Asynchronous
Messaging

Benoit Garbinato
Uit | HEC | dop; : .

distributed object programming lab

Tuesday, April 25, 2006

Fundamental idea

O Provide a communication abstraction that
decouples collaborating distributed entities

O Time decoupling = asynchrony

O Space decoupling = anonymity

0O Asywchrony = persistence of messages

Asynchronous Messaging © Benoit Garbinato d 0) p | .
a

Tuesday, April 25, 2006

Message-Oriented Middleware

O A Message-Oriented Middleware (MOM)
Ls a software layer acting as a kRind of
“widdle man” between distributed entities

O Most software companies offer middleware
products that fall in the MOM category,
e.9., IBM MR Series, Oracle AR, Suwn Java
System Message Queune, Microsoft Message
Rueuelng, ete..

Asynchronous Messaging © Benoit Garbinato d ©0) p | .

Tuesday, April 25, 2006

Broker & client library

O A MOM s often based on a message
broker and a client LLbrary.

client client
app app
S p ™ 500" 5
.. Oriented
client : / Middleware\ . client
app a8 \ app
B MOM p— - MOM 3
\——‘_’-“/ w/
Asynchronous Messaging © Benoit Garbinato d (0] p | .

Tuesday, April 25, 2006

Communication models

0O Point-to-point moolel
Owne-to-one communication between message
producers and consumers, where each message is
consumed bg one and only one consumer

0O Publish/Subscribe (pub/sub) model
one-to-many communication where producers
publish messages and all consumers that have
subscribed receive them

O (n both wodels, the notion of message is key

Asynchronous Messaging © Benoit Garbinato d ©0) p | .
a

Tuesday, April 25, 2006

Point-to-Point

O Each message is received by only one consumer

O Messages are placed in a gquewe anol are persisted
until they are consumed

O This model can be used to Load-balance tasks
caveat: fifo processing cannot be guaranteed

client
app app
!! DIIIIIIIIIIIID_"braw!!

y
—

producers message gqueneing consumers

Asynchronous Messaging © Benoit Garbinato d (0] p | b
a

Tuesday, April 25, 2006

Publish/Subscribe

O Each message Ls received by all subscribers

O Messages are wot persisted by default

O There exists various message routing variant:
O topie-based

O content-based client

O Llocation-based app

0 . library
client
8l E=
Cieray 10 S (LTI [ty

\‘ library
producers message routing consumers
Asynchronous Messaging © Benoit Garbinato d ©0) p | .
a

Tuesday, April 25, 2006

J2EE overview

0O_J2€EE stands for Java 2 platform, Enterprise Edition

0O _J2EE is the specification of a distributed multitiered
application wmodel for enterprise applications,
presenteo as a coherent set of programming APls

O wmplementations of the J2EE specification are
usually proposed tn the form of appticatiow Servers

Enterprise Edition (J2EE)

Standard edition ()2SE) Java 2
, ‘s La m
Micro Edition (J2ME) P tfor
Asynchronous Messaging © Benoit Garbinato d (0] p | b

Tuesday, April 25, 2006

Java Messaging Service

O The Java Messaging Service (JMS) defines
the asynchronous messaging standarad of
the J2E€ platform

0O_MS follows the general J2EE philosophy:
O JMS is a specification

O JMS bmplementations rely on extsting products (IBM M&
Series, Oracle AR, Suwn java System Message Queue, ete.)
0O JMsS-based applications are portable across any
JMS-compliant implementation

Asynchronous Messaging © Benoit Garbinato

dop; ; ;

Tuesday, April 25, 2006 9
JMS in the J2EE architect
]
Applet Container Web Container EJB Container
=4
H S
Appl JsP -
z o]
S}
Midlet Container 5
a3 gJa\{ ax-l |z S |vav)
D RPC % § % Mgmt %,é; Mail 5 RPC % § % Mgmt %g Mail 5 3
ol SAAJ a| JMx g JAF SAAJ g IMx 3 JAF)
000 H Y
556
Application Client
J2ME Container
M message
e broker
Persistent
Storage
N N J
, Y Y , Y J
| client tier web tier business tier B
Asynchronous Messaging © Benoit Garbinato d 0) p | .
a
Tuesday, April 25, 2006 10

Execution time

O A producer creates messages § sends thewm via the JMS AP,
specifying a message destination

O A consumer receives messages via the JMS AP, specifying
a wmessagge destination and an optional message selector

0O A JMS-compliant product provides an implementation of
the JMS AP in the form of a client library that knows how
to communicate natively with the message broker

producer consumer
message
JMSAPI 4. ___ JSMAPI
= N broker T
Asynchronous Messaging © Benoit Garbinato d ©0) p | .
Tuesday, April 25, 2006 11

Deployment time

O Start the message broker (usuaLLa
via the J2EE application server)

8006 Sun Java System Application Server Platform Edition & Admin Console

O Create the adequate SR LT e S

Version | | Registration | Logout | Help | D

’ ’ I' Application Server Admin Console S
destinations —__ L) o]

m

Application Server > Java Message Service > Physical Destinations
o 3 Applications

O (nstall the MS client ==

8. Persisten

Use this page to define a new Java Message Service (JMS) physical
4 & Java Me: object

Library ow the producer:::

* Physical Destination Name: [FinancialNews

§ the producer, and - .
start them !
Asynchronous Messaging © Benoit Garbinato d o) pT - %

Tuesday, April 25, 2006 12

Unified programming model

connection factory

@ *aveates

{ conmection }

creates

@ *creates @

creates
message

>‘ destination
send

Two communteation models:
O point-to-point (destination = gqueune)
O publish/subscribe (destination = topie)

CONSUMEYr

receLve

creates

Asynchronous Messaging © Benoit Garbinato d ©0) p | .
a
Tuesday, April 25, 2006 13
[]
Development: publisher
[]
public class NewsPublisher {
static boolean moreNews= true;
public static void main(String[] args) {
String topicName= args[0]; String fileName= args[1l];
(1) TopicConnectionFactory connectionFactory = new com.sun.messaging.TopicConnectionFactory();
TopicConnection connection= null;
try {
®@ connection= connectionFactory.createTopicConnection();
©) TopicSession session= connection.createTopicSession(false, Session.AUTO_ ACKNOWLEDGE) ;
Topic topic= session.createTopic(topicName);
@ TopicPublisher publisher = session.createPublisher(topic);
® TextMessage message = session.createTextMessage();
BufferedReader newsFeed = new BufferedReader (new FileReader(fileName));
while (moreNews) {
String theNews= getNextNews (newsFeed);
message.setText (theNews);
System.out.println("Publishing \"" + message.getText() + "\"");
® publisher.publish(message);
}
} catch (Exception e) {
System.out.println("Exception occurred: " + e.toString()); System.exit(1l);
}
}
Asynchronous Messaging © Benoit Garbinato d (0] p | b
a
Tuesday, April 25, 2006 14

Development: subscriber

public class NewsSubscriber implements MessageListener {
public static void main(String[] args) {

String topicName= args[0];

TopicConnectionFactory connectionFactory = new com.sun.messaging.TopicConnectionFactory();

TopicConnection connection = null;

try {
connection = connectionFactory.createTopicConnection();
TopicSession session = connection.createTopicSession(false, Session.AUTO_ ACKNOWLEDGE) ;
Topic topic= new com.sun.messaging.Topic(topicName);
TopicSubscriber subscriber = session.createSubscriber(topic);
MessageListener listener= new NewsSubscriber();
subscriber.setMessageListener (listener);
connection.start();
synchronized (listener) { listener.wait(); }

} catch (Exception e) {
System.out.println("Exception occurred:

+ e.toString()); System.exit(1l);

}

@ public void onMessage(javax.jms.Message message) throws Exception {
String theNews = ((TextMessage) message).getText();
System.out.println("Learning that \"" + theNews + """);

if (theNews.endsWith("There are no more news."))
synchronized (this) { this.notify(); }

}
Asynchronous Messaging © Benoit Garbinato d ©0) p .
I a
Tuesday, April 25, 2006 15
Development: producer
[]
public class OrderProducer {
public static void main(String[] args) {
String queueName= args[0];
ConnectionFactory connectionFactory = New com.sun.messaging.ConnectionFactory();
Connection connection= null;
try {
connection= connectionFactory.createConnection();
Queue queue= NEW com.sun.messaging.Queue(queueName) ;
Session session= connection.createSession(false, Session.AUTO_ACKNOWLEDGE) ;
MessageProducer producer = session.createProducer (queue);
BufferedReader kbdIn = new BufferedReader (new InputStreamReader (System.in));
TextMessage message = session.createTextMessage();
while (true) {
String order= askForOrder (kbdIn, 3);
message.setText (order);
System.out.println("Sending order [" + message.getText() + "1");
C) producer.send(message);
}
} catch (Exception e) {
System.out.println("Exception occurred: " + e.toString()); System.exit(1l);
}
}
Asynchronous Messaging © Benoit Garbinato d (0) p ‘ b
a
Tuesday, April 25, 2006 16

Development: consumer

public class OrderConsumer implements MessageListener {
public static void main(String[] args) {
String queueName = args[0];
ConnectionFactory connectionFactory = new com.sun.messaging.ConnectionFactory();
Connection connection = null;
try {
connection = connectionFactory.createConnection();
Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE) ;
Queue queue= NEW com.sun.messaging.Queue(queueName);
MessageConsumer consumer = session.createConsumer (queue);
MessageListener listener= new OrderConsumer();
consumer.setMessageListener (listener);
connection.start();
synchronized (listener) { listener.wait(); }
} catch (Exception e) {
System.out.println("Exception occurred:

+ e.toString()); System.exit(1l);
}

@ public void onMessage(javax.jms.Message message) throws Exception {
String order = ((TextMessage) message).getText();
System.out.println("Passing order " + order + " on the market");
if (order.equals("quit"))

synchronized (this) { this.notify(); }

}
Asynchronous Messaging © Benoit Garbinato d ©0) p .
I a
Tuesday, April 25, 2006 17
public class OrderSynchronousConsumer {
public static void main(String[] args) {

String queueName = args[O0];

ConnectionFactory connectionFactory = Nnew com.sun.messaging.ConnectionFactory();

Connection connection = null;

try {
connection = connectionFactory.createConnection();
Session session = connection.createSession(false, Session.AUTO ACKNOWLEDGE) ;
Queue queue= NEW com.sun.messaging.Queue(queueName);
MessageConsumer consumer = session.createConsumer (queue);
connection.start();
while (trug) £

@ @essage m = consumer.receive(i-: >

} catch (Exception e) {
System.out.println("Exception occurred: " + e.toString()); System.exit(1l);

}

}
}
Asynchronous Messaging © Benoit Garbinato d (0) p ‘ .
a
Tuesday, April 25, 2006 18

Message format & types

0O AJMS message is composed of three parts:

header O a header holding required fields for the client library
Sroperties and the message broker, e.g., Priori‘cg, ttme-to-Live, ete.
O a list of optional properties, which act as weta-data used
body by the message selection mechanism

O a body containing the actual data of the message

O There exists varilous types of messages, which
differ in the type of data they carry in their body,
€.9., Message, TextMessage, ObjectMessage, ¢tc.

Message message = session.createMessage();

Asynchronous Messaging © Benoit Garbinato d ©0) p | .
a

Tuesday, April 25, 2006 19

Message selectors

0O BY default, JMS provides topic-based pub/sub

0O Thanks to message properties, JMS also support
content-based pub/sub via message selectors

O A wmessage selector is a string whose sywtax is a
subset of the SRLI2 conditional expression sywtax

Message message = session.createMessage();
message.setStringProperty("name", "Bob");
message.setIntProperty("age", 30);
message.setStringProperty("address", "Lausanne");

String selector= "name LIKE 'Max' OR (age > 18 OR address LIKE 'Lausanne')";
TopicSubscriber subscriber = session.createSubscriber(topic, selector, false);

Asynchronous Messaging © Benoit Garbinato d (0] p |

Tuesday, April 25, 2006 20

Quality of Service (QoS)

O Parameterized QuaLLtg of Service (RoS) Ls
usually offered bg MOM products

O i MS, the level of oS depends on the
following parameters:
O wessage ordering, time-to-live § priorities
ackwnowledgement modes
durable subscriptions

olel,i,verg mooes

O 0o o g

transactions

Asynchronous Messaging © Benoit Garbinato d ©0) p | .
a

Tuesday, April 25, 2006 21

Order, priority & time-to-live

0O JMS specifies that messages are received in the order in
which they were sent with respect to a given session and
a given destination (commeonly called FIFO ordler)

0O JMS specifies no order across destinations or across
sesstons sending to the same destination

O The notiow of priority allows programmers to have finer
control over ordering, via the send () wethod

O Programmers can also specify how long the message
broker should keep a message, via a time-to-live
parawmeter passed to the send() wmethod

Eriorit@ ttme-to-Live (tn ms)
2z
producer.send(aMessage, DeliveryMode.NON_ PERSISTENT ,@
Asynchronous Messaging © Benoit Garbinato d 0) p | .

Tuesday, April 25, 2006 22

Acknowledgement modes

O Awn acknowledgment informs the MOM (e.g., its
underly lng message broker) that the client has
successfully received a message

O_MS supports three acknowledgment modes:

AUTO_ACKNOWLEDGEthe session automatically acknowledges the
receipt of each message
CLIENT_ACKNOWLEDGE the client acknowledges programmatically,
vaohiwg acknowledge () ow each message
DUPS_OK_ACKNOWLEDGE wore efficient variant of AUTO_ACKNOWLEDGE that
can result is duplicate messages in case of failures

Session session= connection.createSession (false€ Session.AUTO ACKNOWLEDGE

Asynchronous Messaging © Benoit Garbinato d ©0) p | .
a

Tuesday, April 25, 2006 23

Delivery modes

O n JMS, there exists two oleLL\/erg modes:

NON_PERSISTENT wost efficient but less reliable, since messages are
guaranteed to be delivered at most once, i.e., some
might be lost, e.g., due to some failure (power outage)

PERSISTENT most reliable, sinee messages are guaranteed to be
delivered once and only once; this ts usually achteved
by persisting sent messages ow stable storage ano
kReeping them until they are acknowledged

O The delivery wmode can be specified at the producer
level or each time a messaoes is sent:

MessageProducer producer = sessi oducer (queue) ;
producer.setDeliveryMo eliveryMode.PERSISTENT);
producer.send(aMessage, iveryMode.NON_ PERSIST 7 0, 0);

Asynchronous Messaging © Benoit Garbinato d (0] p |

Tuesday, April 25, 2006 24

Durable subscriptions

O wWith pub/sub, messages are only received by
subscribers present at the time 01? the publication

0O A durable subscriber Ls one that wants to recetve
all messages published on a topie, even those
published when the subscriber s inactive, L.e.,
whewn it has wo associateo subscriber object

O (n order to tell the message broker what messages
are still to be received by a durable subscriber, the
Latter must provide a unigque name

TopicSubscriber subscii ber= session.createDurableSubscriber (topic, @;

session.unsubscribe(('Bob") ;

Asynchronous Messaging © Benoit Garbinato d ©0) p | .
a

Tuesday, April 25, 2006 25

Transactions (1)

O A transaction allows a group of messages to be
managed as a single unit of work

O i MS, transactions are managed by the session

O The dectston to have a session transacted muust be
taken at creation time:

Session session= connection. createSessio Session.AUTO_ ACKNOWLEDGE) ;

O AS Soon s messages are sent or recelved via a
transacted sesstown, the transaction starts, L.e., sent/
receiveo messages are growped as a one wnit of work

Asynchronous Messaging © Benoit Garbinato d 0) p | .

Tuesday, April 25, 2006 26

Transactions (2)

Two-Phase Commit (2PC)

Qs«o J.nvoca tions

client

~
” >
>
a9
\ \\\\\\ "OQ votes oos@ o
transaction manager
newTransactlon
data managerA V

31 74

>
data managerC \ 4 L
>
Distributed Enterprise Architectures © Benoit Garbinato d (0) p | .

Tuesday, April 25, 2006

27

Transactions (3)

0O When methoo commit () or wmeethod rollback () Ls
called on the transacted session, the current
transaction terminates and a new one Ls started

O Tra wsao’cww termination affects producers anol
conswmers in the following manner:

Producer - what happens to messages sent during the transaction?
Commit all grouped wmessages are effectively sent
Rollback all grouped messages are disposed

Consumer - what happens to messages received during the transaction?
commit all grouped messages are disposed
Rollback all grouped wmessages ave recovered, i.e., the
might be recelved again in the next transaction

Asynchronous Messaging © Benoit Garbinato d (0] p ‘

Tuesday, April 25, 2006

28

Questions?

Tuesday, April 25, 2006

