are disjoint sets. As t ≤ n − 1, these
sets are not empty. In the proof, we assume that all processes not in W or in R are initially crashed.

Let v0 be the initial value of the register.
Consider the following runs:

• In α0, only processes in W are alive, and pw writes v1 (v1 6= v0). The failure detectors of all processes
in W always suspect all processes in Π \W . At time τ0, the write operation completes.

• α1 is similar to α0, except that all processes in R are alive, but do not take any step until time τ0.
The failure detectors of all processes in W (respectively in R) suspect always all processes in Π \W
(respectively in Π \R). This is possible because, in α1, we have 2(n− t) alive processes and therefore
at most n − t alive processes are suspected (remember that the failure detectors are in P t−1). For
processes of W , α1 and α0 are indistinguishable, and so at time τ0, the write operation completes.

• α2 is similar to α1, except that all processes in W and R do not take any step until time τ0. The failure
detectors of all processes in W (respectively in R) always suspect all processes in Π \W (respectively
in Π \ R). At time τ0, all processes of W crash, then pr begins the read operation at time τ0 and the
read operation completes at time τ1. Clearly the value returned by the read operation must be the
initial value v0.

• In α3 all processes in W have the same behavior as in α1 until time τ0. All messages sent between W
and R are delayed until after time τ1. Processes in R have the same behavior as in α2 and the read
operation completes at time τ1. By the definition of an atomic register, this read must return v1, but
for processes in R, α3 is indistinguishable from α2 and the read return v0. Contradiction.

Clearly Pt′ �t Pt. In environment Et, we can implement a 1-writer–1-reader atomic register with Pt

(Proposition 4.1) but by the previous lemma we can not implement this register with P t−1.

Now we prove that, in environment Et, Pt × ♦S is strictly weaker than S. Note that the proof of
Proposition 3.3 uses the Theorem 5.2 that will be proved later (Section A-5) but, as one can easily verify,
Proposition 3.3 will not be used elsewhere in the paper.

12

Proposition 3.3 ∀t ∈ [1, n− 2], P t × ♦S ≺t S.

Recall that we consider here only realistic failure detectors.
Proof. First, from Theorem 5.2, as P t × ♦S is the weakest realistic failure detector to solve consensus in
Et, then we have Pt × ♦S �

t
S.

We prove now by contradiction that P t×♦S is not stronger to S. Assume that A is a reduction algorithm
that constructs S from P t × ♦S in Et.

Consider the following two cases:

1. case n ≤ 2t

• Consider the two following failure patterns F1 such that p1, p2, . . . , pn−t−1 are the only faulty
processes (and initially crash) and FF the failure free pattern. Let H1 be the history of failure
detector of Pt, such that all processes in {p1, . . . , pn−t−1} are the only suspected processes. Let
K1 be the history of failure detector of ♦S, such that all processes except pn are the only suspected
processes. Both H1 and K1 are compatible with FF and F1.

Note that, as n− 1 > t, then H1 contains always at least one process.

(a) Consider a run R′
1 of the reduction algorithm with failure pattern F1 and failure detector his-

tory (H1, K1). By hypothesis, the output of the emulated failure detector is in S. By the com-
pleteness property of S, there exists a time τ1 after which all processes in {p1, p2, . . . , pn−t−1}
are suspected.7

(b) Consider now a similar run R1 but with failure pattern FF . For R1, processes in {p1, p2,
. . . , pn−t−1} take no steps until time τ1, and processes in {pn−t, . . . , pn} take the same steps
at exactly the same time as in R′

1. Therefore all processes output the same history for the
emulated failure detector until time τ1 as in R′

1.

• Consider the following failure pattern F2 such that pn−t, . . . , p2(n−t−1) are the only faulty pro-
cesses and all the processes crash after time τ1. Let H2 be the history of failure detector P t,
identical to H1 until time τ1 and then all processes in {pn−t, . . . , p2(n−t−1)} are the only sus-
pected processes. Both H2 and K1 are compatible with FF and F2.

Note that, as n− 1 > t, then H2 contains always at least one process.

(a) Consider the run R′
2 of the reduction algorithm with failure pattern F2 and the history

(H2, K1): R′
2 is identical to R1 until time τ1. By the completeness property of S, there exists

a time τ2 after which {pn−t−1+1, . . . , p2(n−t−1)} are suspected.

(b) Consider now a similar run R2 but with failure pattern FF . For R2, before time τ1, processes
take steps at exactly the same time as in R′

2. Processes in {pn−t−1+1, . . . , p2(n−t−1)} take no
steps between τ1 and τ2, and processes in {p1, p2, . . . , pn−t−1} take the same steps at exactly
the same time as in R′

2. Therefore all processes output the same history for the emulated
failure detector until time τ2 as in R′

2.

• Consider the following failure pattern F3 such that p2(n−t−1)+1, . . . , pn are the only faulty pro-
cesses and they all crash after time τ2. As t < n − 1, these processes may be faulty. Let H3

be the history of failure detector P t, identical to H2 until time τ2 and then all processes in
{p2(n−t−1)+1, . . . , pn} are the only suspected processes. Let K3 be the history of failure detector
♦S, identical to K1 until τ2, and then all processes except p1 are the only suspected processes.
Both H3 and K3 are compatible with FF and F3.

Consider the run R3 of the reduction algorithm with failure pattern F3 and the history (H3, K3):
R3 is identical to R2 until time τ2. Therefore all processes output the same history for the
emulated failure detector until time τ2 as in R2. In F3, p2(n−t−1)+1, . . . , pn are not correct. Before
time τ1, some process suspects {p1, p2, . . . , pn−t−1}, between τ1 and τ2 some process suspects
pn−t, . . . , p2(n−t−1). Thus, R3 outputs history H in which all correct processes are suspected:
contradicting the fact that H is an history of S.

7We abuse, here and after, of the language. More precisely, any process p in {pn−t, . . . , pn} has made at least one step in this
run before time τ1. In this step and the followings the output of the emulated failure detector for p include {p1, p2, . . . , pn−t−1}
in its list of suspected processes.

13

1 Every process p executes the following code:
2 Initialization:
3 r:=0
4 Task 1:
5 repeat forever

6 send(ARE Y OU ALIV E, r) to all

7 wait until receive (I AM ALIV E, r) from max(n− t, 1) processes

8 Outputp:={q | no message (I AM ALIV E, r) from q received by p }
9 /* Outputp is the output for p of the failure detector D */
10 r:=r+1
11 Task 2:
12 upon receive (ARE Y OU ALIV E, x) from q
13 send(I AM ALIV E, x) to q

Figure 3: Implementation of Pn−t−1 in environment Et

2. case 2t < n

We can implement Pt in Et. We have only to show that ♦S is not stronger than S in Et.

The proof is identical to the previous proof except we consider dn/te sets: {p1, . . . , pt}, {pt+1, . . . ,p2t},
. . . , {p(t−1)dn/te+1, . . . , pn} instead of {p1, . . . , pn−t+1}, {pn−t−1+1, . . . , p2(n−t−1)}, {p2(n−t−1)+1, . . . ,
pn}. As t > 0, each of these sets contains at least one process. Furthermore, each of them has at most
t processes and these processes can be faulty.

The following propositions are easier to derive:

Proposition 3.4 ∀t ∈ [0, n− 1], Pn−t−1 ≡t ⊥.

Proof. Algorithm of Figure 3 implements a failure detector D in Pn−t−1 within Et.
The completeness of D is clear. When p waits from max(n − t, 1) processes, it can miss at most t alive

processes: |D(p, τ) \ F (τ)| ≤ t. Therefore D ensures the (n− t− 1)-accuracy property.

Proposition 3.5 ∀t, t′ ∈ [0, dn/2e − 1], P t′ ≡t ⊥.

Proof. Note that, if 2t < n, then t ≤ n − t − 1 and by Proposition 3.4 Pn−t−1 can be implemented
in Et. Moreover, from the (n − t − 1)-accuracy property, we have |Pn−t−1(p, τ) \ F (τ)| ≤ t and then
|Pn−t−1(p, τ) \ F (τ)| ≤ n − (dn/2e − 1) − 1. Therefore a failure detector in Pn−t−1 satisfies (dn/2e − 1)-
accuracy property too and is clearly in P (dn/2e−1). By Proposition 3.1, P t′ can be implemented for all t′ in
[0, dn/2e − 1] within Et.

A-4 Proofs of Section 4

Proposition 4.1 With any failure detector of P t, Algorithm 1 implements a 1-reader–1-writer atomic reg-
ister (for any reader or writer) in environment Et.

Consider e a write or a read operation, ebegin denotes the first event (Line 16 for a write operation,
Line 24 for a read operation) and eend the last event (Line 18 for a write operation, Line 30 for a read
operation).

For the reader and the writer, the end of the operation occurs after the receipt of some acknowledgment
messages. If e is a write operation (respectively a read operation), then Qe is the set of processes from which
the writer (resp. the reader) has received an acknowledgment message in Line 17 (resp. in Line 25) before
completing e.

We have directly:

14

Lemma 4 For each process, the values of its last write variable are nondecreasing.

Proof. Following from the algorithm.

Lemma 5 For each read or write operation e (1) At most max(n− t− 1, 0) alive processes at time τ(eend)
are not in Qe, (2) All processes in Qe were alive at time τ(ebegin), and (3) Qe contains at least max(n− t, 1)
processes.

Proof. Follows from the properties of failure detector P t and from the algorithm.

Lemma 6 Let e and e′ be any two write or read operations, such that τ(eend) < τ(e′begin), then Qe ∩Qe′ .

Proof. Consider Lemma 5: By (2), all processes in Qe′ were alive at time τ(e′begin). By (3), at least
max(n − t, 1) such processes are in Qe′ . As, by hypothesis, τ(eend) < τ(e′begin), these processes were also
alive at time τ(eend). By (1), at most max(n − t − 1, 0) processes alive at time τ(eend) are not in Qe and
thus at least one process is in Qe ∩Qe′ .

Then we can apply the previous lemmas to write and read operations:

Lemma 7 Let w be a write operation and r a read operation, if τ(wend) is less than τ(rbegin), then the
sequence number of w is less or equal to the value of the last write variable of the reader at the end of r.

Proof. Consider Qw and Qr. By Lemma 6, at least one process, say p, belongs to Qw and Qr. Process p
has written the value of the sequence number of w into its last write variable before time τ(wend).
From Lemma 4, as τ(wend) < τ(rbegin), p has sent during r to the reader an ACK READ message with a
last write value larger or equal to the sequence number of w.

Lemma 8 If r and r′ are two read operations such that τ(rend) is less than τ(r′begin), then the last write
value of the reader at the end of r is less or equal than the one at the end of r′.

Proof. Direct from Lemma 4.
Proof of Proposition. Now we prove Proposition 4.1.

First, note that, as at most t processes have crashed, the writer and the reader are ensured to receive an
acknowledgment message from at least max(n−t, 1) processes (an alive process can always receive a message
from itself) and then, due to the completeness of P t the wait instructions (Line 17 and Line 25) terminate.
Therefore, the write and read operations terminate if respectively the writer and the reader are correct.

As sequence numbers of write operation are strictly increasing and only the writer modifies this sequence
number, we deduce from Lemma 7 that each read operation returns the value written by the most recent
preceding write operation or a value written by a write operation that is concurrent with this read operation.

Consider r and r′ any two read operations such that r ends before the beginning of r′. By Lemma 8, if r
and r′ returns respectively values from write operations w and w′, then either w = w′ or w ends before the
beginning of w′.

We use the fact that a N -writer–M -reader atomic register can be implemented from 1-writer–1-reader
atomic registers in order to deduce the following corollary:

Corollary 4.2 Any failure detector of P t implements a (n-writer–n-reader) register in Et.

We reuse the result of [19] that consensus can be implementable with registers and any failure detector
of ♦S (in any environment) in order to deduce the following corollary:

Corollary 4.3 Any failure detector of P t × ♦S implements consensus in Et .

A-5 Proofs of Section 5

Proposition 5.1 For any failure detector class D that implements a register in Et, we have: Pt �t D.

15

Proof. We prove that the reduction algorithm of Figure 2 gives P t.
Consider a write operation performed by writer p and let wbegin (resp. wend) the event on p corresponding

to the beginning (resp. to the end) of this write operation. As before, τ(wbegin) and τ(wend) are the time of
occurrence of these events.

Define W as the set of processes that could have participated in the write operation. More precisely,
Ew = {e : wbegin → e → wend} and W = {q ∈ Π | ∃e on process q ∈ Ew} where → is the causality relation
of [17].

Clearly, at the end of a write operation of process p on register p, L[p] is equal to W . Therefore Output,
the output of the emulated failure detector, is, from the end of this write until the next end of a write
operation of p, the set Π \W .
In order to conclude the proof, we state the following Lemma:

Lemma 9 (1) At most max(n− t− 1, 0) alive processes at time τ(wend) are not in W , and (2) W contains
no process that has crashed at time τ(wbegin).

Proof of Lemma.

Part (2) of the lemma is clear by the definition of W .
The proof of (1) uses a classical partitioning argument. Assume by contradiction that (1) is false. This

means that there is a run α with a write operation w such that if t ≤ n− 1, at least n− t alive processes at
time τ(wend) are not in W , if t = n at least one alive process at time τ(wend) are not in W . In all cases, at
least one process is not in W . Assume without loss of generality that the register contains the value v0 and
v1 is the new value written in the register by w.

Let Pw be the strict causal past of Ew. More precisely, Pw = {x 6∈ Ew | ∃a ∈ Ew : x → a}. Now consider
the following runs:

• α0: α0 is similar to α, except that all events causally after Ew∪Pw are delayed until after time τ(wend).

• α1: α1 is similar to α0, but in α1 all steps causally after Pw are delayed until after time τ(wend).
In particular no steps concerning the write operation are taken. At time τ(wend), all processes in W
crash. Let q be any process not belonging to W . In α1, q begins to read the register at time τ(rbegin)
just after time τ(wend). As the register is atomic, and n− t processes are still alive, the read operation
of q has to return v0. Let τ(rend) the time of the end of the read operation by q.

• α2: α2 is similar to α0, but all processes of W crash at time τ(wend). In α2, q begins to read the
register at time τ(rbegin). All messages between processes of W and of Π \W are delayed until after
time τ(rend). Due to the realism hypothesis, the output of failure detectors, are the same in α0 and α2

until time τ(wend). Therefore all processes have the same behavior in α0 and α2 until time τ(wend).
Then the write succeeds and by the properties of atomic register, all following reads must return v1.
In α2, all processes of Π \W are scheduled exactly as in α1 and the failure patterns of α2 and α1 are
the same, therefore the output of the failure detectors is the same. Then, as in α1, the read operation
of q returns v0 in α2, contradicting the properties of the atomic register.

The proposition is a direct consequence of the Lemma.
Remark: If the failure detector used to implement a register is not realistic, this result does not hold. For
example, consider the following failure detector: since the beginning it gives to each process the identity of
the same correct process. Implementing an atomic register is then trivial: this correct process maintains the
register and, to implement a write operation, the writer sends only a write request to this correct process
and waits until it receives an acknowledgment. Clearly, only the writer and this process participates in the
write operation.

From Proposition 5.1 and Corollary 4.2 we deduce:

Theorem 5.2 For any t, P t is the weakest realistic failure detector to implement an atomic register in
environment Et

As atomic register can not be implemented in asynchronous systems with at most t crashed processes for
n ≤ 2t, we deduce:

16

Corollary 5.3 If n ≤ 2t then P t can not be implemented in asynchronous systems.

Proposition 5.4 For any failure detector class D that implements consensus in Et, we have: Pt×♦S �t D.

From Proposition 5.4 and Corollary 4.3, we deduce that:

Theorem 5.5 For any t, P t×♦S is the weakest failure detector class to implement consensus in environment
Et.

A-6 Proofs of Section 6

A-6.1 Proofs of Section 6.1

In this section we show first the impact of realism on our results. For this we prove that M is incomparable
with Pt, more precisely:

Lemma 10 If n ≤ 2t, ¬(P t �t M) (there is no reduction algorithm from M to P t).

Proof. Recall the definition of failure detector M: for each process M outputs the exact list of faulty
processes since time 0. Clearly this failure detector is not realistic. It can be easily proved that M enables
to implement (uniform) consensus in every environment Et.

Assume by contradiction Lemma 10 is false. Let F be the set of n − t processes {p1, . . . , p(n−t)} and
consider failure patterns for which the set of faulty processes is F . For these failure patterns, the output of
M is always the same. Note that as n ≤ 2t in such failure patterns, less than t processes are faulty.

Consider:

• In α0, all processes in F are initially crashed. By the completeness property of P t, there is a time τ
after which, in the output of the emulated failure detector all processes in F are suspected.

• In α1, all processes in F crash after time τ . Moreover, processes in F do nothing until time τ . Each
process not in F takes steps at the same time in α0 and α1. Until time τ , for processes in Π \ F , α0

and α1 are indistinguishable and so the output of the emulated failure detector is the same. In this
way, at time τ , n− t alive processes are suspected contradicting t-accuracy.

From Lemma 10 and the fact that, there is trivially no reduction algorithm from P t to M, we deduce the
following:

Proposition 11 If n ≤ 2t, ¬(M�t Pt) and ¬(M�t Pt) (M and Pt are incomparable in Et).

A-6.2 Proof of Section 6.3

Recall the definition of failure detector P<. This failure detector outputs at each process pi a list of suspected
processes such that (1) no process is suspected before it crashes, (2) if a process pi crashes, then eventually
every correct process pj such that j > i permanently suspects pi.

Proposition 12 If n ≤ 2t, ¬(P t �t P<) (there is no reduction algorithm from P< to Pt in Et).

Proof. We prove this by contradiction.
If t < n, let A be the set of processes pi such that 1 ≤ i ≤ t. If t = n, let A be the set of processes pi

such that 1 ≤ i ≤ t− 1. Therefore | Π \A |= max(n− t, 1). A max(n− t, 1) ≤ t, then all processes in Π \A
can crash.

Let F be a failure pattern where all processes of Π \ A are initially crash. Let FF be the failure free
pattern. Let H be a history of P< in which processes of A do not suspect any process, processes of Π \ A
suspect processes of Π \ A. Let H ′ be a history of P< in which processes do not suspect any process. H is
a history of P< compatible with F and H1 is a history of P< compatible with FF . For processes of A, H
and H1 are identical.

Now consider the following runs:

17

• Consider first, the run α0 of the reduction algorithm with failure pattern F , and the history H . In the
reduction algorithm, due to the completeness property of P t there is a time τ such that the emulated
failure detector suspects all processes in Π \A. By construction, the set Π \A is not empty.

• Consider now a similar run α1 but with failure pattern FF , and the history H1. For α1, all processes
in Π \ A do not take any step before time τ . All processes in A have the same history for failure
detector P< than in α0. Therefore, for these processes α0 and α1 are indistinguishable until time τ
and the emulated failure detector gives the processes in A the same output as in α0, but they suspect
max(n− t, 1) alive processes contradicting the t-accuracy property of P t.

Corollary 13 If 2t ≥ n, an atomic register can not be implemented with failure detector P<.

18

