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Distributed systems

“As long as there were no machines, programming was no problem 

at all; when we had a few weak computers, programming became a 

mild problem and now that we have gigantic computers, 

programming has become an equally gigantic problem. In this 

sense the electronic industry has not solved a single problem, it has 

only created them - it has created the problem of using its products.”

Edgster Dijkstra, The Humbel Programmer. 
Communication of the ACM, vol. 15, no. 10. 

October 1972. Turing Award Lecture.
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Our approach

The practitioner needs the theoretical perspective to 
understand the implicit assumptions hidden in the 
technologies, and their consequences

The theoretician needs the practical perspective to validate 
that theoretical models, problems & solutions work in 
accordance to existing technologies

To achieve this, we approached distributed systems 
through trhee complementary views:

The model view
The interaction view
The algorithm view
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The big picture
When implementing a distributed program, you will 
always end up writing some algorithm. In doing so, 
you will have to answer the following questions:

What problem am I trying to solve?
What model do I assume?
What interaction do I use? model

algorithm interaction

assumes

uses

problem

solves
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Two-Phase Commit (2PC)

Problem:! atomic commitment
Interaction:! reliable message passing
Model:! synchronous crash-recovery
Algorithm:! 2-phase commit protocol

Atomic commitment

Here are the actual
two phases
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A few observations
Most atomic commitment protocols guarantee that 
safety will always hold, but not necessarily liveness
Liveness is compromised when failures prevent the 
Termination property from holding; in such a case,
we say that the protocol is blocking
In the crash-recovery model, a blocking protocol cannot 
terminate until crashed processes have recovered
Upon recovery, a failed process reads it log file from 
stable storage and acts according to its last operation
In atomic commitment terms, this implies that the 
recovering process should be able to decide commit or 
abort from what it finds in its log file
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Agreement problems

The atomic commitment is an instance 
of"a more general agreement problem,
also known as the consensus problem

There exists many variants of the 
consensus problem, which are not 
necessarily equivalent to each other
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Problem specification
The atomic commitment problem corresponds to the following consensus 
variant, with the transaction manager and data managers being processes, 
value 1 corresponding to commit and value 0 corresponding to abort

Agreement! (safety property)

No two processes decide on different values

Validity! (safety property)

• If any process starts with 0, then 0 is the only possible decision
• If all processes start with 1 and there are no failures, then 1 is

the only possible decision

Termination ! (liveness property)

Weak:! if there are no failures, then all processes eventually decide
Strong:! all non faulty processes eventually decide
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Two-phase commit (2PC)
Premises: 
• synchronous model, reliable channels
• crash-recovery failures of data managers Di

• transaction manager T acts as coordinator but also votes

Phase 1:
• each Di process sends its initial value to process T
• any process Di whole initial value is 0 decides 0
• if process T times out waiting for some initial value, it 

decides"0; otherwise it decides for the minimum of all values

Phase 2:
• process T broadcasts its decision to all Di processes
• any process that has not yet decided adopts this decision

What Termination property is ensured?
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Upon recovery (2PC)

Premises: 

• operations are logged onto stable storage before execution

• the logging of an operation and its execution are atomic

Recovery of a Di process:

Di reads its log file from stable storage

! if it voted 0 or if it crashed before sending
its vote to T, it aborts

! otherwise, it asks T for the outcome of the
transaction and acts accordingly
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Two-Phase Commit (2PC)

Limits of 2PC

!

Questions:! what happens if the transaction manager crashes 
before sending the final commit or abort message?
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If process T crashed...

Case A:! some process has decided 0

⇒�it knows that T has either not decided or that it has decided 0

⇒�it"can inform all other Di process that it is safe to decide 0

Case B:! all Di processes have voted 1

⇒�no decision is possible (blocking) :

1. T might have decided 0, so deciding 1 violates Agreement

2. T might have decided 1, so deciding 0 violates Agreement
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Premises: 
• synchronous model, reliable channels
• crash-recovery failures of any process
• transaction manager T acts as coordinator but also votes

Phase 1:
• each Di process sends its initial value to process T
• any process Di whole initial value is 0 decides 0
• if process T times out waiting for some initial value or receives 0

from some process, it decides"0; otherwise it goes to ready state
Phase 2:
• if process T decided 0, it broadcasts its decision to all Di processes,

so any process that has not yet decided adopts this decision
• if process T is ready state, it broadcasts a pre-commit message,

so all processes go to ready state and send an ack message to T 
• if process T crashes, the other processes time out and decide 0

Phase 3:

• if process T receives ack messages from all processes, it decides 1 and broadcast its 
decision, so all processes decide 1 as well

• if process T time out waiting for some ack message, it decides 0 and broadcast its 
decision, so all processes decide 0 as well

• if process T crashes, the other processes time out and decide 1

Three-phase commit (3PC)
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Upon recovery (3PC)
Premises: same as 2PC

Recovery of a Di process:
Di reads its log file from stable storage

! if it voted 0 or if it crashed before acknowledging
the pre-commit message, it aborts

! otherwise, it asks T for the outcome of the transaction 
and acts accordingly

Recovery of T:
T reads its log file from stable storage:

! if it crashed before receiving all ack messages, it aborts

! otherwise, it commits
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If T fail in Phase 3, no other process is allowed to fail

Problematic scenario in Phase 3:
1. some Di crashes before acknowledging pre-commit message
2. T decides 0 but crashes before broadcasting its decision
3. all other Di time out waiting for the decision and decide 1

⇒  Agreement is violated!

Why not have all other Di decide 0 then?

Limits of 3PC
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Further problems
Unrealistic assumptions: synchronous processes
and network, no network partitions
⇒ reliable failure detection

Drastic limitation on failures: see previous slide
⇒ T is a single point of failure/vulnerability

Hidden assumptions: logging an action & executing 
it must be atomic, deciding & broadcasting the 
decision must also be atomic
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Back to consensus
If we express the atomic commitment protocol in 
terms of some consensus module, we can benefit 
from all the algorithmic work done on the subject
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Two-Phase Commit (2PC)
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Consensus & asynchrony
Consensus cannot be solved in asynchronous systems; this is
the famous Fisher-Lynch-Paterson (FLP) impossibility result

For atomic commitment, the FLP result implies that we cannot 
answer the question “how long should we wait before aborting?”

! if we do not wait long enough, safety is at stake

! if we wait forever, liveness is at stake

Real distributed systems are partially synchronous, i.e., they 
are mostly synchronous but they experience asynchronous 
periods every now and then. So, if we can solve a given problem 
during a synchronous period, that’s all we need.
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Failure detectors
A failure detector is a module that provides each process with 
hints about possible crashes of other processes

A failure detector encapsulates time assumptions and turns 
them into logical properties: completeness & accuracy. For 
example, the eventually strong failure detector (♢S) ensures:

Strong Completeness. Eventually, every process that
crashes is permanently suspected  by every correct process.
Eventual Weak Accuracy. Eventually, there exists a correct 
process that is never suspected by any correct process

The actual implementability of a given failure detector 
depends on the underlying timing assumption
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Failure detectors & consensus
The ♢S failure detector was proven to be the weakest

failure detector to solve consensus, provided that there are 
less than half incorrect processes
The algorithm relies on the rotating coordinator 
paradigm, where a different process has the opportunity 
to become the next coordinator each time the current 
coordinator is suspected to have crashed

The Strong Completeness of ♢S ensures that no process

will wait forever for the decision of a crashed coordinator
The Eventual Weak Accuracy of ♢S ensures that at least

one of the coordinators will be able to decide
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Fault-tolerant broadcasts

The ability to broadcast messages with some 
dependable guarantees is a key issue when 
building fault-tolerant distributed systems

Besides the reliable delivery of messages, 
there ordering is another aspect of this issue

For example, if messages represents updates 
sent to the replicas of a database, reliable 
delivery and total ordering are necessary
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Reliable broadcast (basis)
In the following, we assume that each message m includes (1) the identity of 
the sender, written sender(m) , and (2) a sequence number, denoted seq#(m). 
These two fields are what makes each message unique.

Validity
If a correct process broadcasts a message m, then it eventually delivers m

Agreement
Standard:!If a correct process delivers a message m, then all correct
! ! processes eventually deliver m
Uniform:! If a process delivers a message m, then all correct
! ! processes eventually deliver m

Integrity !
For any message m, every correct process delivers m at most once, and only if 
m was previously broadcasted by sender(m)
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Fifo broadcast

To obtain the specification of fifo broadcast, we simply add 
the following fifo order property to the aforementioned 
validity, agreement and integrity properties. That is,
fifo broadcast !"reliable broadcast + fifo order

Fifo order
If a process broadcasts a message m before it broadcasts a 
message m’, then no correct process delivers m’ unless it has 
previously delivered m
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To obtain the specification of atomic broadcast, we simply add 
the following total order property to the aforementioned 
validity, agreement and integrity properties. That is,
atomic broadcast !"reliable broadcast + total order

Total order
If correct processes p and q both deliver messages m and m’,
then p delivers m before m’ if and only if q delivers m before m’

Question: does this imply Fifo Order ?

Atomic broadcast (total order)
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Causal broadcast

Very often, perfectly synchronized clocks are 
not available, due to drifts, impreciseness, etc.

However, physical time of not necessarily 
what we need: only causality relationships 
between events often need to be preserved

In this context, an event is typically the 
sending or the reception of some message
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Causality relationship (1)

In order to specify the causal broadcast, we must 
first introduce a partial order relationship

Let !l be a partial order on the set of events 
expressing direct dependencies such that:
• Let e1 and e2 be two events occurring at the same process p:

e1 !l  e2  if and only if  e1 happened before  e2  at process p
• In particular, we have that for each message m:

send(m) !l  receive(m)
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Causality relationship (2)

We now define the causal ordering relationship, 
noted !C , as the transitive closure of  !l 

Note that !C  also defines a partial order and is 
sometimes called the happened-before relationship

Let e1 and e2 be two events occurring anywhere in 
the system, i.e., possibly at two distinct processes, 
we say that e1 causally precedes e2 if and only if 
we have e1 !C  e2
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Illustration of causality

here we have  e1 !C  e5 , via e2 , e3 and e4

however, e1 and e0  are concurrent, i.e., they are 
not ordered (hence !C  is a partial order)

pi

pj

pk

e1 e2

e3 e4

e5e0
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We now specify causal broadcast by simply adding the 
causal order property given hereafter (based on the happened-
before partial order) to the reliable broadcast properties

Causal order
If the broadcast of a message m causally precedes the broadcast 
of a message m’, then no correct process delivers m’ unless it has 
previously delivered m

So: causal broadcast !"reliable broadcast + causal order

Causal broadcast (partial order)
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We can also see causal order as a generalization of fifo order. 
In this case, we define causal broadcast by adding the local 
order property given hereafter to the fifo broadcast properties

Local order
If a process broadcasts a message m and a process delivers m 
before broadcasting m’, then no correct process delivers m’
unless it has previously delivered m.

So: causal broadcast !"fifo broadcast + local order

Causal broadcast (alternative)
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Relationship among broadcasts
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Implementing broadcasts
There exists numerous algorithms solving the 
various broadcast primitives we presented

The algorithms we are presenting hereafter are 
taken from two major papers:

[Hadzilacos93]  Hadzilacos, V. and Toueg, S. 1993. Fault-tolerant broadcasts and 
related problems. In Distributed Systems (2nd Ed.), S. Mullender, Ed. Acm Press Frontier 
Series. ACM Press/Addison-Wesley Publishing Co., New York, NY, 97-145.

[Chandra96]  Chandra, T. D. and Toueg, S. 1996. Unreliable failure detectors for reliable 
distributed systems. J. ACM 43, 2 (Mar. 1996), 225-267.

These algorithms all assume a partially 
synchronous system and might not be optimal
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Reliable broadcast

Comment: This is typically a flooding algorithm

[Hadzilacos93] [Chandra96]
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Fifo broadcast

[Hadzilacos93]
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Causal broadcast

[Hadzilacos93]

Comments:
rcntDelvrs is the sequence of messages that p delivered since 
it previous causal broadcast
|| is the concatenation operator on sequences of messages
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The atomic broadcast can be reduced to the consensus problem. Note however 
that this version of consensus is different from the version we used when 
discussing atomic commitment. This second version is defined in terms of 
two primitives, propose(v) and decide(v), with v some value. When some 
process executes propose(v), we say that it proposes value v, and when it 
executes decides(v), we say it decices value v.

Termination.  Every correct process eventually devices on some value.

Uniform integrity.  Every process decides at most once.

Agreement. No two correct processes decide differently.

Uniform validity. If a process decides v, then v was proposed by some process. 

Back to consensus...
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Atomic broadcast

[Hadzilacos93] [Chandra96]

Comment: consensus execution are numbered (k)
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