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2Motivation

Implement reliably the type-based publish/subscribe
abstraction in a decentralized environment
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• CAMCAST
– Exploits the type hierarchy
– Memory complexity:
– Message complexity:
– Decentralized (no broker)
– No parasite event
– Tradeoff between reliability and message load
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5Background

• The problem specification relies on
the knowledge of:
– What is a publish/subscribe system?
– What is a type-based publish/subscribe

system?
– What is a (de-)centralized system?
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• Publish/Subscribe (Pub/Sub)
– Two kinds of actors:

• Subscribers (who want to receive information)
• Publishers (who send the information)

– Defines several properties:
• Time decoupling
• Space decoupling
• Flow decoupling

– Two different categories of Pub/Sub
• Topic-based
• Content-based
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8Background

• Topic-based Publish/Subscribe
– Interests of subscribers based on topics (e.g., “car”)
– Publishers send events on topics (e.g., “.car.BMW”)

• Content-based Publish/Subscribe
– Interests of subscribers based on criteria (e.g., model = “BMW”,

color = “red”, horsepower = “> 100”)
– Publishers send plain information

Pub/Sub
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10Background
• Type-based Publish/Subscribe

– Interests of subscribers based on types (e.g., “interface Car {…}”)
– Publishers send objects (e.g., new BMW(“red”,140);)

• Advantages
– Both topic-based or content-based
– Well-suited for systems implemented in an object-oriented language

• One structure to maintain
• No mapping between the high/low-level structures
• Preserves type-safety (no bad cast)

• Disadvantages
– How to filter objects?
– A subscription to a type implies being interested in all the subtypes as

well
– Interoperability between types?
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• Centralized System (e.g., HTTP server)

– Relies on one single entity to send/receive messages
– Easy to maintain, to make assumptions on the system
– Single point of failure, potential bottleneck

• Broker-based System (e.g., Usenet, Siena, “Gnutella Super Peers”)
– Relies on a set of well known servers to disseminate the messages
– Still possible to administrate, to make assumptions on the system
– No single point of failure
– Some nodes (processes) have to perform more work

• Peer-to-Peer (P2P) System (e.g., Pastry, Tapestry, Chord)
– Each process do the same amount of work
– Completely decentralized
– Very difficult to administrate, very few assumptions possible to make
– Very difficult to shutdown
– Bootstrap ?
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• Peer-to-Peer (P2P) Distributed Hashtable (DHT) Systems

– Each process is responsible for storing one or more information
– A mapping between the process and its information is created with a

hash function
• The key corresponds to the return value of the hash function
• The value corresponds to the information stored by the process

– The processes also store a routing table
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• Centralized Systems (e.g., JMS, Joram, MSMQ, CORBA)
– Single point of failure

• Replication means overhead
– High load on the main server
– Not type-based, not taking into account the type or topic hierarchy

(except Joram)
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• Broker-based systems
– Centralized or semi-centralized
– The brokers have to filter the events
– NNTP (Network News Transfer Protocol)

• Processes must subscribe to all topics of a topic hierarchy

Background

Type 
hierarchy

T0

T1

T2



9

Introduction to Distributed Systems

17

• Gossip-based algorithms (e.g., b. multicast, lpbcast, Scamp)
– Broadcast

• Parasite events
• Feasible?

– Multicast
• Multiple membership tables
• Filtering overhead
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replicas
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• P2P Multicast (e.g., Bayeux, Scribe, HiScan)
– Spanning trees

• Single point of failures
• Replication overhead

– Parasite events

Background
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• Content-based publish/subscribe (e.g., Gryphon, Siena,

Hermes, PMcast)
– Relies on brokers (filtering of events)
– Parasite events
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• Relies on the underlying
gossip-based algorithm
• Size =
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• Membership

– Super-type table
• Initialization

– Bootstrapping technique (weak. conn. overlay network, …)
– Table initialized as soon as a process interested in the direct super

type is found
– If no process is found, look in the super super community (and so on

recursively)
• Updates (pro-active algorithm)

– If k super processes are down, the current process asks one of the
alive super processes for a new view

– New super type table gossiped in the community

– Type table
• Based on the underlying gossip-based membership algorithm
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• Dissemination (gossip-based)
– Every process (receiving the message the first

time)
• Gossips the message in its community
• With a probability       , propagates the message to its

super community
– Reliability

• Gossip-based in each community
• Depends on the type of interest, but can be controlled
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• Based on SCAMP [1]

– Subscription
• Initial contact
• New subscription received

– Forwarded to other processes of the view
• Forwarded subscription received

– With a probability of 1/(1+n) keep the new subscriber
– Otherwise forward the new subscription to a random process in the view

– Unsubscription
• Done using a gossip-based mechanism

– Network partition
• Heartbeat messages

– Graph rebalancing
• Leases

[1] I. Gupta, A.-M. Kermarrec, A. J. Ganesh. Efficient and Adaptive Epidemic-style Protocols for Reliable and 
Scalable Multicast. In IEEE Transactions on Parallel and Distributed Systems, 2005
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• Gossip-based algorithm based on SCAMP

– Event disseminated to              induces a reliability of
• Three alternative approaches (all based on SCAMP)

– Gossip-based broadcast
• One community for all processes

– Gossip-based multicast
• One community per type

– Hierarchical SCAMP (HiSCAMP)
• One community per type
• Communities regrouped together
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Gossip-based
Multicast

CAMCAST

Hierarchical
gossip-based
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28Evaluation
• Reliability (no membership algorithm)
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29Evaluation
• Reliability (weak membership algorithm)
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30Evaluation
• Probability for a non-crashed process to receive a publication

(no membership algorithm)
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31Evaluation
• Probability for a non-crashed process to receive a publication

(weak membership algorithm)
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32Evaluation

• Latency (nb. rounds) and parasite events
– Results shown for 1 publication
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• CAMCAST enhances traditional gossip-
based multicast algorithms to support type-
based publish/subscribe

• It exploits the type hierarchy to ensure that
there is no parasite event, low memory
complexity and tunable reliability

• What about duplicates?
• Cost of the membership algorithm?
• Time decoupling?

Summary
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