Distributed
Algorithms

M/ ‘ HEC ‘ d0p| - Benoit Garbinato

distributed object programming lab

Monday, May 22, 2006

Distributed systems

networks, distributed)
“As long as there were no wesrehrbroes, pro yaMMLWD? was no problem
networks Lstribucte i
at all; when we had a few weak wewspeerers, programming became a
networks
o mild problem and now that we have gigantic eomwspeesrs,
distributed P 99

programming has become an equally gigantic problem. n this
sense the electronte Lwdu.stra has wot solved a single problem, it has
only created them - it has created the problem of using its products.”

Edgster Dijkstra, The Humbel Programmer.
Communication of the ACM, vol. 15, no. 10.
October 1972. Turing Award Lecture.

Distributed Algorithms © Benoit Garbinato d ©0) p | g
a

Monday, May 22, 2006

Our approach

O The pra ctittoner needs the theoretical ‘Perspec’cu/e to
understand the LVWPLLGLt assamptwws hidden tn the
technologies, and their consequences

O The theoretician needs the practical perspeotwe to validate
that theoretical models, problems § solutions work in
accordance to existing technologies

O To achieve this, we approached distributed systems
through trhee complementary views:

L The wmodel view >

O The tnteraction view

I The algorithm view>

Distributed Algorithms © Benoit Garbinato d (0] p | .
a

Monday, May 22, 2006

The big picture

When Lmplementing a distributed program, you will
always end up writing some algorithm. n doing so,
You will have to answer the following questions:

O wWhat problem am | trying to solve?

0O what wmodel do | assume?

O wWhat interaction do use?

assuwmes

solves

v
(" problem)
e —

Distributed Algorithms © Benoit Garbinato d (0) p ‘

Monday, May 22, 2006

Atomic commitment

Two-Phase Commit (2PC)

Q’o J.nvocatJ.ons of N)
client v® - ~N_|=
> g
"@ 'y ’(1
\ \\\\ ‘99 votes 006& o¥ g\
transaction manager)
T le
newTransactlon g
data managerA Y - §
data managerB 'V"-._L \ &\ / - g
1§
data managerC v - E'_
, , . J
Problem.: atomic commitment '
nteraction: reliable message passing Here are the actual
Modlel: sywnehronous crash-recovery two phases
Algorithm: 2-phase commit protocol
Distributed Algorithms © Benoit Garbinato d (0) p | .

Monday, May 22, 2006

A few observations

O Most atomic commitment protocols guarantee that
safety will always hold, but not necessarily liveness

O Liveness is compromised when faLLurcs prevent the
Termination property from holding; tn such a case,
we say that the protocol is blocking

O tw the erash-recovery model, a blocking protocol cannot
terminate until crashed processes have recovered

O Upow recovery, a failed process reads it log file from
stable storage and acts according to its last operation

O n atomle commitment terms, this LVM.PLLCS that the
recovering process should be able to decide commit or
abort from what it finds in its log file

Distributed Algorithms © Benoit Garbinato d (0) p | .
a

Monday, May 22, 2006

Agreement problems

0O The atomie commitment Ls an Lnstance
of a wmore general agreement problem,
also Rnowwn as the consensus Prolotem

O There exists many variants of the
consensus problem, whteh are not
necessa rLLg equivalent to each other

Distributed Algorithms © Benoit Garbinato d (0] p | .
a

Monday, May 22, 2006

Problem specification

The atomic commitment problem corresponds to the following consensus
variant, with the transaction manager and data managers being processes,
value 1 corvesponding to commit and value o corresponding to abort

e \
Agreement (safety property)
No two processes decide on different values
validity (safety property)

o If any process starts with o, thew 0 Ls the only possible decision
o tfall processes start with 1 and there are no failures, thew 1 is
the only possible decision

Termination (liveness property)

weak: if there are no failures, thew all processes eventually decide

Strong: all non faulty processes eventually decioe

J
Distributed Algorithms © Benoit Garbinato d (0] p | .

Monday, May 22, 2006

Two-phase commit (2PC)

[Premises:

o sywnchronous model, reltable channels

o crash-recovery failures of data managers B;

o transaction manager T acts as coordinator but also votes

Phase 1:
o each D; process sends its initial value to process T
o awny process B whole inttial value Ls o dectdes 0
o ifprocess T times out waiting for some initial value, it
decides o; otherwise it decides for the minimum of all values

Phase 2:
o process T broadeasts its decision to all Dy processes
o any process that has not yet decided adopts this decision

what Termination property Ls ensured?

Distributed Algorithms © Benoit Garbinato d (0] p | .
a

Monday, May 22, 2006

Upon recovery (2PC)

Premises:
e operations are Logged onto stable storage before execution
o the logging of an operation and its execution are atomic

Recovery of a D process:

D; reads its log file from stable storage

» if it voted o or if it crashed before sending
its vote to T, it aborts

» otherwise, it asks T for the outcome of the
transaction and acts accordingly

Distributed Algorithms © Benoit Garbinato d (0] p ‘ b
a

Monday, May 22, 2006 10

Limits of 2PC

Questions: what happens if the transaction manager crashes
before sending the final commit or abort message?

Two-Phase Commit (2PC)

Qy“ .mvocatJ.ons of A)
client % ~ N

IRSINNN
AR

[
»

newTransactlon"

data managerA

data managerB V L x\ / _
data managerC y L ¥ / _
\. _J
Distributed Algorithms © Benoit Garbinato d (0) p | .
Monday, May 22, 2006 11

If process T crashed...

case A: sowme process has dectded o
= it knows that T has etther not dectded or that it has dectded o

= it can bnform all other D process that it is safe to decide o

Case®: all D; processes have voted 1
= no decision is possible (blocking) :

1. T wmight have decided o, so deciding 1 violates Agreement
2. T wight have decided 1, so dectding o violates Agreement

Distributed Algorithms © Benoit Garbinato d ©0) p ‘

Monday, May 22, 2006 12

Three-phase commit (3PC)

(eremises:
o sywnchronous model, reliable channels
o crash-recovery failures of any process
e transaction manager T acts as coordinator but also votes
Phase 1:
o each D process sends its L'wit'mL value to process T
* any process Dy whole initial value is o decides o)
o if process T times out waiting for some initial value or receives 0
from some process, it decides 0; otherwise it goes to ready state
Phase 2:
o ifprocess T decided o, it broadeasts its decision to all B;processes,
so any process that has not yet decided adopts this deciston
o if process T is ready state, it broadeasts a pre-commit message,
so all processes go to ready state and sewd an ack wmessage to T
o ifprocess T crashes, the other processes time out ana decide o

Phase 3:

o ifprocess T receives ack messages from all processes, it decides 1 and broadeast its
decision, so all processes decide 1 as well

o Lfprocess T time out wai.t'w»g or some ack message, it dectdes 0 and broadeast its
decision, so all processes dectoe o0 as well

o ifprocess T crashes, the other processes time out and decide 1

_ J
Distributed Algorithms © Benoit Garbinato d (0] p | .
Monday, May 22, 2006 13
Premises: same as 2PC
Recovery of a D process:
D; reads its log file from stable storage
» ifit voted o or Lf it crashed before acknowledging
the pre-commit message, it aborts
b otherwise, it asks T for the outcome of the transaction
and acts accordingly
Recovery of T:
T reads its Log file from stable storage:
p if it crashed before receiving all ack wmessages, it aborts
» otherwise, Lt commits
Distributed Algorithms © Benoit Garbinato d (0] p ‘ b
14

Monday, May 22, 2006

Limits of 3PC

(f Tfail in Phase =, no other process is allowed to fail

Problematic scenario Ln Phase 3:

1. some D crashes before acknowledging pre-commit message
2. T decides 0 but crashes before broadceasting its decision
3. all other D time out waiting for the decision and decioe 1

[= Agreement is violated! J

why wnot have all other D; dectde 0 then?

Distributed Algorithms © Benoit Garbinato d (0] p | .
a

Monday, May 22, 2006 15

Further problems

unreallstie assumptiows: synchronous processes
ano network, no network partitiows
= rellable failure detection

Drastic limitation on failures: see previous slide
= T is a single point of failure/vulnerability

Hidden assumptions: logging an action § executing
Lt must be atomie, declding § broadceasting the
dectsion must also be atomic

Distributed Algorithms © Benoit Garbinato d (0] p ‘ b
a

Monday, May 22, 2006 16

Back to consensus

O If we express the atomic commitment protocol tn
terms of some consensus module, we can benefit
from all the algorithmic work done on the subject

o o - .
3" invocations S W
client veg — & ©
(4
2 %
. '{'OQ o (“2;
transaction manager < 5 %
newTransaction %
o &
data managerA S 2,

data managerB Y L \ l‘\ &
data managerC Y L Lﬁ&

[consensus module }
o0

Distributed Algorithms © Benoit Garbinato Qo p | .
a

Monday, May 22, 2006

17

Consensus & asynchrony

O Cownsensus cannot be solved Lin asywehronous systems; this Ls
the famous FLSMCY—LHWGM—PatCYSOW (FLP) meossibiLitg result

O For atomic commitment, the FLP result implies that we cannot
answer the gquestion “how long should we wait before aborting?”

p if we do not wait long enough, safety is at stake
» Lf we wait forever, Liveness is at stake

O Real distributed systems ave partially synchronous, L.e., they
are mostly synchronous but they experience asynchronous
periods every now and thew. So, if we can solve a given problem
during a synchronous period, that’s all we need.

Distributed Algorithms © Benoit Garbinato d (0] p ‘ .
a

Monday, May 22, 2006

18

Failure detectors

O A failure detector is a wmoodule that provides each process with
hints about possible crashes of other processes

0O A -(:aLLure detector encapsulates time assumptions and turns
them into Logical properties: completeness § accuracy. For

exanmple, the eventually strong failure detector (OS) ensures:

Strong CDVWpLCtCVb&SS r—:—vewtuaLLH every process that
crashes ts permamMLg suspected bg every correct process.
eventual Weak Accuracy. EvewtuaLLH there exists a corvect
process that Ls never su.specteol b Y awg correct process

O The actual LVWPLCMCINtabLLLtH of a given -faLLure detector
depends on the underlying timing assumption

Distributed Algorithms © Benoit Garbinato d (0] p | .
a

Monday, May 22, 2006 19

Failure detectors & consensus

O The OS failure detector was proven to be the weakest

failure detector to solve consensus, provided that there are
less thaw half incorrect processes

O The algorithm relies on the rotating coordinator
paradigm, where a different process has the opportunity
to become the next coordinator each time the current
coordinator is suspected to have crashed

O The Strong compLetewess of <>S ensures that no process

will wait forever for the decision of a crashed coordinator
O The Bventual Weak Accuracy of S ensures that at least

one of the coordinators will be able to decide

Distributed Algorithms © Benoit Garbinato d (0] p ‘

Monday, May 22, 2006 20

Fault-tolerant broadcasts

O The abLLLtg to broadcast messages with some
dependable guarantees is a key issue when
building fault-tolerant distributed systems

O Besides the reliable delivery of messages,
there ordering is another aspect of this Lssue

O For example, if messages represents updates
sent to the replicas of a database, reliable
delivery and total ordering are necessary

Distributed Algorithms © Benoit Garbinato d (0] p | .
a

Monday, May 22, 2006 21

Reliable broadcast (basis)

(n the following, we assume that each message m includes (1) the identity of
the sender, written sender(m) , and (2) a sequence number, denoted seq#(m).
These two fields are what makes each message unigue.

va Liolitg

(f @ corvect process broadeasts a message wm, thew it eventually delivers m

Agreement
Standard: tf a correct process delivers a message wm, thew all corvect
processes eventually deliver m

uniform: tf a process delivers a message m, thew all correct
processes eventually deliver m

ntegrity
For any wmessage m, every correct process delivers m at most once, and only if
m was previoung broadcasted by sender(m)

_ J

Distributed Algorithms © Benoit Garbinato d (0] p ‘ b
a

Monday, May 22, 2006 22

Fifo broadcast

To obtain the specification of fifo broadceast, we s'z,mpl,g add
the following fifo order property to the aforementioned
validity, agreement and integrity properties. That is,

fifo broadcast & veliable broadeast + fifo order

Fifo oroer

If & process broadeasts a message wm before it broadeasts a
message m’, thew no correct process delivers m’ unless it has
previously delivered m

Distributed Algorithms © Benoit Garbinato d (0] p | .
a

Monday, May 22, 2006 23

Atomic broadcast (total order)

To obtain the specification of atomic broadeast, we simply add
the following total order property to the aforementioned
validity, agreement and integrity properties. That is,

atomic broadeast & reliable broadeast + total order

Total order

If corvect processes p and ¢ both deliver messages m and w/,
then p delivers wm before m if and only if o delivers m before m’

Question: does this imply Fifo Order ?

Distributed Algorithms © Benoit Garbinato d (0] p ‘ b
a

Monday, May 22, 2006 24

Causal broadcast

O Vvery often, perfectly sy nehrontzed clocks are
not available, due to drifts, impreciseness, ete.

O However, physical time of not necessarily
what we need: only causality relationships
between events often need to be preserveo

O (nthis context, an event is typically the
sending or the reception of some message

Distributed Algorithms © Benoit Garbinato d (0] p | .
a

Monday, May 22, 2006 25

Causality relationship (1)

O (norder to S‘Pecifg the causal broadcast, we must
first introduce a partial order relationship

O Let = be a partial oroer on the set of events
expressing oirect dependencies such that:
o Lete, and e, be two events occurring at the same process p:
e 1 ey if and only if e, happened before e, at process p
o nparticular, we have that for each message m.:
send (m) = s recetve (m)

Distributed Algorithms © Benoit Garbinato d (0] p ‘ b
a

Monday, May 22, 2006 26

Causality relationship (2)

O we now define the causal ordering relationship,
noted —c, as the transitive closure of =

O Note that = ¢ also defines a partial order and Ls
sometimes called the happened-before relationship

O Lete, and e, be two events oceurring anywhere L
the system, L.e., possLbLg at two distinct processes,
we say that e, causally precedes e, if and only if

we have e; ¢ es

Distributed Algorithms © Benoit Garbinato d (0] p | .
a

Monday, May 22, 2006

27

lllustration of causality

€ €

Pi—

\es es
Pj >

\ 4

éo \ €s

Pk >

O here we have e, =c es, via e, , ez and e,

O however, e; and e, are concurrent, L.e., they are
not ordered (hence —c is a partial order)

Distributed Algorithms © Benoit Garbinato d (0] p ‘ b
a

Monday, May 22, 2006

28

Causal broadcast (partial order)

We now specify causal broadeast by simply adding the
causal order property givew hereafter (based on the happened-
before partial order) to the reliable broadceast properties

causal order

(f the broadeast of a message m causally precedes the broadeast
of a message w, thewm no corvect process delivers m” unless it has
previously delivered m

So: causal broadcast €& reliable broadcast + cawsal order

Distributed Algorithms © Benoit Garbinato d (0] p | .
a

Monday, May 22, 2006 29

Causal broadcast (alternative)

we cawn also see causal order as a generalization of fifo order.
n this case, we define causal broadeast by adding the local
order property given hereafter to the fifo broadeast properties

Local order

(f a process broadcasts a message m and a process delivers m
before broadcasting m’, thew no correct process delivers m’
unless it has pre\/iousl,g delivered m.

So: causal broadeast € fifo broadcast + Local order

Distributed Algorithms © Benoit Garbinato d (0] p ‘ b
a

Monday, May 22, 2006 30

Relationship among broadcasts

Reliable total order Atomle
Broadcast Broadcast

l fifo order fifo order l

Fi‘fo total order > FL{O Atomle
Broadcast Broadcast

l Local order Local order l

causal order

cauwsal ovder

causal total order causal Atomie
Broadcast Broadcast

Distributed Algorithms © Benoit Garbinato d (0] p |
a

Monday, May 22, 2006 31

Implementing broadcasts

O There exists numerous algorithms solving the
various broadcast primitives we presented

O The algorithms we are presenting hereatfter are

taken from two major papers:

[Hadzilacos93] Hadzilacos, V. and Toueg, S. 1993. Fault-folerant broadcasts and
related problems. In Distributed Systems (2nd Ed.), S. Mullender, Ed. Acm Press Frontier
Series. ACM Press/Addison-Wesley Publishing Co., New York, NY, 97-145.

[Chandra96] Chandra, T. D. and Toueg, S. 1996. Unreliable failure detectors for reliable
distributed systems. J. ACM 43, 2 (Mar. 1996), 225-267.

O These algorithms all asswme a partially
sywehronous system and might not be optimal

Distributed Algorithms © Benoit Garbinato d (0] p ‘ b
a

Monday, May 22, 2006 32

Reliable broadcast

Algorithm for process p:
To execute broadcast(R,m):
send(m) to p

deliver(R,m) occurs as follows:
upon receive(m) do
if p has not previously executed deliver(R,m)
then
send(m) to all neighbors
deliver(R,m)

Every process p executes the following:

To execute R-broadcast(m):
send m to all (including p)

R-deliver(m) occurs as follows:
when receive m for the first time
if sender(m) # p then send m to all
R-deliver(m)

[Hadzilacos93]

[Chandra96]

Comment: This is typieally a flooding algorithm

Distributed Algorithms © Benoit Garbinato

dop; ;.

Monday, May 22, 2006 33
Fifo broadcast
Algorithm for process p: deliver(F,—) occurs as follows:
Initialization: upon deliver(R,m') do
msgSet = s := sender(m')
nezxt[s] := 1, for each process s if next(s] = seq#(m’)
then
deliver(F,m’)
next[s] := next[s] + 1
while (3m € msgSet : sender(m) = s
and nezt[s] = seg#(m)) do
To execute broadcast(F,m): deliver(F,m)
broadcast(R,m) next[s] := next[s] + 1
else
msgSet := msgSet U {m'}
[Hadzilacos93]
Distributed Algorithms © Benoit Garbinato d (0) p | .
Monday, May 22, 2006 34

Causal broadcast

Algorithm for process p: deliver(C,—) occurs as follows:
Initialization: upon deliver(F,(mj, ma,...,m;)) for some ! do
rentDlvrs := L for : :=1..l do
if p has not previously executed deliver(C,m;)
To execute broadcast(C,m): then)
broadcast(F, (rentDlvrs || m)) deliver(C,m;)
rentDlvrs == L rentDlvrs := rentDivrs || m;

[Hadzilacos93]

Comments:

O rewntDelvrs is the sequence of messages that p delivered since
it previous causal broadceast

0 || is the concatenation operator on sequences of messages
Distributed Algorithms © Benoit Garbinato d (0] p | .
Monday, May 22, 2006 35

Back to consensus...

The atomte broadeast can be reduced to the consensus problem. Note however
that this version of consensus is different from the version we used when
discussing atomic commitment. This second versiow is defined in terms of
two primitives, propose(v) and decide(v), with v some value. When some
process executes propose (v), we say that it proposes value v, and when it
executes dectoes (v), we sa Y Lt dectees value v.

Termination. Bvery correct process eventually devices on some value.

unilform tntegrity. Bvery process dectdes at most once.

Agreement. No two corvect processes deciole differently.

niform vaL'wli,tg. If & process decides v, thew v was proposed by sowme process.

J

Distributed Algorithms © Benoit Garbinato d (0] p ‘ .
a

Monday, May 22, 2006 36

Atomic broadcast

Initialization: Initialisation:
R_delivered := 0
Adelivered := 0 R_delivered «— ()
k:=0 A_delivered «— ()
k<0

To execute broadcast(A,m): To execute A-broadeast(m):

broadcast(R,m) R-broadcast(m)

deliver(A,—) occurs as follows: A-deliver(—) occurs as follows:
upon deliver(R,m) do when R-deliver(m)
R_delivered := R_delivered U {m} R_delivered « R_delivered U {m}
do forever when R._delivered — A_delivered # ()
A_undelivered := R_delivered — A_delivered kek+1))
if A_undelivered # 0 then A_undelivered < R_delivered — A_delivered
;c =kt propose(k, A-undelivered)

X wait until decide(k, msgSet*)

propose(k, A-undelivered) Adeliver® — msgSet* — Adelivered

wait for decide(k, msgSet). atomically deliver all messages in A_deliver® in some deterministic order
batch(k) := msgSet — Adelivered A_delivered — AdeliveredU Adeliver*

A-deliver all messages in batch(k) in some deterministic order
A_delivered := A_delivered U batch(k)

[-Hadzilacos93T] [?handra%’]
Comment: consensus execution are numbered (k)

Distributed Algorithms © Benoit Garbinato d (0) p | .
a

Monday, May 22, 2006 37

Questions?

Monday, May 22, 2006 38

