
Introduction to Distributed Systems (Summer 2006) / SSC May 9th, 2006

Exercise 4

Java Message Service

1 Goal

The goal of this exercise is to teach you how to program a very simple chat application using the
Java Message Service (JMS) APIs. As usual, you will be able to reuse your existing implemen-
tation in order to fulfill the goal of the exercise. The chat application you have to implement
must be able to: (1) connect/disconnect to a JMS server, (2) create a chat room and (3) send
messages to this chat room. The chat application does not need to show the list of the connected
clients.

2 OpenJMS

If we want to launch a chat application that uses a JMS provider, we need this provider. There
are different JMS providers available on the market (OpenJMS, Sun Application Server, Joram,
...). We will focus here on OpenJMS which is fairly simple to use.

To use OpenJMS first get it from http://openjms.sourceforge.net/. Once you have installed
it, you can start/stop OpenJMS with the help of the startup and shutdown scripts, via a terminal.

Once the OpenJMS server is started, you can run your chat application by using the prede-
fined JmsTopicConnectionFactory.

3 Guidelines

The application will contain one main class: (1) a chat client (ChatClient). The server will
be the running instance of the JMS provider. As usual, different instances of a ChatClient
can be launched on different hosts and will send messages to the JMS provider on a topic
which represents the chat room. The different clients are able to connect/disconnect to the chat
room and to see the different messages sent to this chat room. However, they do not need to
list the clients that are currently connected to the chat room (this limitation is imposed by the
specification of JMS)1. Please note that the clients must receive the messages in an asynchronous
manner (i.e., via a javax.jms.MessageListener). We will focus on the publish/subscribe
scheme in which a message is sent to all the clients by the JMS provider.

The implementation of our application can be done either using the different javax.jms.Topic*
APIs (e.g., javax.jms.TopicSession,
javax.jms.TopicConnection, javax.jms.TopicConnectionFactory,
javax.jms.TopicPublisher and javax.jms.TopicSubscriber), as presented during the course
or using the new features of Domain Unification [4]. We explain in the following how to use the
new features of JMS 1.1.

3.1 Applications Overview

3.1.1 Chat Client

The user should be able to launch the client application via the following command:

java ch.epfl.lpd.ids.client.ChatClient <contextFactoryClassName> <providerURL>
<connectionFactoryName>

The following window should appear (Figure 1).
1We could overcome it, but only if we use the native APIs of the specific JMS provider.

1



Introduction to Distributed Systems (Summer 2006) / SSC May 9th, 2006

Figure 1: A Chat Client GUI

The user can connect/disconnect (via the Connect button) to a chat room (whose name is
represented by the second textfield), send messages (via the Send button) and receive messages.
Please note that a client does not have to list the other clients to the JMS provider.

The contextFactoryClassName, providerURL and connectionFactoryName will be used by
the application to get a reference to the JMS provider. The first two parameters represent, in a
way, the yellow pages needed to get the JMS provider reference. The third parameter represents
the name of the factory that will be used to create a connection for sending messages.

3.2 Design Overview

The architecture of the applications is fairly simple (see Figure 2).

JMSProvider

ChatClient ChatClient

ClientGUI ClientGUI

Figure 2: JMS Chat Architecture

The different instances of the ChatClient will communicate through the JMS provider by
sending Message.

3.3 Enhancing your Previous Application

3.3.1 Contacting the Yellow Pages

When starting the ChatClient, the first thing to do is to contact the yellow pages in order to
retrieve a javax.jms.ConnectionFactory instance.

In the course example, this factory is created manually using directly the native implemen-
tation of the JMS provider. We want our chat application to be independent from the JMS
provider and to call methods only of the JMS APIs. This is why we have to go through the
Java Naming Directory Interface (JNDI) which represents the yellow pages.

2



Introduction to Distributed Systems (Summer 2006) / SSC May 9th, 2006

To do so, you have to create an javax.naming.InitialContext. The newly created instance
of this Context should take as parameters the contextFactoryClassName and the providerURL.
This can easily be done by passing as a parameter in the javax.naming.InitialContext con-
structor, a correctly initialized java.util.Hashtable:

Hashtable
key value

Context.INITIAL CONTEXT FACTORY contextFactoryClassName
Context.PROVIDER URL providerURL

For instance, the contextFactoryClassName for OpenJMS is:
org.exolab.jms.jndi.InitialContextFactory and its provider URL is: rmi://localhost:1099.

Once you have an javax.naming.InitialContext, you can now lookup (via the lookup()
method) the connectionFactoryName (i.e., JmsTopicConnectionFactory). The
javax.jms.ConnectionFactory will be used, as seen during the course, to create a
javax.jms.Connection representing a connection between the client and the JMS provider.

3.3.2 Sending/Receiving Messages

Now that you have a javax.jms.ConnectionFactory, you can follow the guidelines of [4] in or-
der to create a javax.jms.Connection, a javax.jms.Session, a javax.jms.MessageProducer
and a javax.jms.MessageConsumer. Do not forget to set a javax.jms.MessageListener for
the javax.jms.MessageConsumer.

For sending messages, you will use javax.jms.ObjectMessage and put, inside them, your
own IMessage.

3.4 Compiling your Applications

To be able to compile your application, you will need to incorporate, in your classpath, the JMS
APIs. Those APIs are stored in a jar file: openjms-0.7.7-alpha-3/lib/jms-1.1.jar.

3.5 Running your Applications

First start the OpenJMS provider as presented in [3], then run your application according to
Section 3.1. You have to be sure that the correct jar files of the implementation of the JMS
provider you use are in your classpath.

Namely, you need the following jar files:

• openjms-0.7.7-alpha-3.jar

• jms-1.1.jar

4 Due

You have to give, for May 30th, the complete source code of your application. You can send
your code, without the compiled classes, in a .zip file archive (or .tgz) to the following email
address: Sebastien.Baehni@epfl.ch. The archive has to contain a script file used for compiling
your code (either on Windows or on Linux). Your email should arrive before 1pm and its subject
has to be: IDS EX4. Also, please put in the content of your mail the first name and name of
your partners.

The application has to run correctly (i.e, without bugs) for you to receive 0.33 bonus points.
If the code is well designed, well written and generic, you will receive additionally 0.33 points.
Finally, if the code is well documented (i.e., javadoc preferably) you will get the final 0.33 points
of the bonus.

3



Introduction to Distributed Systems (Summer 2006) / SSC May 9th, 2006

References

[1] Java API Documentation. http://java.sun.com/j2se/1.5.0/docs/api/index.html.

[2] Java Message Service (JMS) API Documentation. http://java.sun.com/javaee/5/docs/api/.

[3] Open JMS. http://openjms.sourceforge.net/.

[4] JMS Version 1.1, change log. http://java.sun.com/products/jms/changelog.html.

[5] Java Message Service (JMS) Tutorial. http://java.sun.com/products/jms/tutorial/1 3 1-
fcs/doc/copyright.html.

4


