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Our goal

We want to solve the reliable broadcast problem in 
large-scale distributed systems, using as few 
messages as possible

We want our solution to be able to adapt to 
changes in the system configuration
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Outline

Distributed systems

Large scale systems

Reliable broadcast

Probabilistic approach

Adaptation & Optimality
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Distributed systems
“A distributed system is one that stops you 
from getting any work done when a machine 
you’ve never even heard of crashes.”

Leslie Lamport quoted by Sape Müllender in Distributed 
Systems, 2nd edition. Addison-Wesley, 1993.

As slow as the slowest
As weak as the weakest

⇒ In large-scale systems,
this is even worse...
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Large scale

Many nodes (processes)

and/or

Long-distances (high-latency)

⇒ Changes occur frequently

⇒ Difficult to act globally
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Reliability

Try to solve typical problems, e.g., consensus, 
reliable broadcast, atomic commitment, etc., 
despite the occurrence of failures

A solution depends on the actual failure 
model, e.g., crash-stop, crash-recovery, 
Byzantine, etc.
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Gossiping algorithms

Principle: only talk to some of your neighbors
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Probabilistic model
Model definition

The system is defined as a graph G!=!(!,")
! = {p1, p2, .. pn} is a set processes (vertices)

" = {l1, l2, .. lm} ⊆ Π×Π is a set of links (edges)

Processes communicate by message passing

A failure probability Pi is associated with 

each process pi and a message-loss 

probability Lj is associated with each link lj. 

This probabilities set defines a configuration.
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Probabilistic reliability

Problem statement

Validity. If a process broadcasts a message!m, 
then it eventually delivers m.

Agreement. If a process delivers a message m, 
then every process eventually delivers!m with 
probability K. 

Integrity. For any message m, every process 
delivers m at most once, and only if m was 
previously broadcast by some process.
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Our goal revisited

We want to provide a solution the probabilistic 
reliable broadcast in large-scale systems

We want our solution to adapt to changes in the 
unreliability probabilities of processes & links

We want to measure the effectiveness of our 
adaptive strategy with respect an algorithm that 
minimizes the number of messages
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Optimality & adaptation

Optimality. A probabilistic reliable broadcast algorithm O is 

optimal to some configuration C w.r.t. the number of messages 

if there is no algorithm X such that processes executing X in C 

exchange fewer messages than processes executing O in C.

Adaptation. A probabilistic reliable broadcast algorithm A is 

adaptive to some configuration C if and only if the number of 

messages exchanged by processes executing A in C in response 

to a reliable broadcast is eventually equal to the number of 

messages exchanged by processes executing O in C
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Optimal algorithm (1)
Use adaptive gossiping, not random gossiping (traditional)
Example:
• Failure probability of path 1 = L
• Failure probability of path 2 = #L,

with # > 1 (path 1 more reliable than 2)

Probability K of reaching B from A

A B

…

…

path 1

path 2

A B

…

…

Approach 1

Random

A Typical vs. Adaptive Gossip Algorithm

The example presented in Section 1 consists of nodes N1 and N2 connected through two inde-
pendent paths. Path one has a loss probability of L; path two has a loss probability of αL, where
α > 1. After k0 messages are transmitted with a typical gossip algorithm, k0/2 go through path
one and k0/2 through path two. Thus, the probability that a message reaches N2 through path
one and two is, respectively, 1 − Lk0/2 and 1 − (αL)k0/2. And the probability that a message
reaches N2 through any path is 1−Lk0/2(αL)k0/2 = 1− (

√
α L)k0. With an adaptive algorithm,

all messages go through path two, which has a smaller loss probability. The probability that at
least one out of k1 messages reaches N2 is then 1 − Lk1 . We can then determine the relation
k1/k0 when both methods lead to the same probability: 1 − (

√
α L)k0 = 1 − Lk1 , which can be

developed into k1 log L = k0 log (
√

α L), resulting in k1/k0 = 0.5 logL α + 1.

B Maximum Reliability Tree Algorithm

The Maximum Reliability Tree is a spanning tree containing the most reliable paths in G =
(Π,Λ) connecting all processes in Π. Algorithm 6 implements function mrt(G,C) using a mod-
ified version of Prim’s algorithm [1]. Function mrt(G,C) returns graph (Π,Γ), where Γ ⊆ Λ
contains exactly |Π|− 1 links. C is used in mrt() to determine the reliability of the links.

Algorithm 6 Maximum Reliability Tree (MRT)

1: function mrt(G, C)
2: Γ ← ∅
3: S ← {p1}
4: while Π \ S &= ∅ do
5: R = {lu,v | lu,v ∈ Λ and pu ∈ S and pv ∈ Π \ S}
6: let lu,v ∈ R such for all lr,s ∈ R: (1−Pu)× (1−Lu,v)× (1−Pv) ≥ (1−Pr)× (1−Lr,s)× (1−Ps)
7: Γ ← Γ ∪ {lu,v}
8: S ← S ∪ {pv}
9: return (Π, Γ)

C Optimality Proof of MRT

We initially prove the following lemmata. A link in a graph between processes p and q means
that either p sends a message to q, or q sends a message to p, or both.

Lemma 1 Every optimal algorithm propagates messages according to some tree T ⊆ G.

Proof (sketch): The proof is by contradiction. Assume T is not a tree. Then there is
necessarily a cycle in T . Let R ⊆ T such that R is a cycle with the minimum number of
processes and links. Let p be a process in R that receives a message from a process not in T , or
p is the source. Since T is optimal, p clearly does not receive any messages from its left and right
neighbors. Thus, p sends messages to its both neighbors. Without loss of generality, assume q
is p’s right neighbor. So, q does not send a message to p but to its other neighbor. Applying a

17

A B

…

…

Approach 2

Adaptive

1 Introduction

Diffusing information efficiently and reliably in an environment composed of many unreliable
nodes interconnected by lossy communication links is an ability sought by many current large-
scale systems (e.g., large-scale publish-subscribe architectures). Achieving reliable and efficient
information diffusion in such contexts, however, is a complex task. Several reasons account for
this fact. First, being composed of many components, it is unrealistic to assume that nodes have
precise a priori information about the system characteristics, such as network topology and link
reliability. Second, even if such information would be available to nodes at the beginning of
the execution, the dynamic nature of a large system would render it obsolete quickly. Nodes,
for example, may often leave the system, due to failures or explicit disconnections, constantly
changing its topology. Finally, as observed by many researchers, mechanisms traditionally used
to reliably broadcast information in small- and middle-size networks do not scale well when the
system grows [2].

Many works have investigated this problem from a probabilistic perspective (e.g., [2, 4, 8,
9, 10, 11]). Probabilistic algorithms scale much better than deterministic ones and achieve high
reliability. Intuitively, every node that receives a message chooses a subset of system members,
for example among the complete set of destinations, and propagates (i.e., gossips) the message
to these nodes. The gossip nature of the algorithm combined with the possibility of crashes and
message loss implies that there are some chances that not all nodes receive the original message.
Nevertheless, provided that nodes keep gossiping the original message “long enough” it can be
guaranteed that with very high probability all nodes receive the message.

In this paper, we propose an approach to improve the performance of gossip-based algorithms
by taking into account the topology and probabilistic nature (i.e., node failure and message loss
probabilities) of the environment in which these algorithms execute. Since nodes adapt to
the environment characteristics during the execution, we call such algorithms adaptive. This
adaptive characteristic is precisely what distinguishes our approach from previous works, which
in general do not take topology and reliability aspects into account to improve performance. As
we discuss in the paper, our approach is complementary to previous optimizations proposed in
the literature (e.g., [11]) and could be combined with them.

The motivation for adaptive algorithms is performance. Large-scale systems are usually
composed of several parts with varying reliability characteristics (e.g., local-area network links
are usually more reliable than wide-area network links), and adjusting the gossip mechanism
according to the system characteristics can provide more efficient results. To better spell out
our argument, consider the following simple example in which two nodes are connected through
two independent paths. Path one loses messages with probability L, 0 < L < 1. Path two
is less reliable than path one and loses messages with probability αL, where α > 1. With a
typical gossip algorithm, which chooses paths randomly for every send, after node one sends k0

messages to node two, the probability that at least one message reaches node two is 1−(
√

α L)k0

(see Appendix A). Using an algorithm adapted to this environment, which chooses the paths
according to their reliability probabilities (and therefore always chooses the first path), node
one reaches node two with probability 1 − Lk1 after k1 messages are sent.

Consequently, to reach the same reliability as an environment-adapted algorithm, a typical
gossip algorithm has to retransmit more messages, wasting throughput and unnecessarily con-
suming system resources. Figure 1 depicts the relation between k0 and k1 as a function of α when
both algorithms achieve the same reliability. When α = 1, both paths have the same reliability
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minimize c(!m) =
|!m|∑

j=1

m[j]

subject to r(!m) =
|!m|∏

j=1

1 − λm[j]
j ≥ K

(3)

We encapsulate the solution to this optimization problem in the optimize() function, which
takes an MRT and K as input parameters and returns a vector !ms. Algorithm 1 shows how the
optimize function is used to implement our optimal probabilistic reliable broadcast.

Algorithm 1 Optimal Algorithm at pk

1: To execute broadcast(m) do
2: mrtk ← mrtk(G, C)
3: propagate(m, mrtk, pk)
4: deliver(m)

5: when receive (m, mrtj) for the first time
6: propagate(m, mrtj , pk)
7: deliver(m)

8: function propagate(m, mrtj , pk)
9: !mj ← optimize(mrtj, K)

10: for all subtree Ti ∈ Sj,k do
11: repeat !mj [i] times
12: send (m, mrtj) to pi

3.3 The optimize() Function

Algorithm 2 implements optimize() via a greedy strategy. Our algorithm works by optimizing
each individual step, hoping that the resulting global solution will be optimal. From operational
research it follows that a greedy algorithm does indeed yield an optimal solution if the problem
it solves is itself greedy (a fact we prove in Appendix D). The algorithm starts with a minimal
solution, i.e., an initial vector !m of the form (1, 1, ..., 1), and then proceeds in incremental steps.
In each step, the algorithm chooses the link lj in the MRT that maximizes the gain in terms of
the probability to reach all processes when sending one more message through lj . It then stops
when the desired probability K is reached and returns vector !m as solution. In Algorithm 2, !uj

denotes a vector in which the j-th element is 1 and the others are 0, e.g., !u2 = (0, 1, 0, ..., 0).

Algorithm 2 A Greedy Algorithm for optimize()

1: function optimize(mrt, K)
2: !m ← (1, 1, 1, · · · , 1)
3: while r(!m) < K do
4: let !uj be such that r(!m+!uj)

r(!m) is maximum
5: !m ← !m + !uj

6: return !m
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The motivation for adaptive algorithms is perfor-
mance. Large-scale systems are usually composed of
several parts with varying reliability characteristics
(e.g., local-area network links are usually more reli-
able than wide-area network links), and adjusting the
gossip mechanism according to the system character-
istics can provide more efficient results. To better spell
out our argument, consider the following simple exam-
ple in which two nodes are connected through two in-
dependent paths. Path one loses messages with proba-
bility , . Path two is less reliable than path
one and loses messages with probability , where

. With a typical gossip algorithm, which chooses
paths randomly for every send, after node one sends
messages to node two, the probability that at least one
message reaches node two is [5]. Us-
ing an algorithm adapted to this environment, which
chooses the paths according to their reliability prob-
abilities (and therefore always chooses the first path),
node one reaches node two with probability af-
ter messages are sent.

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1  2  3  4  5  6  7  8  9  10

L=0.0001
L=0.001
L=0.01

Figure 1. Adaptive vs traditional gossip

Consequently, to reach the same reliability as an
environment-adapted algorithm, a typical gossip al-
gorithm has to retransmit more messages, wasting
throughput and unnecessarily consuming system re-
sources. Figure 1 depicts the relation between and

as a function of when both algorithms achieve
the same reliability. When , both paths have the
same reliability and so, there is no difference between
the algorithms. When , even if path one is very
reliable, for example , an adaptive algo-
rithm only needs about 87% of the messages sent by a
traditional gossip algorithm to reach the same overall
reliability. Further improvements are obtained in more
complex topologies. Section 5 discusses this issue in
detail, using a more sophisticated traditional gossip al-
gorithm.

Briefly, in our approach each time a node decides
to broadcast a message, it builds a Maximum Relia-

bility Tree (MRT), a spanning tree that determines the
best way to propagate messages. To build an MRT,
nodes use information about the system topology and
the reliability of nodes and communication links. The
more precise this information, the closer to the optimal
the gossiping mechanism will be. We initially assume
that broadcasting nodes have perfectly accurate infor-
mation about the system topology and the nodes and
links reliability to build the MRT, leading to an opti-
mal reliable broadcast algorithm. Then, we replace the
full-knowledge assumption with a more realistic one
in which nodes try to approximate the topology and
the reliability parameters of the system during the ex-
ecution, adapting to changes. This results in a modu-
lar and simple design. Our optimal algorithm, based
on perfect knowledge about the system, remains the
same, while our adaptive strategy is completely encap-
sulated in a separate activity that tries to approximate
such perfect knowledge. We believe that this approach
could be used to develop other adaptive algorithms in
large-scale environments.

Our approximation strategy works as follows. First,
nodes keep exchanging their local knowledge of the
network topology with their direct neighbors. This
guarantees that each node will eventually discover the
complete network topology. Second, nodes monitor
their direct neighbors and try to assess their availabil-
ity and the reliability of the communication links in-
terconnecting them. This information is also part of the
messages exchanged between neighbors. Upon receiv-
ing a message from a neighbor, a node updates its lo-
cal information. This process combines Bayesian sta-
tistical inference and a distortion factor. The latter ap-
proximates the time ran out since the information was
created, and how far in the network it originated. We
show that if the systems’ characteristics remain sta-
ble for some time, the topology and reliability infor-
mation assessed by the nodes eventually converge to-
ward a perfect knowledge of the system. Finally, al-
though nodes keep exchanging information with their
neighbors, this data can also be opportunistically pig-
gybacked in gossip messages, saving bandwidth.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the system model and the concepts
of optimal and adaptive reliable broadcast algorithms.
Section 3 describes an optimal algorithm to solve
probabilistic reliable broadcast. Section 4 presents our
adaptive algorithm. Section 5 evaluates our approach
through simulation. Section 6 reviews related work,
and Section 7 concludes the paper.
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Optimal algorithm (2)

pi

pj

L #L~ 87%
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Maximum reliability tree

The maximum reliability tree is a spanning tree 
containing the most reliable path in G 
connecting all processes in !

all other processes in mrts(G,C), with 1 ≤ i < |Π| − 1. Then, we label li the link that leads
to pi and mi the number of messages going through li.1 Figure 2 illustrates this labeling on a
concrete example. So, we can now restate the intuitive idea of our optimal algorithm as follows:
it consists in minimizing the sum of mi necessary to reach all processes with some probability K.

ps

p2l2
! m2

p5
l5

! m5

p7
l7

! m7

p6l6

! m6

p3

l3

! m
3

p4
l4

! m4
p1l1

! m1

Figure 2: A relabeled MRT

ps

p2

p5
l5 T5 ∈ S2

p3

l3 T3 ∈ S2p1

S2

Figure 3: Direct subtrees in mrts

In order to present our algorithm, we must still introduce a few additional notions and
terms. First, we define Ti to be the subtree of mrts(G,C) with pi as root ; from this definition,
we have that Ts = mrts(G,C). Then, we define Si to be the set of direct subtrees of pi, i.e.,
Si contains any subtree whose root is a process pj directly connected to pi via link lj . Figure 3
illustrates this notion of direct subtrees on the maximum reliability tree introduced in Figure 2
(e.g., S2 = {T3, T5}). Finally, we define !mi to be a vector whose components are the numbers
of messages transiting through the links of Ti.

Given this terminology, we can now introduce the reach function: given a tree Ti and a
vector !mi, this function computes the probability that all processes in Ti are reached by at
least one message. Eq. (1) presents the reach function in a recursive form with !mi[j] being
the j-th component of vector !mi. The idea consists in multiplying the probability that at least
one message reaches the root process pj of each subtree Tj ∈ Si by the recursive probability
to reach all processes of Tj. Then, if process pj is a leaf (Tj =⊥), we have that |!mj | = 0 and
reach(⊥,!0) = 1.

reach(Ti, !mi) =

{
1 if Ti =⊥
∏

Tj∈Si
(1 − [1 − (1 − Pi) × (1 − Lj) × (1 − Pj)]!mi[j]) × reach(Tj , !mj) otherwise

(1)

Since Eq. (1) presents a typical tail-recursion form, we can also write the reach function in
pure iterative form, as shown by Eq. (2), with pred(j) being the process that precedes pj in Ti.

reach(Ti, !mi) =
n−1∏

j=1

1 − [1 − (1 − Ppred(j)) × (1 − Lj) × (1 − Pj)]!mi[j] (2)

Using the reach function, we can state our optimization problem in a concise manner, as
shown in Eq. (3), where λj expresses 1 − (1 − Ppred(j)) × (1 − Lj) × (1 − Pj).

1With this labeling, we can simplify the way we write the loss probability of each link li as Li.
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The reach function
Given a tree Ti and a vector mi , the reach function 
computes the probability that all processes in Ti are 
reached by at least one message

$

if
otherwise

(1)

(2)

3.1. Maximum Reliability Tree (MRT)

The Maximum Reliability Tree is a spanning tree
containing the most reliable paths in connecting all
processes in . We assume that the MRT is calculated
by function using a modified version of
Prim’s algorithm [1]. Both algorithm and proof of op-
timality can be found in [5]. If processes agree on the
system’s topology and configuration, they all build the
same MRT. Under more realistic assumptions, how-
ever, processes may have different views of the system
topology and configuration. In such cases, they will
build different MRT’s. To avoid ambiguity, we denote

the MRT built by some process . No-
tice that since MRT is a tree, it always contains ex-
actly links.

3.2. From MRT to Optimal Algorithm

Intuitively, given a sender , our optimal algorithm
uses to determine the minimum necessary
number of messages that must transit through each
edge in order to reach all processes with probability

. To state this idea more formally, we introduce some
additional notation.

Let be the root of the tree, all other pro-
cesses in , with ,
the link that leads to , and the number of mes-
sages going through . Moreover, let be the sub-
tree of with as root—from this defini-
tion, —and let be the set of di-
rect subtrees of , i.e., contains any subtree whose
root is a process directly connected to via link .
Finally, we define to be a vector whose compo-
nents are the numbers of messages transiting through
the links of .

Given a tree and a vector , the reach func-
tion computes the probability that all processes in
are reached by at least one message. Eq. (1) presents
the function in a recursive form with be-
ing the -th component of vector . The idea consists
in multiplying the probability that at least one message
reaches the root process of each subtree by

the recursive probability to reach all processes of .
Then, if process is a leaf ( ), we have that

and .
Since Eq. (1) presents a typical tail-recursion form,

we can also write the function in pure iterative
form, as shown by Eq. (2), with being the pro-
cess that precedes in .

Using the function, we can state
our optimization problem in a concise man-
ner, as shown in Eq. (3), where expresses

.

minimize

subject to

(3)

We encapsulate the solution to this optimization
problem in the function, which takes an
MRT and as input parameters and returns a vec-
tor . Algorithm 1 shows how the optimize function
is used to implement our optimal probabilistic reliable
broadcast.

Algorithm 1 Optimal Algorithm at
1: To execute broadcast do
2:
3:
4: deliver

5: when receive ( , ) for the first time
6:
7: deliver

8: function
9:

10: for all subtree do

11: repeat times

12: send ( , ) to
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(2)
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timality can be found in [5]. If processes agree on the
system’s topology and configuration, they all build the
same MRT. Under more realistic assumptions, how-
ever, processes may have different views of the system
topology and configuration. In such cases, they will
build different MRT’s. To avoid ambiguity, we denote

the MRT built by some process . No-
tice that since MRT is a tree, it always contains ex-
actly links.

3.2. From MRT to Optimal Algorithm

Intuitively, given a sender , our optimal algorithm
uses to determine the minimum necessary
number of messages that must transit through each
edge in order to reach all processes with probability

. To state this idea more formally, we introduce some
additional notation.

Let be the root of the tree, all other pro-
cesses in , with ,
the link that leads to , and the number of mes-
sages going through . Moreover, let be the sub-
tree of with as root—from this defini-
tion, —and let be the set of di-
rect subtrees of , i.e., contains any subtree whose
root is a process directly connected to via link .
Finally, we define to be a vector whose compo-
nents are the numbers of messages transiting through
the links of .

Given a tree and a vector , the reach func-
tion computes the probability that all processes in
are reached by at least one message. Eq. (1) presents
the function in a recursive form with be-
ing the -th component of vector . The idea consists
in multiplying the probability that at least one message
reaches the root process of each subtree by

the recursive probability to reach all processes of .
Then, if process is a leaf ( ), we have that

and .
Since Eq. (1) presents a typical tail-recursion form,

we can also write the function in pure iterative
form, as shown by Eq. (2), with being the pro-
cess that precedes in .

Using the function, we can state
our optimization problem in a concise man-
ner, as shown in Eq. (3), where expresses

.

minimize

subject to

(3)

We encapsulate the solution to this optimization
problem in the function, which takes an
MRT and as input parameters and returns a vec-
tor . Algorithm 1 shows how the optimize function
is used to implement our optimal probabilistic reliable
broadcast.

Algorithm 1 Optimal Algorithm at
1: To execute broadcast do
2:
3:
4: deliver

5: when receive ( , ) for the first time
6:
7: deliver

8: function
9:

10: for all subtree do

11: repeat times

12: send ( , ) to
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Optimization problem

With %j = 1 & (1 & Ppred(j)) ' (1 & Lj) ' (1 & Pj) , we 

end up with the following optimization problem:

if
otherwise

(1)

(2)

3.1. Maximum Reliability Tree (MRT)

The Maximum Reliability Tree is a spanning tree
containing the most reliable paths in connecting all
processes in . We assume that the MRT is calculated
by function using a modified version of
Prim’s algorithm [1]. Both algorithm and proof of op-
timality can be found in [5]. If processes agree on the
system’s topology and configuration, they all build the
same MRT. Under more realistic assumptions, how-
ever, processes may have different views of the system
topology and configuration. In such cases, they will
build different MRT’s. To avoid ambiguity, we denote

the MRT built by some process . No-
tice that since MRT is a tree, it always contains ex-
actly links.

3.2. From MRT to Optimal Algorithm

Intuitively, given a sender , our optimal algorithm
uses to determine the minimum necessary
number of messages that must transit through each
edge in order to reach all processes with probability

. To state this idea more formally, we introduce some
additional notation.

Let be the root of the tree, all other pro-
cesses in , with ,
the link that leads to , and the number of mes-
sages going through . Moreover, let be the sub-
tree of with as root—from this defini-
tion, —and let be the set of di-
rect subtrees of , i.e., contains any subtree whose
root is a process directly connected to via link .
Finally, we define to be a vector whose compo-
nents are the numbers of messages transiting through
the links of .

Given a tree and a vector , the reach func-
tion computes the probability that all processes in
are reached by at least one message. Eq. (1) presents
the function in a recursive form with be-
ing the -th component of vector . The idea consists
in multiplying the probability that at least one message
reaches the root process of each subtree by

the recursive probability to reach all processes of .
Then, if process is a leaf ( ), we have that

and .
Since Eq. (1) presents a typical tail-recursion form,

we can also write the function in pure iterative
form, as shown by Eq. (2), with being the pro-
cess that precedes in .

Using the function, we can state
our optimization problem in a concise man-
ner, as shown in Eq. (3), where expresses

.

minimize

subject to

(3)

We encapsulate the solution to this optimization
problem in the function, which takes an
MRT and as input parameters and returns a vec-
tor . Algorithm 1 shows how the optimize function
is used to implement our optimal probabilistic reliable
broadcast.

Algorithm 1 Optimal Algorithm at
1: To execute broadcast do
2:
3:
4: deliver

5: when receive ( , ) for the first time
6:
7: deliver

8: function
9:

10: for all subtree do

11: repeat times

12: send ( , ) to
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The optimize function
We use a greedy algorithm, since our 
optimization problem is itself greedy

3.3. The Function

Algorithm 2 implements via a greedy
strategy. From operational research it follows that a
greedy algorithm does indeed yield an optimal solu-
tion if the problem it solves is itself greedy (a fact
proved in [5]). The algorithm starts with a minimal so-
lution, i.e., an initial vector of the form ,
and then proceeds in incremental steps. In each step,
the algorithm chooses the link in the MRT that max-
imizes the gain in terms of the probability to reach all
processes when sending one more message through .
It then stops when the desired probability is reached
and returns vector as solution. In Algorithm 2,
denotes a vector in which the -th element is 1 and the
others are 0, e.g., .

Algorithm 2 A Greedy Algorithm for
1: function
2:
3: while do

4: let be such that is maximum
5:
6: return

4. An Adaptive Algorithm

4.1. Overview of the Algorithm

Our adaptive protocol is based on Algorithm 1,
used by the optimal protocol. The difference lies in
the knowledge processes have about the topology

and the configuration . In the optimal proto-
col, this knowledge is accurate; in the adaptive pro-
tocol, it is an approximation. Thus, with the adaptive
protocol, in addition to executing Algorithm 1, pro-
cesses are constantly trying to approximate and
based on what they observe from the system. If
and remain stable for “long enough”, our adaptive
protocol converges toward the optimal one.

Network topology ( ). Initially, processes know only
the links connecting them directly to their neighbors—
notice that we do not require processes to agree on the
system membership at any given time. To share this
knowledge, each process periodically sends heartbeat
messages containing its view of the topology to all its
neighbors. When receiving a heartbeat, a process up-
dates its topology knowledge with the information re-
ceived. The next time this process propagates its topol-
ogy view, it will include the recently added informa-
tion. If the network topology remains stable and par-

titions are temporary, even in the presence of process
crashes and message losses processes eventually learn
the global system topology.

Reliability configuration ( ). Heartbeats are also
used by processes to determine the reliability of the
system and to share this information with other pro-
cesses. The probability of crashing is approxi-
mated by the process itself by periodically reading the
value of its local clock and storing it in stable stor-
age. When the process recovers from a crash, it reads
the last clock value from stable storage and com-
pares it to the current time. The probability of failure
is proportional to the number of intervals missed dur-
ing some sufficiently large amount of time. When
a process receives a heartbeat from some neigh-
bor , it updates its local estimate of ’s failure prob-
ability by simply adopting the value received from

. In addition, adjusts the message loss probabil-
ity of link . If does not receive any heartbeats
from for some time, increases the failure prob-
ability of and the message loss probability of .
To approximate the reliability of non-neighbor pro-
cesses and remote links, only relies on informa-
tion received from its neighbors. When receives a
heartbeat with from its neighbor , it must de-
cide which estimates to keep, i.e., its current ones or
the ones in . Intuitively, the idea is to choose the
less distorted estimates. This implies that each esti-
mate has a distortion factor, which expresses how ac-
curate the estimate is: the higher the factor, the less
accurate the estimate. As explained in next sec-
tion, two factors tend to erode an estimate accuracy:
time and distance.

4.2. A Detailed Approximation Algorithm

Algorithm 4 presents our solution to approximate
the knowledge some process has about and . To
simplify the algorithm, we assume that knows ,
the set of processes in the system, right from the
start—this assumption is not essential and can be re-
moved at the cost of some additional complexity in the
algorithm.1 Thus must approximate and . In Al-
gorithm 4, and denote the view has on and

, respectively, at any given time.

Data structures. The two main data structures of Al-
gorithm 4 are and . While has exactly the
same structure as (i.e., a set of links), is more
complex than . Hereafter denotes , the

1 Additional complexity here means using dynamic data struc-
tures instead of static ones.
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Optimal algorithm

if
otherwise

(1)

(2)

3.1. Maximum Reliability Tree (MRT)

The Maximum Reliability Tree is a spanning tree
containing the most reliable paths in connecting all
processes in . We assume that the MRT is calculated
by function using a modified version of
Prim’s algorithm [1]. Both algorithm and proof of op-
timality can be found in [5]. If processes agree on the
system’s topology and configuration, they all build the
same MRT. Under more realistic assumptions, how-
ever, processes may have different views of the system
topology and configuration. In such cases, they will
build different MRT’s. To avoid ambiguity, we denote

the MRT built by some process . No-
tice that since MRT is a tree, it always contains ex-
actly links.

3.2. From MRT to Optimal Algorithm

Intuitively, given a sender , our optimal algorithm
uses to determine the minimum necessary
number of messages that must transit through each
edge in order to reach all processes with probability

. To state this idea more formally, we introduce some
additional notation.

Let be the root of the tree, all other pro-
cesses in , with ,
the link that leads to , and the number of mes-
sages going through . Moreover, let be the sub-
tree of with as root—from this defini-
tion, —and let be the set of di-
rect subtrees of , i.e., contains any subtree whose
root is a process directly connected to via link .
Finally, we define to be a vector whose compo-
nents are the numbers of messages transiting through
the links of .

Given a tree and a vector , the reach func-
tion computes the probability that all processes in
are reached by at least one message. Eq. (1) presents
the function in a recursive form with be-
ing the -th component of vector . The idea consists
in multiplying the probability that at least one message
reaches the root process of each subtree by

the recursive probability to reach all processes of .
Then, if process is a leaf ( ), we have that

and .
Since Eq. (1) presents a typical tail-recursion form,

we can also write the function in pure iterative
form, as shown by Eq. (2), with being the pro-
cess that precedes in .

Using the function, we can state
our optimization problem in a concise man-
ner, as shown in Eq. (3), where expresses

.

minimize

subject to

(3)

We encapsulate the solution to this optimization
problem in the function, which takes an
MRT and as input parameters and returns a vec-
tor . Algorithm 1 shows how the optimize function
is used to implement our optimal probabilistic reliable
broadcast.

Algorithm 1 Optimal Algorithm at
1: To execute broadcast do
2:
3:
4: deliver

5: when receive ( , ) for the first time
6:
7: deliver

8: function
9:

10: for all subtree do

11: repeat times

12: send ( , ) to
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Performance of the 
optimal algorithm
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Figure 2. Algorithms with (a) reliable links and (b) reliable processes

that all processes have the same crash probability
and that all links have the same loss probability .
This choice counts against our adaptive algorithm be-
cause contrary to traditional gossip, our solution se-
lects the most reliable links. Nevertheless, even under
such unfavorable conditions, the results provide strong
evidence about the benefits of an adaptive strategy.

We performed experiments with 100 processes for
several network topologies. In the minimal network
connectivity setup each process had two neighbors
(i.e., the network is a ring). The connectivity was in-
creased until each process had 20 neighbors. Heartbeat
messages were 50K bytes long and contained a small
Bayesian network per process, information about the
loss probability of links, and some additional fields as
described in Section 4.2.

Our results were compared to a reference algo-
rithm, implementing a typical gossip-based reliable
broadcast. The execution proceeds in steps, and in
each step processes forward data messages to their
neighbors. The execution continues until all processes
have been reached with probability 0.9999—the ex-
act number of steps needed depends on the parame-
ters of a particular setup and were determined interac-
tively. As a simple optimization, processes acknowl-
edge the receipt of data messages. Thus, when choos-
ing the neighbors to which some data message will
be forwarded, each process never forwards to its
neighbor if (a) it has previously received from
, or (b) it has received an acknowledgment message

from for .

In Figure 2 we compare the adaptive and the refer-
ence algorithms. In Figure 2(a), we varied the crash
probability while assuming that links were reliable
(i.e., ); in Figures 2(b) we varied the message
loss probability while assuming that processes were
reliable (i.e., ). In both figures, the y-axis shows

the ratio between the number of messages sent by the
reference algorithm and by the adaptive algorithm to
reach all processes with the same probability. For ex-
ample, when the connectivity is 16 and , the
adaptive algorithm needs 4 times fewer messages than
the reference algorithm to reach all processes with the
same probability. The adaptive algorithm provides bet-
ter results as the connectivity of the network increases.
This is due to the fact that in low-connected graphs in
which processes and link have the same reliability, the
adaptive algorithm does not have much room for im-
proving the forwarding mechanism.

Figure 3 shows the effort needed to converge (i.e.,
all processes in the system learn the reliability proba-
bilities) in number of messages per link. This parame-
ter is twice the number of heartbeat messages sent by
a process through a link until all processes converge.
For example, when the network connectivity is 6 and

, about 400 heartbeat messages will be sent
per process through a link. If heartbeats are sent each 1
second, the adaptive mechanism will converge in about
7 minutes. Two factors amount for the convergence
time: the time it takes for the Bayesian networks to find
the right probability interval accurately—in the sim-
ulations we used 100 probability intervals—and the
time it takes for this information to reach all processes.

Connectivity has a double effect on convergence.
On the one hand it helps convergence since it reduces
the time it takes for the inferred information to arrive
at all processes. On the other hand, it hurts conver-
gence since as more links are added, more informa-
tion has to be inferred. We have also observed that low
probabilities are easier to be inferred by our Bayesian
model than high probabilities. In the case of links, the
effects are more noticeable since links are more nu-
merous than processes. This can be observed in Fig-
ure 3(b) when .
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From optimal to adaptive
Our algorithm is proven to be optimal when it has exact 
knowledge of the system configuration

By replacing such (unrealistic) exact knowledge with a module 
that approximates the  changing configurations, we get an 
adaptive algorithm

As soon as the approximation module converged towards the 
actual system configuration, we are again optimal

Optimal algorithm

Adaptive module
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Adaptive algorithm
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Bayesian inference (1)

Algorithm 4 Approximating at process
1: INITIALIZATION:

2: for all do

3:
4:
5:
6:
7:
8:

9: neighbors
10: for all do

11:
12:

13: TO UPDATE :

14: every do :
15:
16: for all do

17: send to

18: when received from do Event 1

19:

20:
21: if then
22:
23: if then

24: if then

25:
26: for all do

27:
28: for all do
29:
30: for all do

31:
32:
33:

Event 2

34: when not[updated , , in the last ] do
35:
36: if then

37:
38:
39:

40: every do Event 3

41:
Event 4

42: when recovering from a crash lasting do

43:

4.3. Bayesian Networks

To estimate the failure probability of some pro-
cess or link, builds a list of probability intervals
and maintains for each interval a belief that the fail-
ure probability lies within the corresponding interval.
In doing so, actually builds a small Bayesian net-
work , where is the belief and is the fail-
ure probability. Functions ,

and
are responsible for managing such Bayesian net-
works (see Algorithm 5).

Algorithm 5 Reliability beliefs management
1: Initialization
2: precision of probabilistic intervals

3: function
4: with do

5: for all do

6: probabilistic intervals

7: with equal initial beliefs

8: function
9: with repeat times

10: for all do

11:

12: function
13: with repeat times

14: for all do

15:

Let be the event associated with the crash of
some process, the message loss of some link, or merely
the suspicion that such a crash or loss occurred. We
denote by the -th probability interval asso-
ciated with at , and by the corresponding
belief, i.e., the probability that the “real” failure proba-
bility in lies within the -th interval. In Algorithm 5
we consider failure probability intervals (Line 2),
initially associated to identical beliefs (Lines 5 to 7).

To compute the new degree of belief on
a given interval , based on the observation of
an event , uses basic conditional probabil-
ity and Bayes the-
orem given by Eq. (4). This equation is used to com-
pute the belief a posteriori on (denoted by

), which will be the new value of af-
ter event has been observed by . This is pre-
cisely what function of
Algorithm 5 does (Lines 8 to 11). As shown in func-
tion , a similar computation
is performed to account for the absence of fail-
ure (Lines 12 to 15).

(4)

5. Simulation Results

In order to evaluate the performance of our adaptive
algorithm we built a discrete-event simulation model
and conducted several experiments with it. Our model
simulates the behavior of processes and links in a dis-
tributed system, associating a crash probability to each
process and a loss probability to each link. To sim-
plify the interpretation of our results, we considered
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Bayesian inference (2)

Algorithm 5 Reliability beliefs management

1: Initialization
2: U ← 100 {precision of probabilistic intervals}

3: function initializeReliability(estimate)
4: with estimate do
5: for all u = 1..U do
6: PF |B[u] ← 2u−1

2U {probabilistic intervals}
7: PB [u] ← 1

U {with equal initial beliefs}

8: function decreaseReliability(estimate,factor)
9: with estimate repeat factor times

10: for all u = 1..U do

11: PB [u] ← PB [u]×PF |B [u]
PU

v=1 PB [v]×PF |B [v]

12: function increaseReliability(estimate,factor)
13: with estimate repeat factor times
14: for all u = 1..U do

15: PB [u] ← PB [u]×(1−PF |B [u])
PU

v=1 PB [v]×(1−PF |B [v])

Table 1 illustrates how Bayesian approximation works. The example starts with an initial
configuration with equal a priori beliefs for U = 5 (case a). Then, it shows how the beliefs
have been adapted after a suspicion (case b). Since the real probability must fall into some
probability interval of Table 1, we have that

∑
u Ck[pi].PB [u] = 1 is an invariant of Algorithm 4.

u Ck[pi].PF |B[u] Ck[pi].PB [u]
1 [0.0 , 0.2) 0.2
2 [0.2 , 0.4) 0.2
3 [0.4 , 0.6) 0.2
4 [0.6 , 0.8) 0.2
5 [0.8 , 1.0] 0.2

(a) Initial configuration

u Ck[pi].PF |B[u] Ck[pi].PB [u]
1 [0.0 , 0.2) 0.04
2 [0.2 , 0.4) 0.12
3 [0.4 , 0.6) 0.20
4 [0.6 , 0.8) 0.28
5 [0.8 , 1.0] 0.36

(b) After a failure suspicion

Table 1: Adapting failure beliefs after a suspicion

5 Simulation Results

In order to evaluate the performance of our adaptive algorithm we built a discrete-event simu-
lation model and conducted several experiments with it. Our model simulates the behavior of
processes and links in a distributed system, associating a crash probability to each process and
a loss probability to each link. To simplify the interpretation of our results, we considered that
all processes have the same crash probability P and that all links have the same loss probability
L. This choice counts against our adaptive algorithm because contrary to traditional gossip, our
solution selects the most reliable links. Nevertheless, even under such unfavorable conditions,
the results provide strong evidence about the benefits of an adaptive strategy.

We performed experiments with 100 processes for several network topologies. In the min-
imal network connectivity setup each process had two neighbors (i.e., the network is a ring).
The connectivity was increased until each process had 20 neighbors. Heartbeat messages were
50K bytes long and contained a small Bayesian network per process, information about the loss
probability of links, and some additional fields as described in Section 4.2.

Our results were compared to a reference algorithm, implementing a typical gossip-based
reliable broadcast. The execution proceeds in steps, and in each step processes forward data
messages to their neighbors. The execution continues until all processes have been reached with
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Adaptation convergence
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Figure 3. Convergence with (a) reliable links and (b) reliable processes

To evaluate the scalability of our adaptive algo-
rithm, we executed simulations using two types of net-
work topologies: a ring (i.e., each process connected
to two others) and a random tree. In both cases about
100 graphs were generated for each experiment (see
Figure 4). The ring is a worst-case topology in which
messages should traverse in the average half the pro-
cesses in the network. In such a case, the convergence
time increases linearly with the size of the system. For
random trees, however, the convergence time is almost
constant . In practical scenarios, the topology is ex-
pected to be closer to a tree than to a ring.
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Figure 4. Algorithm scalability

6. Related Work

Epidemic protocols, also known as gossip pro-
tocols, were introduced in the context of replicated
database consistency management [3]. They were first
used to implement reliable broadcast in large net-
works in [2]. This latter protocol proceeds in two
phases. In the first phase, processes use an unreli-
able gossip-based dissemination of information to

transmit messages; in the second phase, message
losses are detected and repaired via re-transmissions.
Many variations of this protocol have been pro-
posed, mostly orthogonal to the ideas described in
our paper. Improved buffering techniques, for ex-
ample, have been considered in [7] and [10]. In
both cases, the goal is to limit the amount of buffer-
ing required for a message. While the former work
requires a full knowledge about the system mem-
bership, the latter does not. The approach in [10] is
mainly concerned with process recovery. Alterna-
tive approaches have considered recovering messages
from the sender’s log [13]. In [7], heuristics are pre-
sented to garbage collect messages. It aims to identify
”aging” buffered messages.

The only adaptive gossip-based reliable broadcast
protocol we are aware of is [12]. In this protocol, pro-
cesses adjust the message rate emission to the amount
of resources available (i.e., buffer size) and to the
global level of congestion in the system. Processes pe-
riodically evaluate the available resources in the sys-
tem and from time to time exchange the minimum
buffer size. Senders then reduce their gossip rate ac-
cording to their estimates about the mean number of
messages in a process’ buffer. We are not concerned
with adjusting sending rates in this work, and the ideas
described in this work could be easily integrated in our
algorithm. Control information, for example, used in
both algorithms could be combined into a single mes-
sage.

In [4] and [6] the authors show how to implement a
gossip-based reliable broadcast protocol in an environ-
ment in which processes have a partial view of the sys-
tem membership. Our approach does not require pro-
cesses to know all the system members or the topol-
ogy connecting them. This information, however, al-
lows processes to improve their gossiping.
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