
Introduction to Distributed Systems (Summer 2006) / SSC June 27th, 2006

Solution 5

Multicast Chat

1 Overview

We give here the complete solution for Exercise 5.

2 Getting, Compiling and Running the Application

2.1 Compilation

The complete source code is available for download at the exercise page of the course web site.
The archive contains an ant (http://ant.apache.org) build file that can be used to compile the
sources and generate the Java documentation. To do this, simply type in the Ex5 directory1:

ant

2.2 Starting the Client

To start the client, type the following command in a console in the Ex5 directory:

java -classpath ./build/classes/ ch.epfl.lpd.ids.client.ChatClient 〈multicastAddress〉 〈port〉

3 Architecture

Figure 1 summarizes the overall architecture of the multicast chat application.

4 Code Layout

There is no server implementation, the entire chat application is hosted by the chat clients.
What follows is a quick tour of the packages within the application (the fully qualified package
name of course starts with ch.epfl.lpd.ids):

client Contains the ChatClient application, along with the interfaces IChatClient and
IChatClientProperties.

exceptions Contains the exception classes MessageTooBigException and
MulticastInitializationException.

fd Containes the specification and the implementation of the failure detection mechanism.

gui Contains the classes making the graphical interface.

membership Contains the classes for disseminating heartbeat (i.e., “I am alive”) messages.

network Contains the classes implementing the low-level diffusion mechanism. The Multicast-
Socket is encapsulated here.

rmulticast These classes implement the reliable multicast abstraction on top of the multicast
layer.

1
Please use the latest version of ant.

1



Introduction to Distributed Systems (Summer 2006) / SSC June 27th, 2006

ChatMulticast

IMulticast

ChatDispatcher

IMessageDispatcher, IMulticastCallback

IReliableMulticast

ChatReliableMulticast

ChatReliableMulticastTask ChatFailureDetectorTask

ChatFailureDetector

IFailureDetector, IFailureDetectorTaskCallback

ChatMembershipManager

IMembershipManager

ChatMembershipTask

ChatClient

IChatClient
IReliableMulticastCallback
IFailureDetectorCallback

Application Layer

Multicast Layer
(Network Layer)

(Transport Layer)
Reliable Multicast Layer

Figure 1: Overall architecture of the multicast chat application

serialization The specificaiton and the implementation of the message are described in this
package.

utils Constants and utility methods are gathered altogether in this package.

We provide a top-to-bottom approach of the mechanismes implementation by the application
in the following sections. We start with the ChatClient.

The application heavily uses the callback mechanism, for which handler component register
so as to receive events (messsages, failure detection, and so on).

4.1 ChatClient Class

The role of the client is first to initialize the communication layer, and then start each
component up when the user connects, before accepting messages from the user. A message is
sent through a call to sendMessage from the graphical interface.

The initialization method creates, in order: a ChatMulticast instance and initializes
with the multicast address and port number specified on the command line, a ChatDispatcher,
a ChatMembershipManager, a ChatFailureDetector and a ChatReliableMulticast instance.

The ChatClient instance serves of message dispatcher for

• the reliable multicast layer and is registered as the Reliable MulticastCallback han-
dler. The ChatClient implements the IReliableMulticastCallback interface, which
declares the single method rdeliver(IMessage). This method is called upon reception
of a message.

• the failure detector layer, and is registered as the FailureDetectorCallback handler.
The ChatClient implements the IFailureDetectorCallback interface, which declares
the single method newUsers. This method is called by the failure detector module when
a user connects or disconnects to or from the chatroom, so that the client can refresh its
display.

2



Introduction to Distributed Systems (Summer 2006) / SSC June 27th, 2006

In this idea, the ChatClient registers as the listener for the failure detector mechanism, and for
the reliable multicast mechanism.

The sending of a message is done, inside the sendMessage method, by invoking the method
rsend of the ChatReliableMulticast instance.

4.2 ChatReliableMulticast class

The class implements the reliable multicast abstraction. Messages that are sent but not yet
acknowledged are internally buffered as InternalMessage’s.

Upon receiving a message, the message is delivered to the register callback, unless the message
is an acknowledgement. In this case, the sender of the acknowledgement is removed from the list
of clients which must yet acknowledge the message. Once the message has been acknowledged
by all clients, it is not sent anymore.

The class ChatReliableMulticastTask is in charge of retransmitting the messages yet to
be acknowledged by some client. Each message is associated a counter of the number of clients
which have not acknowledged that specific message yet. The message is retransmitted as long
as the counter does not reach zero.

The sending of messages is performed through the ChatMulticast class.

4.3 ChatMulticast class

The ChatMulticast class encpasulates the multicast socket, that is opened by specifiying the
multicast address and port number given by the user on the command line.

A MessageToBigException is thrown by the send method, if the message size is bigger than
the maximum message size allowed.

4.4 ChatDispatcher class

This class implements a general message handler and message dispatcher, through which all the
messages received converged and are then dispatched to all registered handlers.

4.5 ChatFailureDetector class

The failure detector abstraction monitors the message received from the clients and decides that
a client has crashed when no message is received from this client after a given timeout period.

The handle method receives hearbeat message, and updates the timestamp at which the
last message from every known client was received.

The ChatFailureDetectorTask is reponsible for detecting the crash of clients from which
no message has been received with the last interval. In this case, it invokes the method changed

within the failure detector module, which in turns calls the registered call back method, in our
case the ChatClient application itself.

4.6 ChatMembershipManager class

The membership service sends heartbeat messages to every other client within a regular interval.
The ChatMembershipTask serves for implementing the timer, and executes the actual sending
of the heartbeat message.

5 Questions

1. Is it possible, according to the specification, that two correct chat clients receive two distinct
messages in a different order? Why?
It is indeed possible that two correct chat clients receive two distinct messages in a different

3



Introduction to Distributed Systems (Summer 2006) / SSC June 27th, 2006

order, i.e., two chat clients c1 and c2 receive two distinct messages m1 and m2 in the order
respectively m1 → m2 and m2 → m1. This is possible since the IP multicast protocol used
within the application does not ensure any form of total ordered delivery of IP datagrams.
The reliable multicast layer added by the chat application on top of the IP multicast layer
does not implement a total order primitive, but only a reliable delivery primitive. For
instance, consider a scenario where a chat client that sends two messages m1 and m2, in
this order. Because of the architecture of the IP protocol, m1 and m2 do not necessarily
follow the same path in terms of hops in the network. As a result, two correct clients c1

and c2 might very well receive m1 and m2 in a different order, m1 being delayed for c2 but
not for c1.

2. How can we deal with message size greater than 64kB?
The IP layer does not support datagram of more than 64kB, since the field for encoding
the size of the datagram is 16bits long (and since it would be much impracticable to have
packets of more than 64kB on the network! In practice, IP fragments rarely exceed 576
bytes!). For supporting messages of size greater than 64kB, we would need to implement
a algorithm for fragmenting the messages into several IP fragment, each of size at most
64kB. Note that IP is designed with this purpose in mind, and all the necessary fields
(length of fragment, offset within datagram, etc.) for doing the fragmentation and the
reassembly are available in the IP header.

3. What hypothesis should be done on the system if we want a message to be delivered to all
the effectively correct chat clients?
In the current specification of the chat application, a client c1 that detects another client
c2 as crashed because c1 does not receive a heartbeat from c2, considers c2 as effectively
crashed. In reality however, the heartbeat message sent by c2 to c1 in this case might well
get lost in the network, or the timeout value chosen by c1 before deciding c2 is crashed
might be too small. The consequence is that a chat client c2 that is correct is now suspected
to have crashed by another client c1. In this case, c1 does not send any future message to c2

anymore, even though c2 is a correct chat client. The simplest way of solving this problem
is that any chat client systematically “forwards” any message that this client receives, to
any other chat client, and we do not need any form of failure detector. With stronger
synchrony assumptions on the network (i.e., if the network is totally synchronous), it is
possible to come up with a solution that reduces the number of messages exchanged.

4


