Introduction to
Distributed Systems

Introduction

M/ ‘ HEC ‘ d0p| - Benoit Garbinato

distributed object programming lab

Tuesday, March 14, 2006

Distributed systems

networks distribucted

“As long as there were no W’pro%rammiw;’ was no problem
networks Lstribute i
at all; when we had a few weak sememveeers) programming became a
networks
L mild problem and now that we have gigantic eomwspeesrs,
distributed P 99

programming has become an equally gigantic problem. n this
sense the electronte Lwdu.strg has wot solved a single problem, it has
only created them - it has created the problem of using its products.”

Edgster Dijkstra, The Humbel Programmer.
Communication of the ACM, vol. 15, no. 10.
October 1972. Turing Award Lecture.

Introduction © Benoit Garbinato d 0) p | b
a

Tuesday, March 14, 2006

Historical background

O Hardware became continuously cheaper
O Cheap and fast networks emerged
O The example of Unix:

1969 K. Thompson § D. Ritchie develop Unix as a
multi-users system on PDP-7#

1979 B.Joy enhances Unix with interprocess
communication facilities (BSD Unix)

1980's Sun Microsystems used BSD Unix as
operating systems for its workstations

Introduction © Benoit Garbinato d (0] p | .
a

Tuesday, March 14, 2006

Approach of this course (1)

O This course teaches distributed systems from both a
'PmcticaL and a theoretical Perspecti\/e

“In theory, there is not difference between
theory § practice. n practice, there is.”

O The pmc’ci’ciowcv needs the theoretical perspeoti,\/e to
understand the mel,icit assumptiows hidden L the
technologies, and thelr consequences

O The theoretician needs the practical perspective to
validate that theoretical models, problems § solutions
work tn accordance to existing technologies

Introduction © Benoit Garbinato d 0) p | b
a

Tuesday, March 14, 2006

Approach of this course (2)

To achieve this, we will approach distributed
systems through four complementary VIEWS:

O The model view
0O The tnteraction view
O The architecture view

O The algorithm view

Introduction © Benoit Garbinato d (0) p |

Tuesday, March 14, 2006

The model view

O what distributed entities?
E.9., processes, objects, threads, ete.

O what time assumptions?
€.9., synchronous, asynchronous, ete.

0O what failure assumption?
E.9., crash-stop, malicious, ete.

Introduction © Benoit Garbinato d (0) p |

Tuesday, March 14, 2006

The interaction view

O what interaction paradigm?
E.9., message passing, sharved memory, ete.

O wWhat reliability guarantees?
E.9., best-effort, reliable, secure, ete.

Introduction © Benoit Garbinato d (0) p |

Tuesday, March 14, 2006

The architecture view

O wWhat Llevel of decentralization?
E.9., client/server, multi-tier, ete.

O what Level of separation of concerns?
E.9. L'merg—baseol, container-based, etc.

Introduction © Benoit Garbinato d (0) p |

Tuesday, March 14, 2006

The algorithm view

O what problem?
E.g., lnternet pa ywment, consensus, ete.

O what algorithm?
E.9., two phase commit, sliding window, ete.

O what complexity and what performance?
€.9., NP-complete, PongomiaL, ete.

Introduction © Benoit Garbinato d (0] p | .
a

Tuesday, March 14, 2006

The big picture

Whewn implementing a distributed program, you will
always end up writing some algorithm. n doing so,
you will have to answer the following questions:

O wWhat problem am | trying to solve?

O wWhat architecture do (follow?
O what wmodel do | assume?
O what tnteraction do | use?
assumes
solves
m
. A . \———/
Introduction © Benoit Garbinato d O p | b

Tuesday, March 14, 2006

Layered abstractions (1)

O Sowetimes, the system Yyou are building
Ls (yet) another abstraction Level to ease the
programming distributed applications.
€.9., middleware, transactional monlitor, ete.

O nthis case, Your problem is expressed in terms of
the nteraction Yyou want to provide at your Level.

O To avoid confusion, You thus have to clearly
Ldentify your origin § your target interactions,
wmodels and architectures, respectively.

Introduction © Benoit Garbinato d (0] p | .
a

Tuesday, March 14, 2006

Layered abstractions (2)

Assume You want to devise an algorithm
Lmplementing remote procedure calls

O Target interaction: remote procedure call
O Target moodel: partLaLLg synchronous crash-stop
0O Taroet architecture: client/server (middleware-Level)

O Origin interaction: unreliable message passing (e.g., UPP)
O orioin wmodel & Target model
O Origin architecture: peer-to-peer (os-level)

Introduction © Benoit Garbinato d 0) p | b

Tuesday, March 14, 2006

Technologies in this course

O The Java Programming platform
O nternet protocols (TCP, UDP)

O unix (Lnux, Mac 0S X, ete.) or Windows

Introduction © Benoit Garbinato d (0] p | .
a

Tuesday, March 14, 2006

Content & calendar

10:00 - 12:00 12:00 - 13:00
March 14 Introduction | Java in a nutshell Get familiar with Java & lab tools
March 21 Concurrent Programming
March 28 Concurrent Chat
April 4 Remote Method Invocation
April 11
i RMI Chat
April 25 Asynchronous Messaging
May 2
May 9 Network Programming
May 16 JMS Chat
May 23 Distributed Algorithms
May 30
Tales from the academic world
June 6 Broadcast Chat
June 13 Tales from the real world
June 20 Q&A
Legend: Course
Exercise
Introduction © Benoit Garbinato d (0] p | b

Tuesday, March 14, 2006

Course form

O Bach Tuesday:
O from 10 to 12 : principles
O from 12 to 13 : exerclses

0O evaluation :
O Written final exam
O Bonus based on exerclses

Introduction © Benoit Garbinato d (0) p |

Tuesday, March 14, 2006

Exercises

You will start from a concurrent application
and you will distribute it using various
programming abstractions, e.g., remote
method tnvocations, sockets, message-
oriented middleware, etc.

é‘f’i@ﬁ?

— U — U~ _
~ —~—
client-side business logic programming abstractions server-side business logic
Introduction © Benoit Garbinato d (0] p .
I a

Tuesday, March 14, 2006

For further information

O http://lpdwww.epfl.ch/teaching/ids. html

O sebastien.bachni@epfl.ch
O bastian.pochon@epfl.ch
O newsgroup: epfl.sse.ids

O benott.garbinato@unil.ch
0 http://www.hec.uwu.ch/dop

Introduction © Benoit Garbinato

Tuesday, March 14, 2006

dop; ; ;

Questions?

Tuesday, March 14, 2006

