Introduction to Distributed Systems (Summer 2006) / SSC March 14", 2006

Exercise 1

Introduction to Java Chat

1 Goal

The goal of this exercise is to remind you some concepts of Java. To that end you will implement
the first building blocks of a local chat application. You will reuse these basic blocks in the
following exercises.

2 Guidelines

We present here in more details the different indications that will help you to implement the
local chat application. Furthermore, we will give you several classes and interfaces in order to
make your work easier. Please have a look at the end of the statement to find information how
to download the code.

2.1 Application Overview

The application simulates a very simple distributed chat but in a local environment. To that end,
the main class (CentralizedChat) creates an instance of a ChatServer and two instances of
ChatClient and test several methods of the ChatClient: (1) connect(String username), (2)
disconnect () and (3) sendMessage (IMessage msg). Please have a look at the implementation
of CentralizedChat to know in more details how it works.

After a call to the connect (String username) method of a ChatClient, this client must be
connected with the ChatServer, i.e., the server holds a reference to the client. After a call to the
disconnect () method of a ChatClient, this client must be disconnected from the ChatServer,
i.e., the server does not hold anymore a reference to the client. The result of a call to the
sendMessage (IMessage msg) method of a ChatClient is that the ChatServer simply outputs
the msg in a console. Finally, your implementation of a ChatServer must store in a list the
different connected ChatClient.

The specification of the ChatClient, ChatServer and Message is given through Java inter-
faces (via IChatClient, IChatServer and IMessage respectively). Please read them carefully.

The user should be able to launch the application via the following command:

java ch.epfl.lpd.ids.CentralizedChat
And here is a possible output of this command:

Client 1 is connected.

Message received: Header: header 1 Data: message 1
Client 2 is connected.

Message received: MyHeader: header 2 MyData: message 2
Client 1 is disconnected.

Client 2 is disconnected.

Introduction to Distributed Systems (Summer 2006) / SSC March 14", 2006

CentralizedChat

IChatClient IChatServer IMessage
| ChatClient | | ChatServer | | Message L MyMessage !
Lffff‘Lffff Liiii‘ Liiii‘

Figure 1: Chat Architecture

2.2 General Architecture

The chat application should follow the architecture presented in Figure 1.

You will receive the code of the interfaces IChatClient, IChatServer, IMessage as well as
the class CentralizedChat represented by the plain rectangles of Figure 1. Your job is to imple-
ment the classes represented by the dashed rectangles (i.e., ChatClient, ChatServer, Message
and MyMessage). The idea underneath having two different implementations of IMessage is to
make you understand how the polymorphism in Java works.

In short, the main class CentralizedChat calls the different methods of the instances of
ChatClient which in turn call the methods on the instance of the ChatServer.

3 Sources
You can download the different sources of the application here:

http://lpdwww.epfl.ch/teaching /ids.html

Look on this page for the Src of Fxl.

4 Due

You have to give, for March 21*", the complete source code of your application. You can send
your code, without the compiled classes, in a .zip file archive (or .tgz) to the following email
address: Sebastien. Baehni@epfl.ch. The archive has to contain a script file used for compiling
your code (either on Windows or on Linux). Your email should arrive before noon and its subject
has to be: IDS EX1. Please put also in the content of your mail the firstname and name of your
partner.

References

[1] Java API Documentation. http://java.sun.com/j2se/1.5.0/docs/api.

