
Distributed
Algorithms

Benoît Garbinato

1Monday, May 22, 2006

Distributed Algorithms © Benoît Garbinato

Distributed systems

“As long as there were no machines, programming was no problem

at all; when we had a few weak computers, programming became a

mild problem and now that we have gigantic computers,

programming has become an equally gigantic problem. In this

sense the electronic industry has not solved a single problem, it has

only created them - it has created the problem of using its products.”

Edgster Dijkstra, The Humbel Programmer.
Communication of the ACM, vol. 15, no. 10.

October 1972. Turing Award Lecture.

distributed

distributed

distributednetworks

networks

networks

2Monday, May 22, 2006

Distributed Algorithms © Benoît Garbinato

Our approach

The practitioner needs the theoretical perspective to
understand the implicit assumptions hidden in the
technologies, and their consequences

The theoretician needs the practical perspective to validate
that theoretical models, problems & solutions work in
accordance to existing technologies

To achieve this, we approached distributed systems
through trhee complementary views:

The model view
The interaction view
The algorithm view

3Monday, May 22, 2006

Distributed Algorithms © Benoît Garbinato

The big picture
When implementing a distributed program, you will
always end up writing some algorithm. In doing so,
you will have to answer the following questions:

What problem am I trying to solve?
What model do I assume?
What interaction do I use? model

algorithm interaction

assumes

uses

problem

solves

4Monday, May 22, 2006

Distributed Algorithms © Benoît Garbinato

transaction manager

client

data managerB

data managerA

data managerC

en
d

invocations

be
gi
n

newTransaction

pr
ep
ar
e

votes co
mm
it

 o
r a
bo
rt

Two-Phase Commit (2PC)

Problem:! atomic commitment
Interaction:! reliable message passing
Model:! synchronous crash-recovery
Algorithm:! 2-phase commit protocol

Atomic commitment

Here are the actual
two phases

atom
ic com

m
itm

en
t

5Monday, May 22, 2006

Distributed Algorithms © Benoît Garbinato

A few observations
Most atomic commitment protocols guarantee that
safety will always hold, but not necessarily liveness
Liveness is compromised when failures prevent the
Termination property from holding; in such a case,
we say that the protocol is blocking
In the crash-recovery model, a blocking protocol cannot
terminate until crashed processes have recovered
Upon recovery, a failed process reads it log file from
stable storage and acts according to its last operation
In atomic commitment terms, this implies that the
recovering process should be able to decide commit or
abort from what it finds in its log file

6Monday, May 22, 2006

Distributed Algorithms © Benoît Garbinato

Agreement problems

The atomic commitment is an instance
of"a more general agreement problem,
also known as the consensus problem

There exists many variants of the
consensus problem, which are not
necessarily equivalent to each other

7Monday, May 22, 2006

Distributed Algorithms © Benoît Garbinato

Problem specification
The atomic commitment problem corresponds to the following consensus
variant, with the transaction manager and data managers being processes,
value 1 corresponding to commit and value 0 corresponding to abort

Agreement! (safety property)

No two processes decide on different values

Validity! (safety property)

• If any process starts with 0, then 0 is the only possible decision
• If all processes start with 1 and there are no failures, then 1 is

the only possible decision

Termination ! (liveness property)

Weak:! if there are no failures, then all processes eventually decide
Strong:! all non faulty processes eventually decide

8Monday, May 22, 2006

Distributed Algorithms © Benoît Garbinato

Two-phase commit (2PC)
Premises:
• synchronous model, reliable channels
• crash-recovery failures of data managers Di

• transaction manager T acts as coordinator but also votes

Phase 1:
• each Di process sends its initial value to process T
• any process Di whole initial value is 0 decides 0
• if process T times out waiting for some initial value, it

decides"0; otherwise it decides for the minimum of all values

Phase 2:
• process T broadcasts its decision to all Di processes
• any process that has not yet decided adopts this decision

What Termination property is ensured?

9Monday, May 22, 2006

Distributed Algorithms © Benoît Garbinato

Upon recovery (2PC)

Premises:

• operations are logged onto stable storage before execution

• the logging of an operation and its execution are atomic

Recovery of a Di process:

Di reads its log file from stable storage

! if it voted 0 or if it crashed before sending
its vote to T, it aborts

! otherwise, it asks T for the outcome of the
transaction and acts accordingly

10Monday, May 22, 2006

Distributed Algorithms © Benoît Garbinato

transaction manager

client

data managerB

data managerA

data managerC

en
d

invocations

be
gi
n

newTransaction

pr
ep
ar
e

votes co
mm
it

 o
r a
bo
rt

Two-Phase Commit (2PC)

Limits of 2PC

!

Questions:! what happens if the transaction manager crashes
before sending the final commit or abort message?

11Monday, May 22, 2006

Distributed Algorithms © Benoît Garbinato

If process T crashed...

Case A:! some process has decided 0

⇒�it knows that T has either not decided or that it has decided 0

⇒�it"can inform all other Di process that it is safe to decide 0

Case B:! all Di processes have voted 1

⇒�no decision is possible (blocking) :

1. T might have decided 0, so deciding 1 violates Agreement

2. T might have decided 1, so deciding 0 violates Agreement

12Monday, May 22, 2006

Distributed Algorithms © Benoît Garbinato

Premises:
• synchronous model, reliable channels
• crash-recovery failures of any process
• transaction manager T acts as coordinator but also votes

Phase 1:
• each Di process sends its initial value to process T
• any process Di whole initial value is 0 decides 0
• if process T times out waiting for some initial value or receives 0

from some process, it decides"0; otherwise it goes to ready state
Phase 2:
• if process T decided 0, it broadcasts its decision to all Di processes,

so any process that has not yet decided adopts this decision
• if process T is ready state, it broadcasts a pre-commit message,

so all processes go to ready state and send an ack message to T
• if process T crashes, the other processes time out and decide 0

Phase 3:

• if process T receives ack messages from all processes, it decides 1 and broadcast its
decision, so all processes decide 1 as well

• if process T time out waiting for some ack message, it decides 0 and broadcast its
decision, so all processes decide 0 as well

• if process T crashes, the other processes time out and decide 1

Three-phase commit (3PC)

13Monday, May 22, 2006

Distributed Algorithms © Benoît Garbinato

Upon recovery (3PC)
Premises: same as 2PC

Recovery of a Di process:
Di reads its log file from stable storage

! if it voted 0 or if it crashed before acknowledging
the pre-commit message, it aborts

! otherwise, it asks T for the outcome of the transaction
and acts accordingly

Recovery of T:
T reads its log file from stable storage:

! if it crashed before receiving all ack messages, it aborts

! otherwise, it commits

14Monday, May 22, 2006

Distributed Algorithms © Benoît Garbinato

If T fail in Phase 3, no other process is allowed to fail

Problematic scenario in Phase 3:
1. some Di crashes before acknowledging pre-commit message
2. T decides 0 but crashes before broadcasting its decision
3. all other Di time out waiting for the decision and decide 1

⇒ Agreement is violated!

Why not have all other Di decide 0 then?

Limits of 3PC

15Monday, May 22, 2006

Distributed Algorithms © Benoît Garbinato

Further problems
Unrealistic assumptions: synchronous processes
and network, no network partitions
⇒ reliable failure detection

Drastic limitation on failures: see previous slide
⇒ T is a single point of failure/vulnerability

Hidden assumptions: logging an action & executing
it must be atomic, deciding & broadcasting the
decision must also be atomic

16Monday, May 22, 2006

Distributed Algorithms © Benoît Garbinato

Back to consensus
If we express the atomic commitment protocol in
terms of some consensus module, we can benefit
from all the algorithmic work done on the subject

transaction manager

client

data managerB

data managerA

data managerC

en
d

invocations

be
gi
n

newTransaction

pr
ep
ar
e

votes co
mm
it

 o
r a
bo
rt

Two-Phase Commit (2PC)

va
lu

e
va

lu
e

va
lu

e
va

lu
e

va
lu

e

decision

decision

decision

decision

decisionco
n

se
n

su
s

m
od

u
le

17Monday, May 22, 2006

Distributed Algorithms © Benoît Garbinato

Consensus & asynchrony
Consensus cannot be solved in asynchronous systems; this is
the famous Fisher-Lynch-Paterson (FLP) impossibility result

For atomic commitment, the FLP result implies that we cannot
answer the question “how long should we wait before aborting?”

! if we do not wait long enough, safety is at stake

! if we wait forever, liveness is at stake

Real distributed systems are partially synchronous, i.e., they
are mostly synchronous but they experience asynchronous
periods every now and then. So, if we can solve a given problem
during a synchronous period, that’s all we need.

18Monday, May 22, 2006

Distributed Algorithms © Benoît Garbinato

Failure detectors
A failure detector is a module that provides each process with
hints about possible crashes of other processes

A failure detector encapsulates time assumptions and turns
them into logical properties: completeness & accuracy. For
example, the eventually strong failure detector (♢S) ensures:

Strong Completeness. Eventually, every process that
crashes is permanently suspected by every correct process.
Eventual Weak Accuracy. Eventually, there exists a correct
process that is never suspected by any correct process

The actual implementability of a given failure detector
depends on the underlying timing assumption

19Monday, May 22, 2006

Distributed Algorithms © Benoît Garbinato

Failure detectors & consensus
The ♢S failure detector was proven to be the weakest

failure detector to solve consensus, provided that there are
less than half incorrect processes
The algorithm relies on the rotating coordinator
paradigm, where a different process has the opportunity
to become the next coordinator each time the current
coordinator is suspected to have crashed

The Strong Completeness of ♢S ensures that no process

will wait forever for the decision of a crashed coordinator
The Eventual Weak Accuracy of ♢S ensures that at least

one of the coordinators will be able to decide

20Monday, May 22, 2006

Distributed Algorithms © Benoît Garbinato

Fault-tolerant broadcasts

The ability to broadcast messages with some
dependable guarantees is a key issue when
building fault-tolerant distributed systems

Besides the reliable delivery of messages,
there ordering is another aspect of this issue

For example, if messages represents updates
sent to the replicas of a database, reliable
delivery and total ordering are necessary

21Monday, May 22, 2006

Distributed Algorithms © Benoît Garbinato

Reliable broadcast (basis)
In the following, we assume that each message m includes (1) the identity of
the sender, written sender(m) , and (2) a sequence number, denoted seq#(m).
These two fields are what makes each message unique.

Validity
If a correct process broadcasts a message m, then it eventually delivers m

Agreement
Standard:!If a correct process delivers a message m, then all correct
! ! processes eventually deliver m
Uniform:! If a process delivers a message m, then all correct
! ! processes eventually deliver m

Integrity !
For any message m, every correct process delivers m at most once, and only if
m was previously broadcasted by sender(m)

22Monday, May 22, 2006

Distributed Algorithms © Benoît Garbinato

Fifo broadcast

To obtain the specification of fifo broadcast, we simply add
the following fifo order property to the aforementioned
validity, agreement and integrity properties. That is,
fifo broadcast !"reliable broadcast + fifo order

Fifo order
If a process broadcasts a message m before it broadcasts a
message m’, then no correct process delivers m’ unless it has
previously delivered m

23Monday, May 22, 2006

Distributed Algorithms © Benoît Garbinato

To obtain the specification of atomic broadcast, we simply add
the following total order property to the aforementioned
validity, agreement and integrity properties. That is,
atomic broadcast !"reliable broadcast + total order

Total order
If correct processes p and q both deliver messages m and m’,
then p delivers m before m’ if and only if q delivers m before m’

Question: does this imply Fifo Order ?

Atomic broadcast (total order)

24Monday, May 22, 2006

Distributed Algorithms © Benoît Garbinato

Causal broadcast

Very often, perfectly synchronized clocks are
not available, due to drifts, impreciseness, etc.

However, physical time of not necessarily
what we need: only causality relationships
between events often need to be preserved

In this context, an event is typically the
sending or the reception of some message

25Monday, May 22, 2006

Distributed Algorithms © Benoît Garbinato

Causality relationship (1)

In order to specify the causal broadcast, we must
first introduce a partial order relationship

Let !l be a partial order on the set of events
expressing direct dependencies such that:
• Let e1 and e2 be two events occurring at the same process p:

e1 !l e2 if and only if e1 happened before e2 at process p
• In particular, we have that for each message m:

send(m) !l receive(m)

26Monday, May 22, 2006

Distributed Algorithms © Benoît Garbinato

Causality relationship (2)

We now define the causal ordering relationship,
noted !C , as the transitive closure of !l

Note that !C also defines a partial order and is
sometimes called the happened-before relationship

Let e1 and e2 be two events occurring anywhere in
the system, i.e., possibly at two distinct processes,
we say that e1 causally precedes e2 if and only if
we have e1 !C e2

27Monday, May 22, 2006

Distributed Algorithms © Benoît Garbinato

Illustration of causality

here we have e1 !C e5 , via e2 , e3 and e4

however, e1 and e0 are concurrent, i.e., they are
not ordered (hence !C is a partial order)

pi

pj

pk

e1 e2

e3 e4

e5e0

28Monday, May 22, 2006

Distributed Algorithms © Benoît Garbinato

We now specify causal broadcast by simply adding the
causal order property given hereafter (based on the happened-
before partial order) to the reliable broadcast properties

Causal order
If the broadcast of a message m causally precedes the broadcast
of a message m’, then no correct process delivers m’ unless it has
previously delivered m

So: causal broadcast !"reliable broadcast + causal order

Causal broadcast (partial order)

29Monday, May 22, 2006

Distributed Algorithms © Benoît Garbinato

We can also see causal order as a generalization of fifo order.
In this case, we define causal broadcast by adding the local
order property given hereafter to the fifo broadcast properties

Local order
If a process broadcasts a message m and a process delivers m
before broadcasting m’, then no correct process delivers m’
unless it has previously delivered m.

So: causal broadcast !"fifo broadcast + local order

Causal broadcast (alternative)

30Monday, May 22, 2006

Distributed Algorithms © Benoît Garbinato

Relationship among broadcasts

Fifo Atomic
Broadcast

Causal Atomic
Broadcast

Atomic
Broadcast

total order

total order

total order

Fifo
Broadcast

Causal
Broadcast

Reliable
Broadcast

fifo order

local order

fifo order

local orderca
u

sa
l o

rd
er

ca
u

sa
l o

rd
er

31Monday, May 22, 2006

Distributed Algorithms © Benoît Garbinato

Implementing broadcasts
There exists numerous algorithms solving the
various broadcast primitives we presented

The algorithms we are presenting hereafter are
taken from two major papers:

[Hadzilacos93] Hadzilacos, V. and Toueg, S. 1993. Fault-tolerant broadcasts and
related problems. In Distributed Systems (2nd Ed.), S. Mullender, Ed. Acm Press Frontier
Series. ACM Press/Addison-Wesley Publishing Co., New York, NY, 97-145.

[Chandra96] Chandra, T. D. and Toueg, S. 1996. Unreliable failure detectors for reliable
distributed systems. J. ACM 43, 2 (Mar. 1996), 225-267.

These algorithms all assume a partially
synchronous system and might not be optimal

32Monday, May 22, 2006

Distributed Algorithms © Benoît Garbinato

Reliable broadcast

Comment: This is typically a flooding algorithm

[Hadzilacos93] [Chandra96]

33Monday, May 22, 2006

Distributed Algorithms © Benoît Garbinato

Fifo broadcast

[Hadzilacos93]

34Monday, May 22, 2006

Distributed Algorithms © Benoît Garbinato

Causal broadcast

[Hadzilacos93]

Comments:
rcntDelvrs is the sequence of messages that p delivered since
it previous causal broadcast
|| is the concatenation operator on sequences of messages

35Monday, May 22, 2006

Distributed Algorithms © Benoît Garbinato

The atomic broadcast can be reduced to the consensus problem. Note however
that this version of consensus is different from the version we used when
discussing atomic commitment. This second version is defined in terms of
two primitives, propose(v) and decide(v), with v some value. When some
process executes propose(v), we say that it proposes value v, and when it
executes decides(v), we say it decices value v.

Termination. Every correct process eventually devices on some value.

Uniform integrity. Every process decides at most once.

Agreement. No two correct processes decide differently.

Uniform validity. If a process decides v, then v was proposed by some process.

Back to consensus...

36Monday, May 22, 2006

Distributed Algorithms © Benoît Garbinato

Atomic broadcast

[Hadzilacos93] [Chandra96]

Comment: consensus execution are numbered (k)

37Monday, May 22, 2006

Questions?

38Monday, May 22, 2006

