On Failure Detectors and Type Boosters *

Rachid Guerraoui and Petr Kouznetsov**

Distributed Programming Laboratory, EPFL

Abstract. The power of a set S of object types can be measured as
the maximum number n of processes that can solve consensus using only
types in S and registers. This number, denoted by h;,(S), is called the
consensus power of S. The use of failure detectors can however “boost”
the consensus power of types.

This paper addresses the weakest failure detector type booster question,
which consists in determining the weakest failure detector D such that,
for any set S of types with h7,(S) =n, h,(S;D) =n+ 1.

We consider the failure detector £2,, (introduced in [17]) which outputs,
at each process, a set of at most n processes so that, eventually, all
correct processes detect the same set that includes at least one correct
process. We prove that (2, is the weakest failure detector type booster
for deterministic one-shot types.

As an interesting corollary of our result, we show that (2, is the weakest
failure detector to boost the resilience level of (n — 1)-resilient objects
solving consensus.

1 Introduction

Background. Key agreement problems, such as consensus, are not solvable in
an asynchronous system where processes communicate solely through registers
(i. e., read-write shared memory), as long as one of these processes can fail by
crashing [7,16]. Circumventing this impossibility has sparked off two research
trends:

(1) Augmenting the system model with synchrony assumptions about relative
process speeds and communication delays [6]. Such assumptions could be
encapsulated within a failure detector abstraction defined with axiomatic
properties [5]. In short, a failure detector uses the underlying synchrony as-
sumptions to provide each process with (possibly unreliable) information
about the failure pattern, i. e., about the crashes of other processes. This
trend led to the identification of the weakest failure detector to solve con-
sensus [4, 14]. This failure detector, denoted by (2, outputs one process at
every process so that, eventually, all correct processes detect the same cor-
rect process. The very fact that {2 is the weakest to solve consensus means

* A short version of the paper can be found in the Proceedings of the 17th International
Symposium on Distributed Computing (DISC 2003).

** This work is partially supported by the Swiss National Science Foundation (project
number 2100-066768).

that any failure detector that solves consensus can emulate the output of
(2. In a sense, {2 encapsulates the minimum amount of synchrony needed
to solve consensus among any number of processes communicating through
registers.

(2) Augmenting the system model with more powerful communication prim-
itives, typically defined as shared object types with sequential specifica-
tions [9,16]. It has been shown, for instance, that consensus can be solved
among any number of processes if objects of the compare&swap type can be
used [9]. This trend led to define the power of a set of types S, denoted by
h? (S) (we follow the standard notations of [13]), as the maximum number
n of processes that can solve consensus using only objects of types in S and
registers. For instance, the power of the register type is simply 1 whereas the
compare&swap type has power co. An interesting fact here is the existence of
types with intermediate power, like test-and-set or FIFO queue, which have
power 2 [9,16].

Motivation. At first glance, the two trends appear to be fundamentally different.
Failure detectors encapsulate synchrony assumptions and provide information
about failure patterns, but cannot however be used to communicate information
between processes. On the other hand, conventional object types with sequential
specifications can be used for inter-process communication, but they do not
provide any information about failures. It is intriguing to figure out whether
these trends can be effectively combined [17]. Indeed, in both cases, the goal
is to augment the system model with abstractions that are powerful enough
to solve consensus, and it is appealing to determine whether abstractions from
different trends add up. For instance, we can question ourselves whether the
weakest failure detector to solve consensus using registers and queues is strictly
weaker than (2.

A way to effectively combine the two trends is to determine a failure detector
hierarchy, Dy, k € N, such that Dy, would be the weakest failure detector to solve
consensus among k + 1 processes using any set of types S, such that A7, (S) = k.
Dy, would thus be the weakest failure detector (in the sense of [4]) to boost (in
the sense of [10]) the power of S to higher levels of the consensus hierarchy.

A reasonable candidate for such a failure detector hierarchy was introduced
in [17]. This hierarchy is made of weaker variants of (2, denoted by (2, k € N,
where (2, is a failure detector that outputs, at each process, a set of processes so
that all correct processes eventually detect the same set of at most & processes
that includes at least one correct process. Clearly, (2; is £2. It was shown in [17]
that (2, is sufficient to solve (n + 1)-process consensus using any set of types
S, such that A7 (S) = n. It was also conjectured in [17] that (2,, is the weakest
failure detector to boost the power of S to the level n + 1 of the consensus
hierarchy. As pointed out in [17], the proof of this conjecture appears to be
challenging. The motivation of this work was to take up that challenge.

Contribution. In this paper, we consider deterministic one-shot types [10]. Al-
though these restrict every process to invoke at most one operation on each ob-

ject, (a) they exhibit complex behavior with respect to the weakest failure detec-
tor type booster question (in the parlance of the robustness problem [2,10,13,15])
and, as we will explain below, (b) they allow a precise answer to the the weakest
failure detector resilience booster question (in the parlance of the resilience vs.
wait-freedom question [1,3]).

Our result can be viewed as a generalization of the fundamental result of [4],
and more precisely its extension to the shared memory model [14]. Indeed, we
prove that (2,, is the weakest failure detector that boosts the power of a collection
of deterministic one-shot types from consensus number n to n + 1.

Proving our result comes down to showing that any algorithm that solves
(n+1)-process consensus, using any failure detector and any set of deterministic
one-shot types S, such that h7 (S) < n, can be used to emulate the output of
£2,,. A major difficulty in our case, with respect to the proofs of [4,14], is that the
consensus algorithm uses not only registers but also other objects. We cannot
rely on any information about the operations through which these objects can
be accessed. The only information that we can rely on is that these objects
instantiate deterministic one-shot types that collectively have consensus power
at most n.

As an interesting corollary of our result, we show that (2,, is actually the
weakest failure detector to boost the resilience of a set of objects solving con-
sensus from level n — 1 to level n. We show that any algorithm that solves wait-
free (n + 1)-process consensus using a failure detector, registers and any set of
(n — 1)-resilient objects of any (not necessarily one-shot deterministic) type, can
be used to emulate the output of (2,,. On the other hand, there is an algorithm
that implements (n + 1)-process consensus out of registers and (n — 1)-resilient
objects using (2,,. Thus, (2,, encapsulates the exact amount of synchrony needed
to circumvent the resilience boosting impossibility of [1,3].

Roadmap. Section 2 presents the system model. Section 3 presents the technical
details necessary for our result. Section 4 states our main result. Section 5 applies
our result to boost the resilience of a set of objects.

2 Model

Our model of processes communicating through shared objects is based on that
of [12,13] and our notion of failure detectors follows from [4,14]. Below we recall
what is substantial to show our result.

We consider a system IT of n + 1 asynchronous processes po, - ..,pn (n > 1)
that communicate using shared objects. The processes might fail by crashing, i.
e. stop executing their steps. A process that never crashes is sait to be correct.
A process that is not correct is said to be faulty.

Objects and types. Let N denote the set of natural numbers and, for every k € N,
N ={0,...,k —1}. An object is a data structure that can be accessed concur-
rently by the processes. Every object is an instance of a type which is defined

by a tuple (Q,0,np, R,). Here Q is a set of states, O is a set of operations, n,
is a positive integer denoting the number of ports (used as an interface between
processes and objects), R is a set of responses, and § is a relation known as the
sequential specification of the type that carries each state, operation and port
number to a set of response and state pairs. We assume that objects are deter-
ministic: the sequential specification is a function 6 : Q x O xN,, = Q@ x R. A
type is said to be k-ported if n, = k.

We consider here linearizable [11] objects: operations on the objects must
appear in one-at-a-time order consistent with their real time order. Unless oth-
erwise stated, we assume that the objects are wait-free [9]: any process completes
any operation in a finite number of steps, regardless of delays or failures of other
processes.

A process accesses objects by invoking operations on the ports of the objects.
A process can use only one port of each object. Each port of a one-shot type can
be used only once by a unique process. The binding scheme that defines how a
process determines the port to access is not important for our result.

Consensus. The (binary) k-process consensus problem [7] consists for k pro-
cesses to decide on some final values (0 or 1) based on their initial proposed
values in such a way that: (agreement) no two processes decide on different val-
ues,! (validity) every decided value is a proposed value, and (termination) every
correct process eventually decides.

To prove our result, we also use a restricted form of consensus, k-process team
consensus [18]. This variant of consensus ensures agreement among k processes
only if the input values satisfy certain conditions. More precisely, assume that
there exists a (known a priori) partition of k processes into two non-empty sets
(teams). A k-process team consensus algorithm guarantees agreement if all pro-
cesses on the same team have the same input value. Obviously, k-process team
consensus can be solved whenever k-process consensus can be solved. Surpris-
ingly, the converse is also true [18]:

Lemma 1. Let S be any set of types. If S solves k-process team consensus, then
S also solves k-process consensus.

Proof. (Sketch) We proceed by induction on k. For any two processes, team
consensus is consensus. Assume that, (1) for some k > 2, S can solve k-process
team consensus (with teams A and B), and (2) for any set of types &' and
2 < m < k, if & solves m-process team consensus, then S’ also solves m-
process consensus. Since only wait-free are considered, (1) implies that, for any
2 < m < k, S can solve m-process team consensus. Now (2) implies that, for
any 2 <m < k, S also solves m-process consensus. Thus, the two teams A and
B (JAUB| =k, AN B = 0), can use |A|-process consensus and |B|-process
consensus, respectively to agree on the team input values (4 and B are non-
empty, thus, |A| < k and |B| < k). Once the team input value is known, the

! In fact, our weakest failure detection result holds even for the non-uniform variant of
consensus, where we require only that no two correct processes decide differently [8].

processes run k-process team consensus (with teams A and B). Since all processes
in the same team propose the same value, the properties of k-process consensus
are satisfied. O

The consensus power [9,13] of a set of types S, denoted by AT (S), is the
largest k, such that k-process consensus can be solved using objects of types in
SUregister, or oo if no such largest k exists.

Failure detectors. To simplify the presentation of our model, we assume the
existence of a discrete global clock. This is a fictional device: the processes have
no direct access to it. We take the range T of the clock’s ticks to be the set
of natural numbers and 0 (T = {0} UN). A failure pattern F is a function
from the global time range T to 2%, where F(7) denotes the set of processes
that have crashed by time 7 € T. Processes do not recover after the crash:
Vr e T: F(r) C F(r + 1). We define correct(F) = II — U1 F(7) to be the set
of correct (in F') processes. A process that is not correct is said to be faulty.

A failure detector D is defined as a map of each failure pattern F' (i. e.,
which processes crash at what times) to a set of failure detector histories D(F’)
(i. e., what each process knows about failures at what time). Any failure detector
D has a range Rp so that, for any F', any history H € D(F) is a function from
II x T to Rp (H(p;,7) is the output of the failure detector module of p; at time
7). Note that the output of a failure detector depends only on the failure pattern:
it cannot give any information on the state of processes or shared objects.

If an asynchronous system with registers is augmented with the failure detec-
tor {2, which eventually permanently outputs the identifier of the same correct
process at all correct processes, then consensus is solvable for any number of
processes [14]. Moreover, it was shown that the output of 2 can be emulated by
any consensus algorithm using a failure detector and registers [14]. In a sense we
recall below, (2 is said to be the weakest failure detector to solve consensus with
registers.

Algorithms. An algorithm A using a failure detector D is a collection of n+1 de-
terministic automata, one for each process in the system. Computation proceeds
in atomic steps of A. In each step, a process (1) invokes an operation on a shared
object and receives a response,? or queries its failure detector module of D, and
(2) updates its local state according to the current state, the response from the
shared object or the value output by the failure detector. A step s is defined by
the triple (p;,0,v) where p; is the identity of the process that takes the step, o is
either an operation (on a register or an object of a one-shot deterministic type)
invoked by p; during the step or query, and v is the response of the invoked
operation or, if o = query, the failure detector value seen by p; during the step.
If 0 is an operation on a shared object X, we say that the step s acesses X.
Otherwise, if 0 = query, we say that the steps s is a query step.

2 Qur objects are linearizable [11], so any execution can be viewed as a sequence of
atomic invocation-response pairs.

A configuration defines the current state of each process and each object in
the system. A step s = (p;, 0,v) of an algorithm A is applicable to a configuration
C if and only if o is the next operation of p; defined by A for C. An execution
e of an algorithm A is a (finite or infinite) sequence of steps of A. (e, denotes
an empty execution.) An execution e = s1, 83, . .. is applicable to a configuration
C if and only if (a) e = ey, or (b) s1 is applicable to C, ss is applicable to
51(C), etc. Given an execution e applicable to a configuration C, e(C) denotes
the configuration resulting from applying e to C.

Reducibility. We say that a failure detector D is weaker than a failure detector
D', we write also D < D', if there exists an algorithm Tp_,p (it is called a
reduction algorithm) that, for any failure pattern, can emulate the output of D
using only D' and registers. We say that D is strictly weaker than D', we write
also D < D',if D X D', but D' £ D.

Hierarchy of {2,. In this paper, we focus on the hierarchy of failure detectors (2
introduced in [17]. For any k € N, the output of (2} is a set of at most k processes
so that, eventually, the same set is output at all correct processes and this set
includes at least one correct process. One can easily see that (2 is 2 [4]. It was
furthermore shown in [17] that, for any 1 < k < n, (a) 2k+1 < 2% and, (b) for
any set of types S, such that h7 (S) = k, S and (2 (shared by n processes) can
solve n-process consensus.

3 The Proof Technique

In this section, we introduce some necessary technical details of our proof that
{2,, is necessary to boost the power of any set S of deterministic one-shot types
from level n to level n + 1. In particular, we recall and generalize the notions of
DAG, decision gadget and deciding process [4,14].

An outline of the proof. Let Consp be any consensus algorithm that solves (n+1)-
process consensus using registers, a failure detector D, and objects of types in
S, for any set S of deterministic one-shot types, such that A” (S) < n. Our goal
is to define a reduction algorithm T'p_,, that emulates the output of 2,, out of
D. Tp_, 0, should have all correct processes agree eventually on the same set of
at most n processes that includes at least one correct process.

The principle of the reduction algorithm T’p_,p, is the following. Processes
periodically query their failure detector modules of D and exchange the values
returned using read-write memory. As a result, each process p; maintains an
ever growing directed acyclic graph (DAG), denoted by G;, that captures a sam-
ple of the failure detector history output by D. This information allows p; to
simulate locally, for any initial configuration I, a number of finite executions of
the Consp algorithm and build an ever growing simulation tree, denoted by 1.
Since registers provide reliable (though asynchronous) communication, all such
Y] converge to the same infinite simulation tree 7!. It turns out, that, for some

initial configuration I, 7! has a finite subtree ~, called a decision gadget, that
provides sufficient information to detect a set of at most n processes, called the
deciding set of 7y, that includes at least one correct process. Thus, eventually,
the correct processes detect the gadget and agree on its deciding set which is
sufficient to emulate (2,,.

DAGSs. Let F be any failure pattern, H be any failure detector history in D(F’)
and I be any initial configuration of Consp. Let G be an infinite directed acyclic
graph (DAG) defined by the set of vertexes V(G) and a set of directed edges
E(Q) of the form v — v', where v € V(G) and v' € V(G), with the following
properties:

(1) The vertexes of G are of the form [p;,d, k] where p; € II, d € Rp and k € N.
There is a mapping f : V(G) — T that associates a time with each vertex of
G, such that:
(a) For any v = [pi, d, | € V(G), pi ¢ F(f(v)) and d = H(pi, {(v)).
(b) For any edge v — v' € £(G), f(v) < f(v").

(2) If [pi,d, k] € V(G),[ps,d', k'] € V(G) and k < k' then [p;,d, k] — [p;,d', k'] €
£(Q).

(3) G is transitively closed.

(4) Let U C V(@) be a finite set of vertexes and p; be any correct process
in F. There is d € Rp and k € N, such that for every vertex v € V(G),
v — [pi,d, k] is an edge of G.

Informally, G stores a sample of D’s output at different processes and some
temporal relationships between them: an edge [p;,d, k] — [p;,d', k'] € £(G) can
be interpreted as “p; saw failure detector value d (in its k-th query) before p;
saw failure detector value d' (in its k'-th query)”.

Simulation trees. A path g = [q1,d1, k1], [q2,d2, k2], ... in G and an initial con-
figuration I of Consp induce a unique execution e = (g1,01,u1), (g2, 02, u2), . . .
of Consp applicable to I, such that u; = d; whenever o; = query. The set of all
executions of Consp induced by G and I implies a tree 11, called the simulation
tree induced by G and I, defined as follows. The set of vertexes of I’ is the
set of finite executions e that are induced by G and I. The root of 1! is an
empty execution e . There is an edge from a vertex e to a vertex e’ if and only
if ¢/ = e - s for a step s. Thus, for each (finite or infinite) path of 771, there is a
unique execution e = 51, 82,

Any path in the tree in which every correct process takes an infinite number
of steps is a run of Consp. Thus, eventually every correct process decides in the
path. As a result, every vertex of 71 has a descendant in the tree in which every
correct process decides (Lemma 6.2.6 of [4]). We assign a set of tags to each
vertex of T'1. Vertex C' of T gets tag u if and only if it has a descendant C'
such that some correct process has decided w in C’'(I). according to the decisions
taken by their descendants. If the only decision taken by descendants of a vertex
is u € {0, 1}, the vertex is called u-valent. A 0-valent or 1-valent vertex is called
univalent. A vertex is called bivalent if it has both tags.

A tree T is called u-valent (bivalent) if e, is u-valent (bivalent) in 7. For
a univalent vertex C of 7!, val(C) denotes the valence of C.

Decision gadgets. From now on, we assume that processes communicate using
shared objects of types in {register} U S where S contains only deterministic
one-shot types and hl (S) < n. Following [4], we introduce the notion of a
decision gadget.®> A decision gadget +y is a finite subtree of 7! rooted at e that
includes a vertex C (called the pivot of the gadget), such that one of the following
conditions is satisfied:

(fork) There are two steps s; and s} of a process p;, such that s;(C) and s;(C)
are two leaves of v of opposite valence.
(hook) There is a step s; of a process p; and step s; of a process p; (i # j),
such that s;(s;(C)) and s;(C) are two leaves of v of opposite valence, and
s; and s; do not access the same object of a type in S.
(rake) There is a set U C II, |U| > 2, an object X of a type in S, such that,
for any p; € U, any step s; of p; applicable to C' (w.r.t. Consp) accesses X
(U is called the participating set of 7). Let E be the set of all sequences of
steps in {s;|p; € U} in which every process in U takes at most one step, such
that Ve € E, e(C) € 7! and, for any e and e’ in E, e is not a prefix of e’ (E
is called the ezecution set of). Then ~, E, C and U satisfy the following
conditions:
(i) C'is a leaf of v if and only if Je € E: C' = ¢(C).
(ii) No process p; € IT — U ever accesses X in any descendant of C in 7'F.
(iii) If E includes all sequences of steps in {s;|p; € U} in which every process
takes exactly one step, then every leaf of v is univalent, and v has at
least one O-valent leaf and at least one 1-valent leaf.

Let v be a rake. If the condition of item (iii) above is satisfied, we say that - is
complete. Otherwise, vy is said to be incomplete.

Examples of decision gadgets are depicted in Figure 1.

The following lemma is the key result of our proof. Note that the lemma uses
our assumption that types in S are deterministic.

Lemma 2. Let v be a complete rake with o pivot C, a participating set U and
an execution set E, such that |U| = n+ 1 and, for any executions e and €' in E
that begin with the same step s;, val(e(C)) = val(e'(C)). There exist a process
pj and two executions ey and e1 in E, such that (a) val(eg(C)) # val(e1(C)),
and (b) p; has the same state in eo(C) and e1(C).

Proof. For each execution e € E, we associate the configuration e(C) with a
vertex of a graph, denoted by K. Two vertexes of K corresponding to the con-
figurations e(C) and €'(C) are connected with an edge if and only if at least one
process p; has the same state in e(C) and €'(C).

Claim 1: K is connected.

3 We slightly modify here the definition of a hook given in [4] and introduce a new
notion of a rake.

€L €L €l

C C C
5 s 5 84 S 84
0-valent 1-valent 0-valent
S; K Si
1-valent 0-valent 1-valent
@ (b) ©

Fig. 1. Examples of decision gadgets: (a) a fork with s; = (ps, query,d) and s; =
(ps, query,d"), (b) a hook where s; and s; do not access the same object of a type in
S, (c¢) a complete rake with the participating set U = {p;, p;} and the execution set
E = {s; - sj,8; - si}, where s; and s; access the same object X of a type in S.

Proof of Claim 1: By contradiction, assume that /C is not connected, i. e., consists
of two or more disconnected components.

Let e(C) and €'(C) be any two vertexes of K, such that the corresponding
executions e and e’ begin with the step s; of the same process p;. Since p; takes
exactly one step in both e and e’ and all types considered are deterministic, p;
has the same state in e(C) and €'(C). Thus, the two vertexes belong to the same
component of K.

Let K1 be one of the components of K. We divide the system into two teams
II, and II,. Team II; consists of all processes p;, such that any execution that
begins with the step s; of p; is in ;. Team II, consists of all other processes.
Since K consists of at least two disconnected components, IT; and I, are non-
empty. We show now that S and two registers can solve (n + 1)-process team
consensus for teams IT; and IT,.

Let X be the object of a type in S accesses by each step in {s;|p; € U}.
We initialize X to its state in C.* Every process p; writes its input value into
its team’s register and then executes the step s; of Consp defined for C. By
construction of K, the resulting state of p; can belong to a vertex of exactly one
component of IC. If the state of p; corresponds to a vertex in Ky, then p; outputs
the value of IT;’s register, otherwise, p; outputs the value of IT’s register. As
a result, processes agree on the component to which the resulting state of the
system belongs.

Clearly, every correct process eventually decides on some proposed value.
Assume now that all processes on the same team (II; or II5) propose the same
value. Since the processes always agree on the component in K, and no two

4 The possibility to initialize objects cannot increase their consensus power [2].

different values are ever written into the teams’ registers, no two processes decide
on different values.

Thus, S U {register} solve (n + 1)-process team consensus. By Lemma 1, SU
{register} solve (n + 1)-process consensus - a contradiction with the assumption
that A7 (S) < n. Thus, K is connected. (End of proof of Claim 1)

Now we color each vertex e(C) of K with val(e(C)). Since « is complete,
there are two executions e and ¢’ in E of opposite valence, and for every e in
E, ¢(C) is univalent. That is, each vertex of X has exactly one color (0 or 1)
and, for each u € {0,1}, there is at least vertex in K colored by u. Since K is
connected, K includes at least two vertexes of different colors, e(C) and €'(C),
connected with an edge. By construction of K, there is a process p; that has the
same state in e(C) and €'(C) and val(e(C)) # val(e'(C)). m|

The following result is a generalization of Lemma 6.4.1 of [4]:

Lemma 3. Any bivalent simulation tree YT has a decision gadget.

Proof. (by construction) By Lemma 6.4.1 (more precisely, Claim 6.4.2) of [4], for
any bivalent tree '/, there exists an algorithm to identify a bivalent configuration
C in T and a correct process p;, such that, for any descendant C' of p; and any
step s; of p; applicable to C’, s;(C") is monovalent. Moreover, C satisfies one of
the following conditions:

(1) There is a step s} of p;, such that s;(C) and s;(C") are vertexes of 7 of
opposite valence. That is, a fork is identified.

(2) There is a step s; of a process p; (i # j), such that s;(C) and s;(s;(C))
are vertexes of ' of opposite valence, ands; and s; do not access the same
object of a type in S. That is, a hook is identified.

(3) There are two steps, s; of a process p; and s; of a process p;, (i # j), such
that s;(C) and s;(s;(C)) are vertexes of 1! of opposite valence, and s; and
s; access the same object X of a type in S.

Assume that there exist a process py and a finite execution ey, in 1!, appli-
cable C, that consists of pg’s steps only, such that no step of e, accesses X
and any step of py applicable to ex(C) accesses X. Let U be the set of all
such processes pg and ey be the concatenation of all such executions eg, such
that ey (s;(C)) and ey(s;(s;(C)) belong to T*. Clearly, p; € U and p; € U
with e; = e; = e . Consider the set E of all sequences of steps of processes
in U, such that in any e € E every process in U takes at most one step,
Ve € E, e(C) € 71, and, for any e and e’ in E, e is not a prefix of e’. By
construction, no step of a process in IT — U accesses X in any descendant of
ey (C). That is, properties (i) and (ii) of a rake with a participating set U,
a set of executions F and a pivot ey (C) are satisfied

Assume that E includes all sequence of steps in which every process in
U takes exactly one step. The configurations ey (s;(C)) and s;(er(C) are
identical, as well as ey (s;(s;(C))) and s;(s;((er(C)), thus the set of vertexes
E(ey(C)) includes both 0-valent and 1-valent vertexes. That is property (iii)
of a rake is also satisfied.

10

That is, we identified a rake with a participating set U, a set of executions
E and a pivot ey (C).

As a result, we obtained an algorithm to identify a decision gadget in any
bivalent simulation tree 77.]

Deciding sets. Instead of the notion of a deciding process given in [4], we in-
troduce the notion of a deciding set V' C II. The deciding set V of a decision
gadget v is computed as follows:

(1) Let v be a fork defined by steps s; and s;. Then V = {p;}.

(2) Let v be a hook defined by steps s; and s;. Since, by definition, s; and s,
do not access the same object of a type in S, there are the following cases
to consider:

(2a) s; is a query step or s; reads a register. Then V' = {p;}.

(2b) s; writes into a register, or s; accesses an object X of a type in S and
s; does not access X. Then V = IT — {p;}.

(3) Let v be a rake defined by a pivot C, a participating set U and an executions
set E and a pivot C. The following cases are possible:

(3a) « is incomplete, i. e., there is an execution e € E and a process p; € U,
such that p; takes no steps in e. Then V = II — {p;}.

(3b) 7 is complete and |U| < n. Then V =U.

(3¢c) v is complete, |[U| = n + 1, and there is a process p; € U such that, for
some e and e’ in E that begin with s;, e(C) and €'(C) have different
valences. Then V = IT — {p;}.

(3d) «is complete, [U| =n+1, and for any e and €' in E that begin with the
same step s;, e(C) and e'(C) have the same valence. Lemma 2 guarantees
that some process p; “mixes” two configurations of opposite valence, i. e.,

there exist two executions e and e’ in E, such that p; has the same state
in e(C) and €'(C), and val(e(C)) # val(e'(C)). Then V = II — {p;}.

By construction, in each case, V' is a set of at most n processes.

Lemma 4. The deciding set of a decision gadget contains at least one correct
process.

Proof. The following cases are possible:

(1) Let v be a fork defined by steps s; and s;. Then V' = {p;}. Since we consider
here deterministic objects and deterministic algorithms, s; and s} can only
be query steps (otherwise, s;(C") = s}(C)). Thus, the only difference between
$;(C) and s}(C) consists in the local state of p;, more precisely, the failure
detector values seen by p; in s; and s}. Thus, V' = {p;} includes exactly one
correct process (Lemma 6.5.3 of [4]).

(2) Let 7 be a hook defined by steps s; and s;. Since, by definition, s; and s;
do not access the same object of a type in S, there are two following cases
to consider:

11

(2a)

(2b)

s; is a query step or s; reads a register. As in case (1), 5;(C) and s;(s,(C))
differ in the local state of p; only. Then V = {p;} includes exactly one
correct process (Lemma 6.5.3 of [4]).

s; writes into a register, or s; accesses an object X of a type in S and
s; does not access X. Then V = IT — {p;}. If T includes the vertex
sj(si(C)), then the configurations s;(s;(C)) and s;(s;(C)) are identical
and cannot have opposite valence. Hence p; does not take any step ap-
plicable to s;(C). Thus, p; is faulty, and V' = II — {p;} contains at least
one correct process.

(3) Let « be a rake defined by a participating set U, a set of executions E and
a pivot C. The following cases are possible:

(3a)

(3b)

(3¢)

(3d)

«y is incomplete, i.e., there is a process p; € U that does not take a step
applicable to some descendant of C'. Thus, p; is faulty, and V' = I —{p;}
contains at least one correct process.

~v is complete and |U| < n. Then U includes at least one correct process
to help processes in IT — U distinguish any two vertexes of opposite
valence, eo(C) and e;(C'), such that eg € E and e; € E. Thus, V =U
contains at least one correct process.

«v is complete, |U| = n + 1 and there is a process p; € U such that, for
some e and €' in E that begin with s;, e(C) and €'(C) have different
valences. Since X is a one-shot object and p; has taken one step on
X in each of e(C) and €'(C), p; is not able to distinguish eo(C) and
e1(C) in any solo execution. Thus, p; is not the only correct process,
and V = II — {p;} contains at least one correct process.

E is complete, [U| = n + 1 and for any two executions e and €' in E
that begin with a step of the same process p;, e(C) and e'(C) have the
same valence. By Lemma 2, there is a “confused” process p; that has
the same state in some two execution ey and e;, such that eo(C) and
e1(C) are two vertexes of v of opposite valence. Since X is a one-shot
object and p; has already taken one step on X in eq(C) and e1(C), p;
is not able to distinguish eq(C) and e;(C) in any solo execution. Thus,
p; is not the only correct process, and V = IT — {p;} contains at least
one correct process.

In each case, the deciding set V' contains at least one correct process. O

4 The Main Result

In this section, we present our reduction algorithm Tp_, o, (Figure 2). As in
[4,14], each process p; maintains a shared variable G; that contains a finite ever
growing DAG representing a sample of failure detector output values at different
processes as well as causal relationships between them. Let G;(7) denote the
value of GG; at the end of the last step of p; before time 7 € T. There is an
infinite DAG G (defined in Section 3) such that, for any correct process p;,
Urer Gi(1) = G (Lemma 6.6.1.2 and Lemma 6.6.1.4 of [4]).

12

Every process p; periodically scans the registers G; (j = 1,..,n) and adds
the new vertexes and edges from each G; (j = 1,..,m) to G;. Then p; queries its
failure detector module, adds a new vertex corresponding to the output value to
G; and an edge to the vertex from each old vertex of G;.

1: output; < {pi}
2: Gi+ 0
3 k«1
4: while true do
5: for all j € {0,...,n},7 # j do
6: Gi; + G; UG;
7. d<+ D;
8 k+k+1
9: G;+ G;UG;
10: add [ps, d, k] to G; and edges from all other vertexes of G; to [ps,d, k]|
11: for all j € {0,...,n+ 1} do
12: Y/ « simulation tree induced by G; and I/
13: if there is no critical 7} in {27 };=0,... n+1 then
14: output; < {pi}
15: else
16: if every Tij is univalent then
17: k < the smallest j, such that Tij is 1-valent
18: output; < {pr}
19: else
20: output; < the deciding set of the smallest decision gadget in {Tj }i=o,...ont1

Fig. 2. Reduction algorithm T'»_,, for process p;.

Let I7 (j = 0,..,n + 1) denote an initial configuration of Consp in which
processes po, .., pj—1 propose 1 and processes pj, .., pn propose 0. Process p; con-
structs then a simulation forest — the set of simulation trees {Tij Yi=1,..n+1,
where 77 denotes the simulation tree induced by G; and I7. Let Y} (r) (r € T)
denote the simulation tree induced by G;(r) and I7. Similarly, U,er 17 (1) = 19,
where 77 is induced by G and I’.

Process p; tags each vertex C' € Tij according to the decision taken in C’s
descendants. We say that Y} is critical if and only if 77~" is 0-valent and 77
is 1-valent or bivalent. A finite tree Tij might have no tags though, hence there
might be no critical simulation tree in {Tf }i=0,..nt1-

As a result of the reduction algorithm, every process p; maintains a variable
output;, the value of which is returned each time the failure detector module of
{2, at p; is queried.

13

Theorem 1. Let S be any set of one-shot deterministic types, such that h, (S) <
n. If a failure detector D implements (n + 1)-process consensus in a system of
processes, using only registers and objects of types in S, then 2, <D.

Proof. (Sketch) By the validity property of consensus, 7° is 0-valent and 7™+!
is 1-valent. Hence, there exists a critical tree in {Tj }i=0,..nt1-

In the algorithm of Figure 2, every correct process eventually identifies the
critical tree T*. The following cases are possible:

(1) T* is univalent. In this case, every correct process p; eventually permanently
outputs pi. By Lemma 6.5.1 of [4], py is correct.

(2) T* is bivalent. By Lemma 3, there exists a decision gadget in 7*. In this
case, eventually, every correct process p; eventually permanently outputs
the deciding set V of the smallest decision gadget of T%. By Lemma 4, the
deciding set (of size at most n) of any decision gadget includes at least one
correct process.

In both cases, the output of (2, is emulated. a
Theorem 1 and [17] imply the following result:

Theorem 2. Let S be any set of one-shot deterministic types, such that h? (S) =
n. {2y, is the weakest failure detector D, such that hl,(S;D) =n + 1.

5 Boosting Resilience with (2,

So far we considered systems in which processes communicate through wait-free
linearizable implementations of shared objects. Every process can complete every
operation on a wait-free object in a finite number of its own steps, regardless of
the behavior of other processes.

In contrast, in this section we consider t-resilient implementations. They
guarantee that a process completes its operation, as long as no more than ¢
process crash, where ¢ is a specified parameter. If more than ¢ processes crash,
no operation on a t-resilient implementation is obliged to return.

Assume that k processes communicate through registers and ¢-resilient lin-
earizable implementations of shared object [3]. We will simply call these ¢-
resilient objects (these are called t-resilient services in [1]).

The classical results on (a) consensus universality [9] and (b) t-resiliency [3]
imply the following impossibility result®:

Theorem 3. Let k and t be any integers, such that k >t > 1. There is no t-
resilient implementation of k-process consensus from registers and (t—1)-resilient
objects.

Before presenting the proof of Theorem 3, we recall the following two lemmas
from [3] (Theorem 4.2 and a slightly generalized variant of Theorem 4.1) based
on Herlihy’s universal construction [9]:

5 An alternative self-contained proof for message passing systems is given in [1].

14

Lemma 5. Lett and k be any integers, such that k >t > 0. Let S be any set
of types that includes register. If (t + 1)-process consensus has a wait-free im-
plementation from S, then k-process consensus has a t-resilient implementation

from S.

Lemma 6. Let t and k be any integers, such that k >t > 0. Let T be any type.
There is a t-resilient implementation of T for k processes from registers and any
t-resilient k-process consensus implementation.

Thus, we can implement any (¢ — 1)-resilient object shared by k processes
out of wait-free t-process consensus objects and registers. The following key
result (Theorem 4.1 of [3]) relates the existence of a t-resilient implementation
of k-process consensus with the existence of a wait-free implementation of (¢+1)-
process consensus.

Lemma 7. Let k and t be any integers, such that k > t > 2. Any t-resilient
implementation of k-process consensus can be transformed into a wait-free im-
plementation of (t + 1)-process consensus.

Note that the lemma above is stated only for ¢ > 2. In fact, its proof [3]
presents a simulation algorithm using objects of type test&set that can be im-
plemented from 2-process consensus objects and registers (but not from registers
only).

Now we are ready to proof Theorem 3.

Proof. (of Theorem 3) By contradiction, assume that such an implementation
exists. By Lemma 6, any (¢t — 1)-resilient object can be implemented out of
(t — 1)-resilient consensus.

Let t = 1. Since 0-resilient consensus can be implemented from registers, by
assumption, there is an implementation of 1-resilient k-process consensus (k > 2)
from registers, contradicting [16].

Let ¢ > 2. By Lemmata 5, 6 and 7, t-process consensus can be wait-free
implemented from (¢—1)-process consensus objects, contradicting the robustness
of Herlihy’s hierarchy with respect to consensus objects [9]. O

Thus, it is not possible to obtain a more fault-tolerant system solving consen-
sus by combining less fault-tolerant components. Not surprisingly, this impos-
sibility can be circumvented by augmenting the system with a failure detector
abstraction. Interestingly, our result on boosting the power of deterministic one-
shot types implies the following theorem:

Theorem 4. Letn > 1 be any integer. Let S be any set of types (not necessarily
deterministic one-shot), such that registers and (n — 1)-resilient objects of types
in S implement (n — 1)-resilient (n + 1)-process consensus. (2, is the weakest
failure detector to implement wait-free (n + 1)-process consensus using registers
and (n — 1)-resilient objects of types in S.

15

Proof. By Lemma 7, (n — 1)-resilient objects of types in S implement wait-free
n-process consensus. The algorithm of [17] implements wait-free (n + 1)-process
consensus using objects of types in {register} U {n-process consensus} and (2,.
This gives the sufficient part of the theorem.

Assume that a failure detector D implements wait-free (n + 1)-process con-
sensus using (n — 1)-resilient objects in S and registers. By Lemmata 5 and 6,
any (n — 1)-resilient object can be implemented out of registers and wait-free
n-process consensus objects. Clearly, h?, ({n-process consensus}) = n [9] and n-
process consensus is a one-shot deterministic type. By Theorem 1, {2, < D. This
gives the necessary part of the theorem. a

References

1. P. Attie, N. Lynch, and S. Rajsbaum. Boosting fault-tolerance in asynchronous
message passing systems is impossible. Technical report, MIT Laboratory for Com-
puter Science, MIT-LCS-TR-877, 2002.

2. E. Borowsky, E. Gafni, and Y. Afek. Consensus power makes (some) sense! In
Proceedings of the 18th ACM Symposium on Principles of Distributed Computing
(PODC), pages 363-372, August 1994.

3. T. Chandra, V. Hadzilacos, P. Jayanti, and S. Toueg. Wait-freedom vs. t-resiliency
and the robustness of wait-free hierarchies. In Proceedings of the 13th ACM Sympo-
sium on Principles of Distributed Computing (PODC), pages 334-343. ACM Press,
1994.

4. T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for
solving consensus. Journal of the ACM (JACM), 43(4):685-722, July 1996.

5. T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM (JACM), 43(2):225-267, March 1996.

6. C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial
synchrony. Journal of the ACM (JACM), 35(2):288 — 323, 1988.

7. M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM (JACM), 32(3):374-382,
April 1985.

8. V. Hadzilacos. On the relationship between the atomic commitment and consensus
problems. In Proceedings of the Workshop on Fault-Tolerant Distributed Comput-
ing, volume 448 of LNCS, pages 201-208. Springer-Verlag, 1986.

9. M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 13(1):124-149, January 1991.

10. M. Herlihy and E. Ruppert. On the existence of booster types. In Proceedings
of the 41st IEEE Symposium on Foundations of Computer Science (FOCS), pages
653-663, 2000.

11. M. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent
objects. ACM Transactions on Programming Languages and Systems (TOPLAS),
12(3):463 — 492, June 1990.

12. P. Jayanti. Wait-free computing. In Proceedings of the 9th International Workshop
on Distributed Algorithms (WDAG), volume 972 of LNCS, pages 19-50. Springer
Verlag, 1995.

13. P. Jayanti. Robust wait-free hierarchies. Journal of the ACM (JACM), 44(4):592—
614, 1997.

16

14.

15.

16.

17.

18.

W.-K. Lo and V. Hadzilacos. Using failure detectors to solve consensus in asyn-
chronous shared-memory systems. In Proceedings of the 8th International Work-
shop on Distributed Algorithms (WDAG), volume 857 of LNCS, pages 280-295.
Springer Verlag, 1994.

W.-K. Lo and V. Hadzilacos. All of us are smarter than any of us: Nondeterministic
wait-free hierarchies are not robust. SIAM Journal of Computing, 30(3):689-728,
2000.

M. C. Loui and H. H. Abu-Amara. Memory requirements for agreement among
unreliable asynchronous processes. Advances in Computing Research, pages 163—
183, 1987.

G. Neiger. Failure detectors and the wait-free hierarchy. In Proceedings of the 14th
ACM Symposium on Principles of Distributed Computing (PODC), pages 100-109,
August 1995.

E. Ruppert. Determining consensus numbers. SIAM Journal of Computing,
30(4):1156-1168, 2000.

17

