
Java in a Nutshell

Benoît Garbinato

1Tuesday, March 14, 2006

Java in a Nutshell © Benoît Garbinato

Goals of this lesson

To remind you about:

object-oriented programming (OOP)

the Java language & platform

2Tuesday, March 14, 2006

Java in a Nutshell © Benoît Garbinato

Object-Oriented Programming

Any object-oriented Programming
language should feature:

encapsulation
inheritance
polymorphism

Java is such an object-oriented
programming language

3Tuesday, March 14, 2006

Java in a Nutshell © Benoît Garbinato

Encapsulation (1)

Encapsulation is about distinguishing
specification from implementations

The specification expresses what
all objects of some type are expected to do

An implementation expresses how
some objects of that type are doing it

4Tuesday, March 14, 2006

Java in a Nutshell © Benoît Garbinato

Encapsulation (2)

In Java, a class defines both a specification (type)
and an implementation of that specification

In Java, an interface defines a “pure” specification

It it thus impossible to instantiate
(create an instance) 0f an interface

One or more Java classes can
implement a given interface

5Tuesday, March 14, 2006

Java in a Nutshell © Benoît Garbinato

Inheritance (1)

Types and subtypes express specification
relationships, i.e., relevant design relationships

Classes and subclasses express implementation
relationships and are irrelevant at the design level

In Java, a class inheritance relationship defines
both a subtype and a subclass relationship

In Java, an interface inheritance relationship is
merely a synonym of subtype relationship

6Tuesday, March 14, 2006

Java in a Nutshell © Benoît Garbinato

Inheritance (2)

class inheritance !�subtyping " subclassing

interface inheritance !�subtyping

7Tuesday, March 14, 2006

Java in a Nutshell © Benoît Garbinato

Polymorphism (1)

An object of some subtype of type T can be
used wherever an object of type T is required

Vehicle v1 = new Vehicle();

Vehicle v2 = new Car();

Vehicle v3 = new Bicycle();

...

myScreen.drawInColor(v1);

myScreen.drawInColor(v2);

myScreen.drawInColor(v3);

...

Substitution Principle:

8Tuesday, March 14, 2006

Java in a Nutshell © Benoît Garbinato

Polymorphism (2)

Polymorphic variables can store objects of varying types

The declared type of a variable is its static type

The type of the object a variable refers is its dynamic type

The Java compiler checks for static-type violations

The Java runtime checks for dynamic-type violations

Car c = new Car();

Vehicle v = new Car();

what is the type
of c and v ?

9Tuesday, March 14, 2006

Java in a Nutshell © Benoît Garbinato

Methods calls are also said to be polymorphic,
meaning that the dynamic type of the variable rather
than its static type determines the method to be called

The method of the subclass is said to override the
method of the superclass

Polymorphism (3)

class Vehicle {

 void print(){ System.out.println(”I am a vehicle”);}

}

Vehicle v1 = new Vehicle();
Vehicle v2 = new Bicycle();
Vehicle v3 = new Car();

v1.print(); v2.print(); v3.print();

class Car extends Vehicle {

 void print(){ System.out.println(”I am a car”);}

}

class Bicycle extends Vehicle {}

what gets printed?

10Tuesday, March 14, 2006

Java in a Nutshell © Benoît Garbinato

Polymorphism (4)
Vehicle v1 Vehicle

void print(){...}
:Vehicle

instance of

Vehicle v2

:Bicycle

instance of
Bicycle Vehicle

void print(){...}

Vehicle v3

:Car

instance of
Car Vehicle

void print(){...}void print(){...}

v1.print();

v2.print();

v3.print();

11Tuesday, March 14, 2006

Java in a Nutshell © Benoît Garbinato

A simple example (1)

public interface MouseListener {
 public void mouseClicked(MouseEvent e);
// Invoked when the mouse has been clicked on a component.

 public void mouseEntered(MouseEvent e);
// Invoked when the mouse enters a component.

 public void mouseExited(MouseEvent e);
// Invoked when the mouse exits a component.

 public void mousePressed(MouseEvent e);
// Invoked when a mouse button has been pressed on a component.

 public void mouseReleased(MouseEvent e);
// Invoked when a mouse button has been released on a component.

}

12Tuesday, March 14, 2006

Java in a Nutshell © Benoît Garbinato

A simple example (2)
import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;

public class Spot extends Applet implements MouseListener {
 private java.awt.Point clickPoint = null;
 private static final int RADIUS = 7;

 public void init() {
 addMouseListener(this);
 }
 public void paint(Graphics g) {
 g.drawRect(0, 0, getSize().width - 1,
 getSize().height - 1);
 if (clickPoint != null)
 g.fillOval(clickPoint.x - RADIUS,
 clickPoint.y - RADIUS,
 RADIUS * 2, RADIUS * 2);
 }
 public void mousePressed(MouseEvent event) {
 clickPoint = event.getPoint();
 repaint();
 }
 public void mouseClicked(MouseEvent event) {}
 public void mouseReleased(MouseEvent event) {}
 public void mouseEntered(MouseEvent event) {}
 public void mouseExited(MouseEvent event) {}
}

<HTML>

<TITLE>

Spot Applet

</TITLE>

<BODY>

<APPLET

CODE=Spot.class

WIDTH=150

HEIGHT=150>

</APPLET>

</BODY>

</HTML>

13Tuesday, March 14, 2006

Java in a Nutshell © Benoît Garbinato

The Java platform consists of...

The specification of a programming language

The specification of a rich collection of standard
Application Programming Interfaces (APIs)

The specification of a virtual machine (bytecodes)

Various implementations, e.g., one from a Sun
Microsystems (JavaSoft), but also others(IBM, BEA
Virtual Machines, etc.)

Java as programming platform

14Tuesday, March 14, 2006

Java in a Nutshell © Benoît Garbinato

Development process

Java
Virtual

Machine

15Tuesday, March 14, 2006

Java in a Nutshell © Benoît Garbinato

Java Development Kit (JDK)
JDK is a compile-time environment that offers:

a reference implementation of the Java language;
a reference implementation of the core Java APIs;
various development tools, e.g., javadoc, javah, etc.

JDK is also a runtime environment that offers:
a reference implementation of the Java virtual machine with:

incremental garbage collection,
green & native threads,
just-in-time compilation,
etc.

16Tuesday, March 14, 2006

Questions?

17Tuesday, March 14, 2006

