
Introduction to Distributed Systems (Summer 2006) / SSC March 21th, 2006

Exercise 2

Concurrent Programming

1 Goal

The goal of this exercise is to teach (remind) you how to program threads in Java. To that end
you will implement a local chat application. In this application, different users will be able to
send messages to each other communicating via a local shared memory.

2 Guidelines

We present here in more details the different indications that will help you to implement the
local chat application.

The application will simulate a distributed chat but in a local environment. To that end, the
main chat application will launch several chat client windows. Each of them will allow a user to
connect/disconnect, and send chat messages to the other users. The messages will be sent, via
method calls, to a server object which will be responsible for storing the connected clients and
dispatching the messages to the clients. Please note that all the clients communicate together.

2.1 Application Overview

The user should be able to launch the application via the following command:

java CentralizedChat <nbOfClients>

And nbOfClients windows like the one presented in Figure 1 should appear.

Figure 1: A Chat Client GUI

A user is able to connect/disconnect (via the Connect button), send messages (via the Send
button) and receive messages as well as the list of the connected users. Your application does
not have to be exactly the same as presented in Figure 1, but the same functionalities should
be provided.

2.2 General Architecture

The chat application should follow the architecture presented in Figure 2 (please note that the
interfaces IChatClient and IChatServer of Exercise 1 are not depicted in Figure 2).

In short, different ChatClient instances, communicate via a ChatServer and display the
information to a ChatGUI. In order to ease you the work for Exercise 3, try to design your

1



Introduction to Distributed Systems (Summer 2006) / SSC March 21th, 2006

ChatClient ChatClient

ChatClientGUI ChatClientGUI

ChatServer

ChatApplication

Figure 2: Sketched Chat Architecture

application the most generic as possible (i.e., in using Java interfaces between the different
actors). Finally, we require that your implementation defines and uses its own blocking queue
to manage the list of messages; we explain what a blocking queue is in Section 2.4.

2.3 Threads

As several clients will be able to run simultaneously in the same main process, you will have to
use Thread’s. Those threads will call the same methods on the server, hence you will have to
use the synchronized keyword. Please have a look at the course or at the Java Documentation
in order to know how to deal with this concept.

2.4 Synchronization

Threads in the application synchronize together using one or several blocking queues. A blocking
queue uses an instances of class ArrayList in its core. As an instance of class ArrayList is
not multithread-safe, you need therefore to add the necessary synchronization code, for using a
blocking queue within our multithreaded environment. The specification of the blocking queue
is as follows:

• get: this method pops the first message in the queue and blocks if there is no such message.

• put: this method pushes a message at the end of the queue and notifies threads waiting
for new messages.

Be careful to avoid deadlocks of threads.

3 Due

You have to give, for April 11th, the complete source code of your application. You can send
your code, without the compiled classes, in a .zip file archive (or .tgz) to the following email
address: Sebastien.Baehni@epfl.ch. The archive has to contain a script file used for compiling
your code (either on Windows or on Linux). Your email should arrive before noon and its subject
has to be: IDS EX2. Please put also in the content of your mail the firstname and name of your
partner.

The application has to run correctly (i.e, without bugs) for you to receive 0.33 bonus points.
If the code is well designed, well written and generic, you will received additionally 0.33 points.
Finally, if the code is well documented (i.e., javadoc preferably) you will get the final 0.33 points
of the bonus.

2



Introduction to Distributed Systems (Summer 2006) / SSC March 21th, 2006

References

[1] Java API Documentation. http://java.sun.com/j2se/1.5.0/docs/api.

3


