
Introduction to
Distributed Systems

Benoît Garbinato

Introduction

Tuesday, March 14, 2006

Introduction © Benoît Garbinato

Distributed systems

“As long as there were no machines, programming was no problem

at all; when we had a few weak computers, programming became a

mild problem and now that we have gigantic computers,

programming has become an equally gigantic problem. In this

sense the electronic industry has not solved a single problem, it has

only created them - it has created the problem of using its products.”

Edgster Dijkstra, The Humbel Programmer.
Communication of the ACM, vol. 15, no. 10.

October 1972. Turing Award Lecture.

distributed

distributed

distributednetworks

networks

networks

Tuesday, March 14, 2006

Introduction © Benoît Garbinato

Historical background

Hardware became continuously cheaper

Cheap and fast networks emerged

The example of Unix:
1969 K. Thompson & D. Ritchie develop Unix as a
 multi-users system on PDP-7
1979 B. Joy enhances Unix with interprocess
 communication facilities (BSD Unix)
1980’s Sun Microsystems used BSD Unix as
 operating systems for its workstations

Tuesday, March 14, 2006

Introduction © Benoît Garbinato

Approach of this course (1)
This course teaches distributed systems from both a
practical and a theoretical perspective

“In theory, there is not difference between
theory & practice. In practice, there is.”

The practitioner needs the theoretical perspective to
understand the implicit assumptions hidden in the
technologies, and their consequences

The theoretician needs the practical perspective to
validate that theoretical models, problems & solutions
work in accordance to existing technologies

Tuesday, March 14, 2006

Introduction © Benoît Garbinato

Approach of this course (2)

To achieve this, we will approach distributed
systems through four complementary views:

The model view

The interaction view

The architecture view

The algorithm view

Tuesday, March 14, 2006

Introduction © Benoît Garbinato

The model view

What distributed entities?
E.g., processes, objects, threads, etc.

What time assumptions?
E.g., synchronous, asynchronous, etc.

What failure assumption?
E.g., crash-stop, malicious, etc.

Tuesday, March 14, 2006

Introduction © Benoît Garbinato

The interaction view

What interaction paradigm?
E.g., message passing, shared memory, etc.

What reliability guarantees?
E.g., best-effort, reliable, secure, etc.

Tuesday, March 14, 2006

Introduction © Benoît Garbinato

The architecture view

What level of decentralization?
E.g., client/server, multi-tier, etc.

What level of separation of concerns?
E.g., library-based, container-based, etc.

Tuesday, March 14, 2006

Introduction © Benoît Garbinato

The algorithm view

What problem?
E.g., internet payment, consensus, etc.

What algorithm?
E.g., two phase commit, sliding window, etc.

What complexity and what performance?
E.g., NP-complete, polynomial, etc.

Tuesday, March 14, 2006

Introduction © Benoît Garbinato

The big picture
When implementing a distributed program, you will
always end up writing some algorithm. In doing so,
you will have to answer the following questions:

What problem am I trying to solve?
What architecture do I follow?
What model do I assume?
What interaction do I use?

model

algorithm interactionarchitecture

assumes

usesfollows

problem

solves

Tuesday, March 14, 2006

Introduction © Benoît Garbinato

Layered abstractions (1)
Sometimes, the system you are building
is (yet) another abstraction level to ease the
programming distributed applications.
E.g., middleware, transactional monitor, etc.

In this case, your problem is expressed in terms of
the interaction you want to provide at your level.

To avoid confusion, you thus have to clearly
identify your origin & your target interactions,
models and architectures, respectively.

Tuesday, March 14, 2006

Introduction © Benoît Garbinato

Layered abstractions (2)

Assume you want to devise an algorithm
implementing remote procedure calls

Target interaction: remote procedure call
Target model: partially synchronous crash-stop
Target architecture: client/server (middleware-level)

Origin interaction: unreliable message passing (e.g., UDP)
Origin model ! Target model
Origin architecture: peer-to-peer (os-level)

Tuesday, March 14, 2006

Introduction © Benoît Garbinato

Technologies in this course

The Java Programming platform

Internet protocols (TCP, UDP)

Unix (Linux, Mac OS X, etc.) or Windows

Tuesday, March 14, 2006

Introduction © Benoît Garbinato

Content & calendar
10:00 - 12:00 12:00 - 13:00

March 14 Introduction | Java in a nutshell Get familiar with Java & lab tools

March 21

March 28

April 4

April 11

April 25

May 2

May 9

May 16

May 23

May 30

June 6 Tales from the academic world

June 13 Tales from the real world

June 20 Q & A

Legend: Course

Exercise

Network Programming

Distributed Algorithms

RMI Chat

JMS Chat

Broadcast Chat

Concurrent Programming

Remote Method Invocation

Concurrent Chat

Asynchronous Messaging

Tuesday, March 14, 2006

Introduction © Benoît Garbinato

Course form

Each Tuesday:
from 10 to 12 : principles
from 12 to 13 : exercises

Evaluation :
Written final exam
Bonus based on exercises

Tuesday, March 14, 2006

Introduction © Benoît Garbinato

Exercises
You will start from a concurrent application
and you will distribute it using various
programming abstractions, e.g., remote
method invocations, sockets, message-
oriented middleware, etc.

client-side business logic server-side business logicprogramming abstractions

Tuesday, March 14, 2006

Introduction © Benoît Garbinato

For further information

http://lpdwww.epfl.ch/teaching/ids.html

sebastien.baehni@epfl.ch
bastian.pochon@epfl.ch
newsgroup: epfl.ssc.ids

benoit.garbinato@unil.ch
http://www.hec.unil.ch/dop

Tuesday, March 14, 2006

Questions?

Tuesday, March 14, 2006

