OS Support for P2P Programming: a Casefor TPS

Sébastien Baehni, Patrick Th. Eugster, Rachid Guerraoui
Swiss Federal Institute of Technology
Distributed Programming Laboratory
IN-R, 1015 Lausanne, Switzerland
{ Sebastien.Baehni, Patrick.Eugster, Rachid.Guerraoui} @epfl.ch

Abstract

Just like Remote Procedure Call (RPC) turned out to be
a very effective OS abstraction in building client-server
applications over LANs, Type-based Publish-Subscribe
(TPS) can be viewed as a high-level candidate abstraction
for building Peer-to-Peer (P2P) applications over WANS.

Thispaper relatesour preliminary, though positive, ex-
perience of implementing and using TPSover JXTA, which
can be viewed as the P2P counterpart to sockets. We show
that, at least for P2P applications with the Java type mod-
el, TPS provides a high-level programming support that
ensures type safety and encapsulation, without hampering
the decoupled nature of these applications. Furthermore,
the loss of flexibility (inherent to the use of any high level
abstraction) and the performance overhead, are negligible
with respect to the simplicity gained by using TPS.

1. Introduction

Remote Procedure Call (RPC) was first proposed by
Birrel and Nelson [1] as asimple abstraction that conceals
interactions between remote components beneath tradi-
tional procedural interfaces. Partly because of its simplic-
ity and the very factsthat it preserves object encapsulation
and ensures type safety, and partly because RPC's over-
head was very acceptable over sockets, RPC became a
dominant paradigm for programming distributed applica-
tions over client/server architectures. In these architec-
tures, clients typically communicate with one or several
servers following a strongly-coupled request/reply
scheme.

With the emergence of Peer-to-Peer (P2P) infrastruc-
tures, new forms of decoupled (i.e., anonymous and asyn-
chronous) interactions are needed. One can indeed extend
RPC with decoupling flavours. Neverthel ess, regardl ess of

the fact that adding layers over RPC would certainly ham-
per performance, it is challenging to devise a ssimple ab-
straction that could directly fit these architectures and
potentially be supported by future Internet-wide operating
systems.

So far, P2P developers have generally gravitated to-
wards a few application types: instant messaging (ICQ,
AOL’s Instant Messenger); collaboration (Aimster,
Groove Networks); searching and file sharing (Morpheus,
AudioGalaxy); distributed computation (Seti@Home, Pa-
rabon). Going beyond these simple applications, and de-
veloping more advanced ones, goes through developing
basic abstractions for P2P programming.

Some initiatives were recently made towards building
libraries or frameworks for deploying P2P applications. A
seminal example isthe JXTA [2] specification whose im-
plementations provide, for example, protocols for service
discovery and many-to-many communication. This speci-
ficationisrather low level and its protocols can be viewed
asthe analogous of the basic TCP or UDP protocols[3] for
client/server programming over sockets. one needs to ex-
plicitly cast types and control encapsulation.

Just like RPC typically hides the underlying mecha-
nisms of sockets and preserves type safety and encapsula-
tion, Type-Based Publish/Subscribe (TPS) [4], avariant of
Publish/Subscribe [5], can be viewed as a reasonabl e can-
didate abstraction to hide the mechanisms of a low-level
P2P library, like IJXTA. The distributed event-based inter-
action scheme promoted by TPS enables the preservation
of the decoupled flavor of P2P applications.

This paper presents an implementation of TPS over
JXTA and compares the programming and the perform-
ance of TPS in writing a typical P2P application with the
programming and the performance of using directly JXTA
in writing the very same P2P application. Our implemen-
tation of TPS over JXTA together with our performance
comparisons provide a preliminary, yet interesting, expe-
rience towards evaluating the feasibility of equipping fu-

ture Internet-wide operating systems with abstractionslike
TPS.

Like any high level abstraction, TPS does not apply to
all kinds of applications and is obvioudly lessflexible than
alower level library like IXTA. In particular, IXTA sim-
ply assumes acommon XML knowledge among peers, de-
noting a very high interoperability, whereas the current
implementation of TPS restricts to applications that share
the common Java type model. We show that for these ap-
plications, the inherent benefits of the use of our TPS li-
brary, namely type-safety, encapsulation of application
defined event types and code reusability, can be provided
without hampering the decoupled nature of P2P comput-
ing.

This paper is organized as follows. Section 2 is a brief
tutorial on JXTA. Section 3 describes a TPS APl and an
implementation of this APl over JXTA. Section 4 com-
paresthe programming of an application using TPSand di-
rectly using JXTA (notethat thelast part of thissection has
been sketched for limitation purpose, have alook at [6] for
the complete version). Section 5 compares the perform-
ance of these two implementations. Section 6 summarizes
and concludes our experience.

For presentation simplicity and space limitations, we
only give excerpts of the interfaces and classes of our im-
plementations. The complete code of our TPS implemen-
tation and our testbed applications (both using TPS and
directly using JXTA) are available at: http://lpdwww.ep-
fl.ch [7]. Please note that this paper relates our experience
with the build 29i of IXTA (22”d August). Sincethen, alot
of changes have been made in the API. We invite you to
have alook at our web site to see the latest changes.

2. Background: JXTA

Werecall here the basics of JXTA, on top of which we
build our TPS abstraction layer. IXTA isalibrary specifi-
cation for P2P computing, defining three layers: a core
layer, a service layer and an application layer. The appli-
cation layer wraps al the applications that are developed
by JXTA programmers. The service layer is made up of
services simplifying the development of the programmer.
Various services are currently being implemented by the
JXTA community; the best known are the monitoring
service, the cms (content management system) service and
the wire service (responsible for providing many-to-many
communication). The core JXTA layer consists of several
protocols ensuring basic communication between the
peers, message routing or peer group creation.

2.1. The concepts

The JXTA protocols rely on six concepts: ID, Peer,
Pipe, PeerGroup, Advertisement and Message. An ID

identifies any JXTA resource, which can be a peer, apipe,
a peergroup or a codat (code and data). The peer concept
points out all networked devices using JXTA. Any device
with an electronic pulse could be a IXTA peer (refrigera-
tor, PDA, compuiter, ...). Thereare different kinds of peers:
“normal” ones and ones that have additional functionali-
ties. Rendez-vous (rdv) are specific peers that keep track
of information about peers that are connected. Rendez-
vous allow to make the bridge between two different sub-
networks. They are mainly used to dispatch information
and discovery queries between peers. The second kind of
special peersarerouters. These are used to route the infor-
mation from one peer to another if they cannot communi-
catedirectly. Peers may have multiple network interfaces.

In order for the peers to communicate, they need a
mechanism that does not depend on their network. This
mechanism is the pipe. A pipeisavirtua communication
channel used to send messages. The basic pipes are asyn-
chronous and uni-directionnal but some other variants are
available (e.g., the very new bidirectional pipes or the
many-to-many pipes (called wire)). Pipes are not bound to
any physical address (like IP ones). Hence if apeer chang-
esitsaddress, it can continueto use the same pipefor send-
ing or receiving messages. PeerGroups are collections of
peers. A peer may join multiple peergroupsto share differ-
ent resources and services. Thereisno hierarchy inside the
groups. A peergroup creates a scoped and monitored envi-
ronment.

When anew resource (peer, pipe, peergroup, Service) is
available, anew advertisement is published in order for the
other peers to know this ressource. An advertisement is a
XML message that provides information about the re-
source. A typical peer advertisement would give informa-
tion about the network interfaces it provides, about which
groups it belongs to, about its name and ID. Each adver-
tisement encompasses an age to distinguish stale adver-
tisements from new ones.

2.2. The protocols

Implementing the JXTA specification consists in im-
plementing the following protocols: Peer Discovery Proto-
col (PDP, Figurel), Peer Resolver Protocol (PRP,
Figure 2), Peer Information Protocol (PIP, Figure 3), Pipe
Binding Protocol (PBP, Figure 4), Endpoint Routing Pro-
tocol (ERP, Figure 5) and the RendezV ous Protocol (RVP,
Figure 6).

The PDP alows different peers to find each other. In
fact, this protocol allowsto find any kind of published ad-
vertisements. Without this protocol, a peer remains alone
unlessit knowsin advance the peersit wantsto connect to.
This protocol uses the rdv/router peers to improve its per-
formance and the PRP to achieve different discoveries.

Fig. 1: Basic view of the PDP

The PRP is a protocol just above the transport layer.
This protocol dispatches each IXTA message to the right
services. The more handlers are registered with PRP, the
more peersagiven peer ispotentially able to communicate
with.

M\ ol)
PIPmsy |
A/'/\:ng A*P"ﬂa N fBP"“g Y

Fig. 2: Basic view of the PRP

The PIP is used to know the status of a peer. This pro-
tocal is responsible for finding and dispatching informa-
tion about a peer, like the time the peer was up, the
different incoming and outgoing channels, the traffic on
them, and the different target and source IDs.

Fig. 3: Basic view of the PIP

The PBP is responsible for keeping the different peers
of a pipe bound together. Even if the peers are moving in
the network (i.e., if their P addresses do not remain the
same), they can continue to use the same pipesto send/re-
ceive messages (to achieve that goal, the protocol usesthe
UUID (Universal Unique | Dentifier) of the peers).

Peer A

Q
"fb Peer
id: 128..012

IP: 128.178.115.6,

Fig. 4: Basic view of the PBP

The ERP is used to route the different messages be-
tween the different peers. Thisallows different peersto ex-
change messages even when they do not know how to
connect to each other (because of afirewall for example).

jxtamsg

jxtam: via http

viahttp jxtamsg

viatcp

Fig. 5: Basic view of the ERP

Finally, the RVPisused by therdv peersto dispatch the
information (or queries) between the connected peers of
the rdv. The RVP uses a cache for performance purpose,
implying that a rdv peer must have some additionnal res-
SOUrces.

id:694..004 /~g _answer. . AnSwer
answer

query,

Peer D qui P
id: 754..987

Fig. 6: Basic view of the RVP

3. TPSover JXTA

This section overviews the design and implementation
of our TPS abstraction over IXTA.

3.1. TPS:; Overview

The publish/subscribe paradigm is a communication
pattern that provides time, space and flow decoupling
among communicating entities. More precisely, the pub-
lishers and the subscribers (a) do not need to be up at the
same time (time decoupling), (b) do not need to know each
other (space decoupling) and (c) the sending/receiving of
messages does not block the participants (flow decou-
pling). This paradigm perfectly suits decoupled networks
and serverless architectures. In the original pettern (e.g.,
[8]), publishers publish information on a subject and sub-
scribers subscribe to subjects . These different subjectsare
often arranged in hierarchies (specified by a URL-like no-
tation). More advanced communication schemes can be
obtained through content-based subscribing, where sub-
scribers express interests in events with particular native
properties (e.g., [9]). In our Type-based Publish/Subscribe
(TPS) scheme (see Figure 7), the subject is the event ob-
ject type and the content is the state of instances of that
type. Moreover, TPS ensures type safety and preserves
event encapsulation with application-defined event types:

the subscriber knows in advance the type of eventsit re-
ceives (type-safety) and subscriptions operations of the
type can be used for content-based filtering (encapsula-
tion). So one can easily implement content-based publish/
subscribe (hence subject-based) using TPS.

o Hiearchy PL, Sy P2
Subtyping hierart
42N N
A |
PZaN ==
B c A *
| A e fofp fofp
D

C)
fB,fD+ yio

P8, S
Fig. 7: Type-Based Publish/Subscribe (TPS)

A Publish, Deliver
\

fr Fow of Objectsof Type T
St Subscribeto Type T

3.2. Generic Java

Our TPS implementation we relate in this paper is
based on genericity. Using TPS for a specific type T can
be viewed as using instances of generic classeswith atype
parameter instantiated with T. Such generic classes are
supported by several languages like C++ (t enpl at e)
and Ada(gener i c¢), while Java supports generics by the
idiom of replacing variable types by the top of the type hi-
erarchy. For such languages lacking generic types and
methods, adequate extensions have been widely studied.
In the case of Java, several solutions have been proposed
like Generic Java (GJ) [10] which we have used for our
implementation.

Our implementation uses the 1.3 version of the 14th
Java Specification Request (JSR), based on GJ, whichis
expected to beincluded in the 1.5 version of Java(The 1.3
version of the 14th JSR isafully Javacompatible compiler
and enables the use of the original Java Virtual Machine
(VM)).

3.3. The TPSAPI

The different methods a programmer can use to express
a TPS interaction are regrouped within our TPSI nt er -
face. The corresponding source code is given in
Figure 8.

We briefly describe below each of these methods:

(1) : This method is used to publish an instance of a
type (Type) which can be any application-defined type.
Thisinstance is sent as an event to the subscribers.

(2) : Thismethod (asthe next ong, i.e., (3)) isused to
subscribe to the events of a specific Type. Two parame-
ters must be provided: (a) acall-back object whichis used
to handle received events and (b) a handler for the excep-
tions that may be raised while handling the received
events.

(3): This aternative subscription method is used to
register several call-back objects to handle the events in
different ways. It isvery useful, for instance, if wewant to
display the complete description of the eventsin aconsole
and have a sketch of them in a GUI at the same time (for
example, see Figure 11).

(4): This method is used to unsubscribe a specified
call-back object and its associated exception handler. By
doing so, only the specified call-back object is removed.

(5) : This method is used to remove al the call-back
objects registered so far. After this cal, no event is re-
ceived anymore.

(6, 7): Thelasttwo methods are used to obtain the
entire set of eventsreceived or sent so far.

The other type of the API that the programmer needsto
handleis TPSENngi ne. Thisclass gives areference to the
TPSI nt er f ace. Hereisthe sketched source code of the

TPSENgi ne class:
public class TPSEngi ne<Type> {
public TPSEngine() {...}
public TPSInterface
new nterface(String n,Criteria c,

Type t, String[] arg){

}
}

The programmer uses this class in the initialization
phaseto get the TPSI nt er f ace.

public interface TPSInterface<Type> {
public void publish(Type type) throws PSException; 11 (1)
public void subscribe(TPSCal | Backl nterface<Type> t psCBI,
TPSExcept i onHandl er <Type> t psExH)
throws PSException; 11 (2)
public void subscribe(TPSCal | Backl nterface<Type>[] tpsCBI,
TPSExcept i onHandl er <Type>[] tpsExH)
throws PSException; 11 (3)
public void unsubscribe(TPSCal | Backl nt erface<Type> tpsCBI,
TPSExcept i onHandl er <Type> t psExH)
throws PSException; 11 (4)
public void unsubscribe(); 11 (5)
public Vector objectsReceived(); 11 (6)
public Vector objectsSent(); 1 (7)

Fig. 8: The TPSI nt erf ace

3.4. Architecture

The TPS layer fits between the “ standard” application
layer and JXTA’s one. In our architecture (Figure 9 and
Figure 10), one type is represented by one advertisement.
When a subscriber subscribes to atype, it must specify an
object implementing the TPSCal | Backl nt er f ace for
that type to handle the events and an TPSExcept i on-
Handl er (see Section 4.3.3for animplementation exam-
ple) responsible for handling the exceptions that may
occur while dispatching the events. Our TPS layer is made
up of four building blocks (see Figure 10):

» TPSEngine: This block is the core of our service. It
collects and dispatches the subscriptions and publica-
tions.

» Advertisements (Advs): This block is responsible for
creating anew advertisement for thetype we areinter-
ested in aswell asfor finding and collecting the mul-
tiple advertisements that are in relation with our type.

* Interface Repository (IR): This block stores all the
call-back interfaces and exception handlers. It also
starts and stops the subscriptions

» Connections. This block creates readers, input pipes
and output pipes from an advertisement. It sends and
receives new messages with the underlying JXTA-
WIRE service.

Y ou can see several things that are missing in this typ-
ical pub/sub architecture. We do not have amodule that do
the routing mechanisms [11] and we neither have one for
the filtering of events problem [12]. In fact, we rely only
on JXTA for doing the routing of events (and it is one of
our main goal, to test what JXTA can do for us). We do not
take into account the filtering problem as we want to re-
main concise in building the first blocks of our TPS archi-
tecture (moreover, this problem has been studied in [4]).

Do not considering those aspects can | ead to severe per-
formance leaks and problems, especially for large-scale
distributed systems and that is definetely what we will im-
plement next in our TPS API.

i i [y
publish(Type) (un-)subscribe(tpsCBI, tpsExH) handle(Type)
v v [

TYPE-BASE PUBLISH-SUBSCRIBE LAYER

| A
Find and create new advs send(Msg) recv(Msg)
v v |

JXTA CORE LAYER

Fig. 9: General architecture

T I [
publish(Type) (un-)subscribe(tpsCB, tpsExH) handle(Type)

‘ TPSEngine

Find and create new advs send(Msg) recv{Msg)
v v |

JXTA CORE LAYER

Fig. 10: General architecture (details of the
TPS layer)

4. The programming experience
We compare here the programming of atypical P2P ap-

plication using our TPS abstraction with the programming
of the very same application using JXTA directly.

4.1. Ski-Rental Application

If you want to go skiing, you need skis. If you do not
have any, you have two possibilities, either you buy them
or you rent them. In the latter case, you will typically goto
different shopsin order to see what kind of skis you want
and also to compare the different prices. Of course, nowa
days, you could aso do that online, by visiting differents
web-sites. However, you must spend time doing that: you
must stay behind your computer trying to find the best
skis. A more comfortable way to do that isto use the TPS
paradigm over a P2P infrastructure. Y ou would then sub-
scribe to the ski-rental type and wait for the answers. The
infrastructure will be responsible for sending the subscrip-
tion to the other peers and also getting the responses. Y ou
can now do something else during the search phase of the
program and come back later to get the answers when they
are available. Figure 11 depict two GUIs that a publisher
and a subscriber have with our ski-rental application.

When the publisher (a shop for example) starts, a
search for aSki Rent al advertisement isfirst launched.
If the application does not find such advertisement in a
specific amount of time, it creates its own one, but keeps
trying to find othersin order to send messages to the max-
imum number of interested subscribers. After that, an out-
put pipe is created to send messages, and the window is
displayed (see Figure 11).

In Figure 11, we can see that the shop seller can set the
different options for the kinds of skis he wantsto offer for
rent (the brand, the duration of therental, the price, ...). Af-
ter setting these parameters, hejust hasto click on the pub-
lish button and the proposition is sent to all the interested
subscribers via the output wire pipe.

For the subscriber, the same kind of initialization is
done asfor the publisher. Once thisinitialization has been
accomplished, the window is displayed. In this interface,
the subscriber can see the different propositions from pub-
lishers of ski-rental advertisements. After some time, the
subscriber can choose the best propositions and, maybe,
send a message to the shop (in hitting the answer button).

= T SRR U 5

received:
Date ofpublic..{ Nurnber ofsu..} | | Shop na..| Skis brangRental du.| __Price i Dat Publisher..|. Replied |
Wed Mar 27 1... 0 SremSh.. Salomon 150 oo e mpac]
Wed Mar 27 1... 0 Mtremsh. Head 100 500 Wed Mar .. umjdau

Fig. 11: GUI of a ski-rental publisher and
subscriber

4.2. Programming Phases

Programming a TPS application, like the ski-rental, can
be divided into four main phases, as depicted in Figure 12
(the arrows conveysthe causality). In our implementation,
we associate one instance of a publish/subscribe engine
per type. If a publisher (or a subscriber) is interested in

severa “unrelated” types (i.e., different types that do not
belong to the sametype hierarchy), several instances of the
publish/subscribe engine for each type of interest must be
created (leading to aloss of ressources, but some optimi-
sations can be made to reuse the modules of aformer pub/
sub engine). In Figure 12, thisis conveyed by the fact that
the type definition phase preceeds the initialization phase.

TYPE DEFINITION PHASE

'

INITIALIZATION PHASE

v '

SUBSCRIPTION PUBLICATION
PHASE PHASE

Fig. 12: The 4 different phases

Inthefollowing, we overview the two different ways of
developing the ski-rental application according to the four
phases, first using our TPS APl and second using directly
IXTA.

4.3. Renting skiswith TPS

We present here the different phases shown in
Figure 12 to create a simple application using our TPS ar-
chitecture.

4.3.1. Typedefinition phase: theSki Rent al type. We
give here the basic type used in our application. Thistype
contains the name of the renter, the price, the brand of the
skis and the number of days the skis need to be rented.
Hereis the sketched source code of our simple type:

public class SkiRental inplenments
Serializable {
public SkiRental (String shop, float price,
String brand, float days)

{...}
}

4.3.2. Initialization phase. When a user wantsto use the
TPS API, he must first write few linesto initiliaze the pub-
lish/subscribe engine:
TPSEngi ne<Ski Rent al > tpse =
new TPSEngi ne<Ski Rent al >();
TPSInterface tpsint =

t pse. newi nterface(“JXTA", nul |,
new Ski Rental (), argv);

In the first line, we create the publish/subscribe engine
and specify the type of interest. In the second line, the sec-
ond parameter specifies acriteriawe want for filtering ad-
vertisements (may be null). The third parameter is an
instance of the type of the events we are interested in. We
must provide this instance because GJ does not provide

runtime information about (actual) type parameters. The
last parameter denotes the arguments of the main class
(may be null).

4.3.3. Subscription phase. To subscribe to events, one
must create two objects (as described when presenting the
subscri be() method, Figure 8): oneimplementing the
TPSCal | Backl nt er f ace interface and another one
implementing the TPSExcept i onHandl er interface.
Here is an implementation of the first interface:
public class MyCBInterface inplenents
TPSCal | Backl nt er f ace<Ski Rent al > {
public void handl e(Ski Rental skiR)
throws Cal | BackException {
System out. println(skiR);

}
}

This class defines what needs to be done when new
events are received. In this case, we just print the events
into the console. Here is a sketched implementation for the
second interface:

public class MyExHandl er inpl enments

TPSExcept i onHandl er <Ski Rent al > {
public void handl e(Throwable th) {...}

}

Besides these two classes, here are the lines one must
add to subscribe to the type (Ski Rent al) specified be-
fore:

MyCBI nterface nCBInt = new MyCBInterface();

MyExHandl er nmExH = new MyExHandl er () ;

tpslnt. subscri be(nCBInt, nExH);

4.3.4. Publication phase. Up to now, we have only seen
the subscriber perspective. If a publisher wantsto publish
aninstance of the Ski Rent al type, hereistheline he
must add after the initialization phase:

tpslnt. publi sh(

new Ski Rent al (“ XTrenshop”, *“Sal onmon”,
14f, 100f);

4.4. Renting skiswith IXTA

Our aim hereisto create the very same application than
the one with TPS, i.e., an application with the same func-
tionalities® as TPS. Unfortunately, for limitation purpose,
we are not able to give you the class files mandatory for
developping the architecture presented in Figure9,
Figure 10.

These classes should have convinced you that TPS
hides a lot of programming details. For example, writing
the very same application with JXTA implies writing, at

1. (1) Minimization of the number of advertisements for the
same type, (2) management of multiple advertisements at
the same time and (3) handling of duplicate messages.

least, about 4000 lines of code more than using directly
TPS. Moreover, TPS allows the programmer to focus only
on the portion of the code heisinterested in. This prevents
from spending time learning the underlying JXTA con-
cepts. Findly, TPS prevents the programmer from per-
forming wrong type casts at runtime, and hence saves
precious debugging time. If you want to see this classes,
either have alook at [6] or at [7].

5. The performance experience

This section presents the performance results of both
our ski-rental application based on our TPS layer (SR-
TPS), and implemented directly with IXTA (SR-JXTA).
Even if IXTA-WIRE aone is not comparable with SR-
TPSand SR-JXTA (sinceit does not insure the properties
described in Section 4.4), we use it here asa (lower bound)
reference point.

We used the following computer configurations: Sun
Ultra 10 (CPU 440 MHz, RAM 256 MB) on Solaris 7;
FastEthernet (100 Mbits/s); JXTA version 1.0 (build 29i,
08-22-2001); Javaversion "1.4.0-beta" (Java(TM) 2 Runt-
ime Environment, Standard Edition (build 1.4.0-beta-
b65), JavaHotSpot(TM) Client VM (build 1.4.0-beta-b65,
mixed mode)); messages size: 1910 bytes.

We give here the throughput for a limited number of
participants (at the time of our implementation, JXTA was
not able to handle connections between more than 5 peers
sending alot of messages). Thesetestsaim at giving ahint
about the differences between the three implementations.
Again for amore complete set of results, see [6].

5.1. Throughput: the publisher viewpoint

uuuuuu

Fig. 13: Publisher’s throughput

We consider here a set of 100 published events and we
measure the time for the publisher to deliver those events
to the subscriber(s). Again, the values for SR-JXTA and
SR-TPS are very close. We can a so notice that our differ-

ent layersare dlightly slower than IXTA-WIRE itself (e.g.,
about two events per second for one subscriber) (see
Figure 13). When the number of subscribersincreases, the
differences between the layers become insignificant (e.g.,
with four connected subscribers, only 0.3 events per sec-
ond between IXTA-WIRE and SR-JXTA and 0.5 events
per second between IXTA-WIRE and SR-TPS).

5.2. Throughput: the subscriber viewpoint

Here the publishers try to flood the subscriber (10000
events published per each publisher). Every second, we
measure the number of eventsthat are received; during 50
seconds. The results are given in Figure 14. Once again,
we have a quite big standard deviation and the number of
events received per second is not really stable. For exam-
ple, with a single publisher, the average throughput for
JXTA-WIRE is about 7.8 events per second and, for SR-
JXTA and SR-TPS, thevaluesare 6.1 and 6.0 respectively.
If we compare these results with the ones from Figure 13,
we can see that, for one publisher, JXTA-WIRE saturates.
JXTA-WIRE can ssimply not handle all published events
(e.g., about nine per second for one subscriber (see
Figure 13)).

When we increase the number of publishers, the aver-
age number of events received per second remains quite
the same for the different layers. Again, the average drops
by a factor of about three (because the subscriber must
handle more connections (as there are more publishers)).

10

0

SO TP eo S NN NELEARANNIRERRRBHNBIREER89TYIILE59e8
Second number

Fig. 14: Subscriber’s throughput

6. Concluding Remarks

This experience paper makes a case for TPS (Type-
Based Publish-Subscribe) as aviable abstraction for future
Internet-wide operating systems to support P2P applica-
tions. TPS fits particularly well the decoupled nature of
server-less P2P applications. In short, TPS is simple to
use, ensures type-safety and encapsulation and yet pre-
serves the decoupled nature of P2P applications. This pa

per describes a TPS API and an implementation of TPS
over IXTA, and then compares the programming and per-
formance of a testbed application over TPS and directly
over JXTA. Roughly speaking, (1) TPS makes the pro-
gramming of a P2P application significantly easier than
using directly alibrary like JXTA and (2) does not intro-
duce a significant overhead with respect to JXTA.

Our current TPS prototype is based on the JXTA re-
lease of August 22, 2001. New implementations of JXTA
will obviously impact our prototype but we do not believe
they will fundamentally impact the nature of the results
drawn from the present experience.

Of course, more programming and implementation
testbeds need to be performed before TPS can be realisti-
cally viewed as a reasonable general abstraction for P2P
applications. In particular, measuring the lack of program-
ming flexibility that our abstraction involves is not clear.
We can for example easily see through our ski-rental ap-
plication that our TPS API does not enable a subscriber to
immediately reply to a publisher that posted an interesting
event. This would require a combination with a more tra-
ditional RPC kind of interaction or directly using the un-
derlying P2P library. Another loss of flexibility is our
assumption that the different peers must a priori agree on
the Java type system which is not the case when using
JXTA directly. Figuring out “loose” ways of achieving
such common knowledge at run-time (e.g., by represent-
ing types through XML data structures) is the subject of
ongoing investigations.

Finally, we are thinking of a new architecture allowing
usto use your own network and routing protocols improv-
ing thereliability and performance of TPS. One possibility
would be to implement a hierarchical probabilistic multi-
cast algorithm [4] between a low-level network protocol
(like UDP) and our high-level TPS abstraction.

References

[1] Andrew D. Birrell and Bruce Jay Nelson. Implementing
Remote Procedure Calls. In Proceedings of the 9th ACM
Symposium on Operating Systems Principles (SOSP’ 83).
October 1983.

[2] Project IXTA web site. http://www.jxta.org. Sun Micro-
systems. 2001.

[3] A. S Tanenbaum. Computer Networks. Prentice-Hall,
third edition. January 1996.

[4] P. Th. Eugster. Type-based publish/subscribe. PhD thesis.
Swiss Federal Institute of Technology, Lausanne. Decem-
ber 2001.

(9]

(6]

(7]
(8]
(9]

(10]

(11]

(12]

(13]

(14]

(19]

(16]

(17]

B. Oki, M. Pfluegl, A. Siegel et a. The Information Bus -
An Architecture for Extensible Distributed Systems. In
Proceedings of the 14th ACM Symposium on Operating
System Principles (SOSP '93). December 1993.

S. Baehni, P. Th. Eugster, and R. Guerraoui. OS Support
for P2P Programming: a Case for TPS. Technical Report.
February 2002.

LPD web site. http://Ipdwww.epfl.ch. For the full source
codes, follow People/ Sebastien Baghni / Current work.
TIBCO. TIB/Rendezvous White Paper. http://www.rv.tib-
co.com. 1999.

Gryphon: Publish/Subscribe over public networks. IBM
T.J. Watson Research Center.
http://researchweb.watson.ibm.com/gryphon/Gryphon/
gryphon.html. February 2001.

G. Bracha, M. Odersky, D. Stoutamire and Ph. Wadler.
Making the future safe for the past: Adding genericity to
the Java programming language. In Proceedings of the
13th ACM Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA ‘' 98), pag-
es 183-200. October 1998.

A. Rowstron and P. Druschel. Pastry: Scalable, Decentral -
ized Object L ocation, and Routing for Large-Scal e Peer-to-
Peer Systems. In Proceedings of the 3rd Middleware con-
ference (Middleware 2001). November 2001.

M. Aguilera, R. Strom, D.Sturman, M.Astley and T. Chan-
dra. Matching events in a content-based subscription sys-
tem. In Proceedings of the 2nd ACM Special Interest
Group on Management Of Data (S GMOD’ 99). May 1999.
A. Carzaniga, D.S. Rosenblum and A.L. Wolf. Design and
evaluation of awide-area event notification service. ACM
Trans. on Computer Systems, 19(3):332-383. August 2001.
I. Clarke, O. Sandberg, B. Wiley et al. Freenet: A Distrib-
uted Anonymous Information Storage and Retrieval Sys-
tem. In Proceedings of the International Computer
Scientist Institute Workshop on Design | ssues in Anonym-
ity and Unaobservability (ICS’2000). July 2000.

A. Carzaniga, D. S. Rosenblum and A. L. Wolf. Achieving
Scalability and Expressiveness in an Internet-Scale Event
Notification Service. In Proceedings of the 19th ACM Sym+-
posium on Principles of Distributed Computing
(PODC' 00). July 2000.

D. Heimbigner. Adapting Publish/Subscribe Middleware
to Achieve Gnutella-like Functionality. In Proceedings of
the 16th ACM Symposium on Applied Computing
(SAC’'2001), pages 176-181. 2001.

John A. Zinky, Linsey O'Brien, David E. Bakken, Vijayku-
mar Krishnaswamy, Mustaque Ahamad. Pass-A servicefor
Efficient Large Scale Dissemination of TimeVarying Data
Using CORBA.. In Proceedings of the 19th International
Conference on Distributed Computing Systems (ICD-
CS99). May 1999.

