
1

Introduction to Distributed Systems

1

Community-Aware Information
Dissemination

EPFL
Distributed Programming Laboratory

Sébastien Baehni, Patrick Th. Eugster, Rachid Guerraoui, Oana Jurca

In Proceedings of the 5th IEEE International Conference on Dependable Systems and
Networks, pages 233-242, June 2004 (original name: Data-Aware Multicast)

Introduction to Distributed Systems

2Motivation

Implement reliably the type-based publish/subscribe
abstraction in a decentralized environment

Publish/Subscribe

T1

T2

T2

Type
hierarchy

T0

T1

T2

T0

T1

T2

2

Introduction to Distributed Systems

3

• CAMCAST
– Exploits the type hierarchy
– Memory complexity:
– Message complexity:
– Decentralized (no broker)
– No parasite event
– Tradeoff between reliability and message load

Type
hierarchy

CAMCAST

T0

T1

T2

Contribution

!

ln S
Ti() + c

Ti
+ z

Ti

!

S
T
max

ln S
T
max

()

i
T
S = # processes in Ti

ii
TT
zc , cste

Introduction to Distributed Systems

4Roadmap

• Background
– Publish/Subscribe
– Type-based Publish/Subscribe
– Decentralized Systems
– Related Work

• CAMCAST
– Intuition
– Evaluation

3

Introduction to Distributed Systems

5Background

• The problem specification relies on
the knowledge of:
– What is a publish/subscribe system?
– What is a type-based publish/subscribe

system?
– What is a (de-)centralized system?

Introduction to Distributed Systems

6Roadmap

• Background
– Publish/Subscribe
– Type-based Publish/Subscribe
– Decentralized Systems
– Related Work

• CAMCAST
– Intuition
– Evaluation

4

Introduction to Distributed Systems

7Background

• Publish/Subscribe (Pub/Sub)
– Two kinds of actors:

• Subscribers (who want to receive information)
• Publishers (who send the information)

– Defines several properties:
• Time decoupling
• Space decoupling
• Flow decoupling

– Two different categories of Pub/Sub
• Topic-based
• Content-based

Introduction to Distributed Systems

8Background

• Topic-based Publish/Subscribe
– Interests of subscribers based on topics (e.g., “car”)
– Publishers send events on topics (e.g., “.car.BMW”)

• Content-based Publish/Subscribe
– Interests of subscribers based on criteria (e.g., model = “BMW”,

color = “red”, horsepower = “> 100”)
– Publishers send plain information

Pub/Sub

5

Introduction to Distributed Systems

9Roadmap

• Background
– Publish/Subscribe
– Type-based Publish/Subscribe
– Decentralized Systems
– Related Work

• CAMCAST
– Intuition
– Evaluation

Introduction to Distributed Systems

10Background
• Type-based Publish/Subscribe

– Interests of subscribers based on types (e.g., “interface Car {…}”)
– Publishers send objects (e.g., new BMW(“red”,140);)

• Advantages
– Both topic-based or content-based
– Well-suited for systems implemented in an object-oriented language

• One structure to maintain
• No mapping between the high/low-level structures
• Preserves type-safety (no bad cast)

• Disadvantages
– How to filter objects?
– A subscription to a type implies being interested in all the subtypes as

well
– Interoperability between types?

6

Introduction to Distributed Systems

11Roadmap

• Background
– Publish/Subscribe
– Type-based Publish/Subscribe
– Decentralized Systems
– Related Work

• CAMCAST
– Intuition
– Evaluation

Introduction to Distributed Systems

12Background
• Centralized System (e.g., HTTP server)

– Relies on one single entity to send/receive messages
– Easy to maintain, to make assumptions on the system
– Single point of failure, potential bottleneck

• Broker-based System (e.g., Usenet, Siena, “Gnutella Super Peers”)
– Relies on a set of well known servers to disseminate the messages
– Still possible to administrate, to make assumptions on the system
– No single point of failure
– Some nodes (processes) have to perform more work

• Peer-to-Peer (P2P) System (e.g., Pastry, Tapestry, Chord)
– Each process do the same amount of work
– Completely decentralized
– Very difficult to administrate, very few assumptions possible to make
– Very difficult to shutdown
– Bootstrap ?

7

Introduction to Distributed Systems

13Background
• Peer-to-Peer (P2P) Distributed Hashtable (DHT) Systems

– Each process is responsible for storing one or more information
– A mapping between the process and its information is created with a

hash function
• The key corresponds to the return value of the hash function
• The value corresponds to the information stored by the process

– The processes also store a routing table

0000 1000

11001101

145….1000

134….0100

128….0010

101….0001

IPKey

Introduction to Distributed Systems

14Roadmap

• Background
– Publish/Subscribe
– Type-based Publish/Subscribe
– Decentralized Systems
– Related Work

• CAMCAST
– Intuition
– Evaluation

8

Introduction to Distributed Systems

15

• Centralized Systems (e.g., JMS, Joram, MSMQ, CORBA)
– Single point of failure

• Replication means overhead
– High load on the main server
– Not type-based, not taking into account the type or topic hierarchy

(except Joram)

Background

Type
hierarchy

T0

T1

T2

Introduction to Distributed Systems

16

• Broker-based systems
– Centralized or semi-centralized
– The brokers have to filter the events
– NNTP (Network News Transfer Protocol)

• Processes must subscribe to all topics of a topic hierarchy

Background

Type
hierarchy

T0

T1

T2

9

Introduction to Distributed Systems

17

• Gossip-based algorithms (e.g., b. multicast, lpbcast, Scamp)
– Broadcast

• Parasite events
• Feasible?

– Multicast
• Multiple membership tables
• Filtering overhead

Type
hierarchy

T0

T1

T2

Background

Introduction to Distributed Systems

18

replicas

Type
hierarchy

T0

T1

T2

• P2P Multicast (e.g., Bayeux, Scribe, HiScan)
– Spanning trees

• Single point of failures
• Replication overhead

– Parasite events

Background

10

Introduction to Distributed Systems

19Background
• Content-based publish/subscribe (e.g., Gryphon, Siena,

Hermes, PMcast)
– Relies on brokers (filtering of events)
– Parasite events

Type
hierarchy

T0

T1

T2

Introduction to Distributed Systems

20Roadmap

• Background
– Publish/Subscribe
– Type-based Publish/Subscribe
– Decentralized Systems
– Related Work

• CAMCAST
– Intuition
– Evaluation

11

Introduction to Distributed Systems

21

!

ln S
T
i

() + c
T
i

Type
hierarchy

T0

T1

T2

p4 p5

p1 p2 p3

… …
p1

p2

p3

p4

p5p6

Type table
• Relies on the underlying
gossip-based algorithm
• Size =

Super type table
• Specific membership
management
• Size = (cste)

i
T
z

Intuition

Introduction to Distributed Systems

22Algorithm
• Membership

– Super-type table
• Initialization

– Bootstrapping technique (weak. conn. overlay network, …)
– Table initialized as soon as a process interested in the direct super

type is found
– If no process is found, look in the super super community (and so on

recursively)
• Updates (pro-active algorithm)

– If k super processes are down, the current process asks one of the
alive super processes for a new view

– New super type table gossiped in the community

– Type table
• Based on the underlying gossip-based membership algorithm

12

Introduction to Distributed Systems

23

• Dissemination (gossip-based)
– Every process (receiving the message the first

time)
• Gossips the message in its community
• With a probability , propagates the message to its

super community
– Reliability

• Gossip-based in each community
• Depends on the type of interest, but can be controlled

iT
pit

Algorithm

Introduction to Distributed Systems

24Roadmap

• Background
– Publish/Subscribe
– Type-based Publish/Subscribe
– Decentralized Systems
– Related Work

• CAMCAST
– Intuition
– Evaluation

13

Introduction to Distributed Systems

25Evaluation
• Based on SCAMP [1]

– Subscription
• Initial contact
• New subscription received

– Forwarded to other processes of the view
• Forwarded subscription received

– With a probability of 1/(1+n) keep the new subscriber
– Otherwise forward the new subscription to a random process in the view

– Unsubscription
• Done using a gossip-based mechanism

– Network partition
• Heartbeat messages

– Graph rebalancing
• Leases

[1] I. Gupta, A.-M. Kermarrec, A. J. Ganesh. Efficient and Adaptive Epidemic-style Protocols for Reliable and
Scalable Multicast. In IEEE Transactions on Parallel and Distributed Systems, 2005

Introduction to Distributed Systems

26Evaluation
• Gossip-based algorithm based on SCAMP

– Event disseminated to induces a reliability of
• Three alternative approaches (all based on SCAMP)

– Gossip-based broadcast
• One community for all processes

– Gossip-based multicast
• One community per type

– Hierarchical SCAMP (HiSCAMP)
• One community per type
• Communities regrouped together

cn +)ln(

!

e
"e

" c

14

Introduction to Distributed Systems

27

Gossip-based
Multicast

CAMCAST

Hierarchical
gossip-based

Gossip-based
Broadcast

LatencyMemory
InformationReliabilityMessage

Complexity

!

O S
T
max

ln S
T
max

()()!

O n ln n()()

!

O S
T
max

ln S
T
max

()()

!

O S
T
max

ln S
T
max

()()
!

ln(STi) + cTi()
i= t"1

j

#

!

e
"e

" c

cn +)ln(

!

ln(S
T
i

) + c
Ti

+

ln(N) + c2

!

ln(S
Ti
) + c

Ti
+ z

Ti

!

e
"Ne

" cTi "e
" c2

!

e
"e

"cTi

pitTi()
i= t"1

j

#

!

e
"e

" cTi

i= t"1

j

#
!

O R
S
T max

()

!

O R
S
T max

()

!

O R
S
T max

()

!

O R
n()

Evaluation

Introduction to Distributed Systems

28Evaluation
• Reliability (no membership algorithm)

15

Introduction to Distributed Systems

29Evaluation
• Reliability (weak membership algorithm)

Introduction to Distributed Systems

30Evaluation
• Probability for a non-crashed process to receive a publication

(no membership algorithm)

16

Introduction to Distributed Systems

31Evaluation
• Probability for a non-crashed process to receive a publication

(weak membership algorithm)

Introduction to Distributed Systems

32Evaluation

• Latency (nb. rounds) and parasite events
– Results shown for 1 publication

1399CAMCAST

Latency 445Gossip-based Broadcast

657PMcast

Parasite
Events 3700170011200Gossip-based Broadcast

615359453PMcast

000CAMCAST

100 (j=4)100 (j=2)1000,100,10

Tj, Tj-1, …T0

17

Introduction to Distributed Systems

33

• CAMCAST enhances traditional gossip-
based multicast algorithms to support type-
based publish/subscribe

• It exploits the type hierarchy to ensure that
there is no parasite event, low memory
complexity and tunable reliability

• What about duplicates?
• Cost of the membership algorithm?
• Time decoupling?

Summary

Introduction to Distributed Systems

34

