
Transactional Memory:
Myths and Limits

R. Guerraoui, EPFL

This tutorial is about

Principles of
transactional memory

1. Why do we care?

Transactional memory

2. What should we expect?

3. What might we expect?

1. Why do we care?

Transactional memory

From the New York Times
San Francisco, May 7, 2004

Intel announces a drastic
change in its business strategy:

« Multicore is THE way to boost
performance »

10/12/10 Transactional Memory: Part I — P. Felber 9

• Transistor count still rising
according to Moore’s Law

• Clock speed flattening

10

"  Multicores are the only way to increase
performance

"   Indeed single-thread performance doesn’t
improve…
… but we can put more cores on a chip

"  Dual-core commonplace in laptops
"  Quad-core in desktops
"  Dual quad-core in servers
"  All major chip manufacturers produce

multicore CPUs
"   SUN Niagara (8 cores, 32 concurrent threads)
"   Intel Xeon (4 cores)
"   AMD Opteron (4 cores)
"   …

L1 cache

L2 cache

L3 cache
(shared)

"  Two fundamental components that fall apart:
processors and memory

"  The Interconnect links the processors with
the memory:

"   - SMP (symmetric): bus (a tiny Ethernet)
"   - NUMA (network): point-to-point network

"  The basic unit of time is the cycle: time to
execute an instruction

"  This changes with technology but the
relative cost of instructions (local vs
memory) does not

Simple view

"  The basic unit of communication is the read
and write to the memory (through the cache)

"  More sophisticated objects are sometimes
provided: C&S, T&S, LL/SC

The free ride is over

"  Cannot rely on CPUs getting faster

"  Utilizing more than one CPU core requires
thread-level parallelism (TLP)

Every one will need to fork threads

Travailler plus pour gagner plus

Forking threads is easy

 Handling their conflicts is hard

1x
2x

4x

Time: Moore’s Law

Speedup

User code

Traditional CPU

Speedup

1x
2x

4x

User code

Multicore CPU

Time: Moore’s Law

Speedup

1x
1.4x

2.2x

User code

Multicore CPU

Time: Moore’s Law

Parallelization & synchronization
require great care!

The problem
Sharing

public class Counter

private long value;

public Counter(int i) { value = i;}

public long getAndIncrement()
{
return value++;
}

Counter

 How to synchronize?

Shared object

Concurrent processes

Locked object

Locking (mutual exclusion)

Locking with compare&swap()

  A Compare&Swap object maintains a value x, init to
⊥, and y;

  It provides one operation: c&s(v,w);

 Sequential spec:
●  c&s(old,new)
{y := x; if x = old then x := new; return(y)}

lock() {
repeat until
unlocked = this.c&s(unlocked,locked)
}

unlock() {
 this.c&s(locked,unlocked)
 }

Locking with compare&swap()

lock() {
while (true)
 {
 repeat until (unlocked = this.getState());
 if unlocked = (this.c&s()) return(true);
 }
}

unlock() {
 this.setState(0);
 }

Locking with compare&swap()

 Lock l = ...;
 l.lock();
 try {
// access the resource protected by this lock
 } finally {
 l.unlock();
 }

Explicit use of a lock

public class SynchronizedCounter {
 private int c = 0;
 public synchronized void increment() {
 c++;
 }
 public synchronized void getAndincrement() {
 c++; return c;
 }
 public synchronized int value() {
 return c;
 }
}

Implicit use of a lock

Locking is the current state
of concurrency affairs

The use of locks is dangerous

"  50% of the bugs reported in Java come
from the mis-use of « synchronized »

Coarse grained locks => slow

Fine grained locks => errors

Double-ended queue

Enqueue Dequeue

Fine-grained locking

"   It took two years for the Java Standards
Committee to approve (in Java 5) a
fine-grained locking-based
implementation of a hash-table

Locks do not compose

Dequeue

Enqueue

 Lock-free computing?

Every lock-free data structure
⇒  podc/spaa/disc

Wanted

A concurrency control abstraction
that is simple and efficient

 Transactions

Historical perspective
"   Eswaran et al (CACM’76) Databases
"   Papadimitriou (JACM’79) Theory
"   Liskov/Sheifler (TOPLAS’82) Language
"   Knight (ICFP’86) Architecture
"   Herlihy/Moss (ISCA’93) Hardware
"   Shavit/Touitou (PODC’95) Software
"   Herlihy et al (PODC’03) Software - Dynamic

"   Now: DISC/PODC/POPL/PLDI/ECOOP/OOPSLA-
SPLASH/CAV…Transact

"   accessing object 1;
"   accessing object 2;

Back to the undergraduate level

"   accessing object 1;
"   accessing object 2;

Back to the undergraduate level

atomic {

}

"   class Queue {
"   QNode head;
"   QNode tail;
"   public enq(Object x) {
"   atomic {
"   QNode q = new QNode(x);
"   q.next = head;
"   head = q;
"   }
"   }
"   ... }

 Simple example!
 (consistency invariant)

 0 < x < y"

"  T: x := x+1 ; y:= y+1

 Simple example!
 (transaction)

"   accessing object 1;
"   accessing object 2;

The illusion of a critical section

atomic {

}

How to provide that
illusion?

Software (STM) or
Hardware (HTM)?

The garbage-collection analogy
"   In the early times, the programmers had to take

care of allocating and de-allocating memory

"  The GC gives the illusion of infinite memory

"  A hardware support was initially expected, but
now software solutions are very effective

Hardware

Transactional Memory

Program

Behind the scenes

Two-phase locking (2PL)

"   To write O, T requires a lock on O;
T waits if some T’ acquired a lock on O

"   To read O, T requires a lock on O;
T waits if some T’ acquired a lock on O

"   Before committing, T releases all its locks

Two-phase locking (2PL)

"   To write O, T wait to for a lock on O;

"   To read O, T waits to for a lock on O;

"   Before committing, T releases all its locks

Two-phase locking
(more details)

"   Every object O, with state s(O) (a register), is
protected by a lock l(O) (a c&s)

"   Every transaction has local variables wSet and wLog

"   Initially: l(O) = unlocked, wSet = wLog = empty

Two-phase locking

Upon op = read() or write(v) on object O
if O outside wSet then

 wait until unlocked= l(O).c&s(unlocked,locked)
wSet = wSet U O
wLog = wLog U S(O).read()
if op = read() then return S(O).read()
S(O).write(v)
return ok

Two-phase locking (cont’d)
Upon commit()
cleanup()
return ok

Upon abort()
rollback()
cleanup()
return ok

Two-phase locking (cont’d)

Upon rollback()
for all O in wSet do S(O).write(wLog(O))
wLog = empty

Upon cleanup()
for all O in wSet do l(O).c&s(locked,unlocked)
wSet = empty

Why two phases?
(what if?)

"   To write or read O, T requires a lock on O;
T waits if some T’ acquired a lock on O

"   T releases the lock on O when it is done with O

Why two phases?

T1

T2

read(0) write(1)

O1 O2

read(0) write(1)

O2 O1

No STM implements 2PL

All implement a variant of it

Two-phase locking
(read-write lock)

"   To write O, T requires a write-lock on O;
T waits if some T’ acquired a lock on O

"   To read O, T requires a read-lock on O;
T waits if some T’ acquired a write-lock on O

"   Before committing, T releases all its locks

Two-phase locking
 - better dead than wait -

"  To write O, T requires a write-lock on O;
"  T aborts if some T’ acquired a lock on O

"  To read O, T requires a read-lock on O;
"  T aborts if some T’ acquired a lock on O

"  Before committing, T releases all its locks

Two-phase locking
- better kill than wait -

"   To write O, T requires a write-lock on O;
T aborts T’ if some T’ acquired a lock on O

"   To read O, T requires a read-lock on O;
T waits if some T’ acquired a write-lock on O

"   Before committing, T releases all its locks
"   A transaction that is aborted restarts again

Visible Read
(SXM; RSTM)

"  Write is mega killer: to write an object,
a transaction aborts any live one which
has read or written the object

"  Read is visible: when a transaction reads
an object, it says so

Visible Read

"   A visible read invalidates cache lines

"   This reduces the throughput of read-
dominated workloads, by inducing a lot of
traffic on the bus

Two-phase locking
- invisible reads – DSTM -

"   To write O, T requires a write-lock on O;
T aborts T’ if some T’ acquired a write-lock on O

"   To read O, T checks if all objects read remain
valid - else T aborts

"   Before committing, T checks if all objects read
remain valid and releases all its locks

Invisible reads
(more details)

"   Every object O, with state s(O) (register), is
protected by a lock l(O) (c&s)

"   Every transaction maintains, besides wSet and
wLog:

"   - a local variable rset(O) for every object

Invisible reads

Upon write(v) on object O
if O outside wSet then
wait until unlocked= l(O).c&s(unlocked,locked)
wSet = wSet U O
wLog = wLog U S(O).read()
(*,ts) = S(O).read()
S(O).write(v,ts)
return ok

Invisible reads

Upon read() on object O
(v,ts) = S(O).read()
if O in wSet then return v
if l(O) = locked or not validate() then abort()
if rset(O) = 0 then rset(O) = ts
return v

Invisible reads

Upon validate()
for all O s.t rset(O) > 0 do
 (v,ts) = S(O).read()
 if ts not rset(O) or
 (O outside wset and l(O) = locked)
then return false
else return true

Invisible reads

Upon commit()
s := validate()
for all O in wset do
 (v,ts) = S(O).read()
S(O).write(v,ts+1)
cleanup()
if s then commit() else abort()

Invisible reads

Upon rollback()
for all O in wSet do S(O).write(wLog(O))
wLog = empty

Upon cleanup()
for all O in wset do l(O).c&s(locked,unlocked)
wset = empty
rset(O) = 0 for all O

DSTM

"  Killer write (ownership)

"  Careful read (validation)

Performance figures
look good

"   “It is better for Intel to get involved in this
[Transactional Memory] now so when we get to the
point of having …tons… of cores we will have the
answers”

"   Justin Rattner, Intel Chief Technology Officer

"   “…we need to explore new techniques like
transactional memory that will allow us to get the
full benefit of all those transistors and map that
into higher and higher performance.”

"  Bill Gates, Businessman

"   “…manual synchronization is intractable…
transactions are the only plausible
solution….”

"  Tim Sweeney, Epic Games

"   Sun, Intel, AMD, IBM, MSR, …

"   Fortress (Sun); X10 (IBM); Chapel (Cray)

The TM Topic is VERY HOT

All set?

Hmmm….

Tests

"  Micro-Benchmarks
"  Linked-lists; red-black trees, etc.
"  Consider specific loads: typically focus
 on read-only transactions

Challenging TMs
STMBench7 (GKV’07)

"   Large data structure: challenge memory
overhead

"  Short and long operations: kills non-
linear algorithms

"  Complex access patterns"

STMBench7

"  Performance figures were
not that good

"  All TMs eventually collapsed
because of memory usage
(except X)

A new generation

"  SwissTM,
"  TL2,
"  TinySTM,…

Speedup

1x
1.4x

2.2x

User code

Multicore CPU

Time: Moore’s Law

Parallelization & synchronization
require great care!

Software Transactional Memory:
Why is it only a Research Toy
(CACM 2009)

C. Cascaval, C. Blundell, M. Michael,
H. Cain, P. Wu, S. Chiras, S. Chatterjee

Why STM can be more than
a Research Toy (CACM 2010)

A. Dragojević, P. Felber, V. Gramoli, R. Guerraoui

Wanted

Some principles

1. Why do we care?

Transactional memory

2. What should we expect?

3. What might we expect?

Simplicity

What safety property?

Transactional memory

Program

TM

Hardware

 Safety of a TM

Let’s recall the old good
atomicity property

 Gray,Papadimitriou,Weihl,..

Transactions and objects

"  Transactions invoke operations on shared
objects

"  Every operation invocation is expected to
return a reply

"  Every transaction is expected either to
abort or commit

Application Scheduler

TM

Hardware

Transactions and objects

T1

T2

T3

operation

operation

operation

commit

abort

commit
operation

Transactions and objects

T1

T2

T3

operation

operation

operation

commit

abort

commit
operation

O1

O1

O2

O2

Transactions

"  Transactions are sequential units of
computations

"  Transactions are asynchronous

(pre-emption, page faults, crashes)

Histories

"  The execution of a set of transactions on a
set of objects is modeled by a history

"  A history is a total order of operation,
commit and abort events
"  H = (S,<)

The history depicts what the user sees

History H1

T1

T2

read(0) write(1)

read(0)

commit

commit
write(1)

O2

O1 O2

O1

Histories
"   Two transactions are sequential (in a history) if

one invokes its first operation after the other one
commits or aborts; they are concurrent otherwise

"   A history is sequential if it has only sequential
transactions; it is concurrent otherwise

"   Two histories are equivalent if they have the
same transactions

Sequential history H2 <=> H1

read(0) write(1)

read(0) write(1)

O2

O1 O2

O1

T1

T2

commit

commit

A history is atomic if its
restriction to committed
transactions is serializable

The old theory (Pap 79)

A history H of committed
transactions is serializable if there
is a history S(H) that is
(1) equivalent to H
(2) sequential
(3) has every read returns the
last value written

Atomic history?

T1

T2

read(0) write(1)

read(0)

commit

commit
write(1)

O2

O1 O2

O1

Sequential history?

T1

T2

read(0) write(1)

read(0) write(1)

O2

O1 O2

O1

Sequential history?

T1

T2

read(0) write(1)

read(0) write(1)

O2

O1 O2

O1

Atomic history?

T1

T2

read(0) write(0)

read(0)

commit

commit
write(1)

O2

O1 O2

O1

Sequential history

read(0) write(0)

read(0) write(1)

O2

O1 O2

O1

T1

T2

A history H of committed
transactions is serializable if there is
a history S(H) that is
(1) equivalent to H
(2) sequential
(3) has every read returns the last
value written

Atomic history

T1

T2

read(0) write(1)

read(0)

commit

abort
write(1)

O2

O1 O2

O1

A history H of committed
transactions is serializable if there is
a history S(H) that is
(1) equivalent to H
(2) sequential
(3) has every read return the last
value written

There is more to shared objects
than read/write registers,
e.g., queues, compare&swap,
counters, etc

All these objects have a sequential
specification (Weihl)

Sequential specification
of a register

"  Sequential specification

"   read()

"   return(x)

"   write(v)

"   x <- v;

"   return(ok)

Queue

"  A queue has two operations: enqueue
() and dequeue()

"  A queue internally maintains a list x
which exports operation appends() to put
an item at the end of the list and remove
() to remove an element from the head of
the list

Sequential specification

"  dequeue()

"   if(x=0) then return(nil);

"   else return(x.remove())

"  enqueue(v)

"   x.append(v);

"   return(ok)

A sequential history is legal if each
restriction to an object belongs to
its sequential specification

Legal history

Legal history

read(0) write(0)

read(0) write(1)

O2

O1 O2

O1

Legal history

enq(a) deq(nil)

enq(b) deq(a)

O2

O1 O2

O1

A history H of committed
transactions is serializable if there is
a history S(H) that is
(1) equivalent to H
(2) sequential
(3) legal

write(1)

read(0)

O1

O1

commit

commit

T1

T2

Real-time

Histories
"   Two histories are equivalent if they have the

same transactions

"   Two histories are strictly equivalent if they
have the same transactions in the same order

A history H of committed
transactions is strictly serializable if
there is a history S(H) that is
(1) strictly equivalent to H
(2) sequential
(3) legal

Atomicity

Is classical atomicity
enough?

DSTM

"  To write O, T requires a write-lock on O;
T aborts T’ if some T’ acquired a write-lock on O

"  To read O, T checks if all objects read remain
valid - else abort

"  At commit time, T checks if all objects read
remain valid and releases all its locks

DSTM

"  Killer write (ownership)

"  Careful read (validation)

More efficient algorithm

Apologizing versus asking permission

"  Killer write
"  Optimistic read

"   validity check only at commit time

Example!

Invariant: 0 < x < y"
Initially: x := 1; y := 2"

Division by zero

"  T1: x := x+1 ; y:= y+1

"  T2: z := 1 / (y - x)

"  T1: x := 3; y:= 6

Infinite loop

"  T2: a := y; b:= x;
 repeat b:= b + 1 until a = b

We need a theory that restricts
ALL transactions: this is what
critical sections give us

The old theory restricts committed
transactions

How can we capture that precisely?

Requirement: every operation
sees a consistent state

Histories

"   Let H be any history (made of commited,
aborted and pending transactions)

"  Complete(H) is the history made of all
transactions of H by removing all pending and
aborted ones, except the last one, completed
with a commit event

A history H is opaque if every prefix
H’ of H has a complete(H’) which is
strictly serialisable

Opacity (GK’08)

Opacity?

T1

T2

read(0)

write(1)

commit

abort
read(0)

O2

O2

O1

write(1)
O1

Illegal

T1

T2

read(0)

write(1)

commit

read(0)

O2

O2

O1

write(1)
O1

Illegal

T1

T2

read(0)

write(1)

commit

read(0)

O2

O2

O1

write(1)
O1

Recoverable (no dirty reads)

T1

T2

read(0)

write(1) commit write(1)

O2

O2

O1

read(0)
O1

abort

Opacity < rigorous scheduling

T1

T2

write(0)

write(1)

commit

abort
write(1)

O2

O2

O1

write(0)
O1

Most TMs ensure Opacity

 Simple algorithm (DSTM)

"  Killer write (ownership)

"  Careful read (validation)

Visible Read
(SXM; RSTM)

"  Write is super killer: to write an object,
a transaction aborts any live one which
has read or written the object

"  Visible but not so careful read: when a
transaction reads an object, it says so

Visible Read

"   A visible read invalidates cache lines

"   For read-dominated workloads, this means a lot
of traffic on the bus between processors

"   This would reduce the throughput

 Theorem (GK’08)

 The read is either
 visible or careful

NB. Modulo a weak progress property and the
assumption of a single version system

Intuition of the proof

T1

T2

read()

write()
commit

I1,I2,..,Im

O1,O2,..,On
read()
Ik

Read invisibility

"  The fact that the read is invisible means
T1 cannot inform T2, which would in
turn abort T1 if it accessed similar
objects (SXM, RSTM)

The theorem does not hold
for classical atomicity

i.e., the theorem does not hold
for database transactions

How can we verify the
opacity of a TM?

"  Check that the conflict graph is acyclic
"   Number of nodes is unbounded
"   NP-Complete problem

Reduce the verification space

"  Uniform system
"   All transactions are treated equally
"   All variables are treated equally

TM verification theorem
(GHS’08)

"  A TM either violates opacity with 2
transactions and 3 variables or
satisfies it with any number of variables
and transactions

Reference implementation
"   A finite-state transition system (12.500

states) generates all opaque histories for 2
transactions and 3 variables

"   A TM is correct if its histories could be generated
by the reference implementation

"   Simulation relation between the TM (e.g., TL2
4500 states) and the reference implementation

Examples

"   It takes 15mn to check the correctness
of TL2 and DSTM

"  Reverse two lines in TL2: bug found in
10mn - a history not permitted by the
reference implementation

1. Why do we care?

Transactional memory

2. What should we expect?

3. What might we expect?

Opacity

What progress?

Simplicity

What might we expect?

Program
T1/T2/../Tn

TM

Block Abort

We want progress

"  Operations return

"  Transactions commit

Nevertheless

"  We cannot require from a TM that it commits
transactions:
"  from a dead process; i.e., a dead transaction
"  that infinitely loop

Progress?

T2
read(0) ?

O2 crash

T1
read(0) ?

O2
read(0)

O2
read(0)

O2
read(0)

O2

Progress

"  We can only hope progress for correct
transactions

"  But what is a correct transaction exactly?

Correctness depends on the
scheduler and the application

Application
R/W/C/A Scheduler

TM
R/W/C&S/T&S/LL&SC/C/A

History

"  A history (as seen by the user) does not
say what the scheduler does

"  We need a refined notion of history

Low-level history

"  A low-level history depicts the events of the
implementation

"   It is also a total order of invocation, reply,
and termination events
"  H = (S,<)

Low-level history

"  The invocations and replies include also low-
level objects used in the implementation

"   The low-level history is a refinement of the
high-level one (seen by the user)

Low-level history

"  Well-formed (low-level) history:
"  Every transaction that aborts is immediately

repeated until it commits, i.e., :

Every process executes:
 T1:op1; T1.op2; ..; T1:Commit?; T1:Abort;
T1:op1;.. …

Low-level history

"  A transaction T is correct if
"   (a) commit is invoked after a finite

number of invocation/reply events of T and
"   (b) either T commits or T performs an

infinite number of (low-level) steps

"   (a) depends on the application
"   (b) depends on the scheduler

Ideally

"  Every correct transaction commits

T1

T2

read()

write()

commit

O1

O1

write()

O2

Aborting is a fatality

read()

O2

abort

Eventual progress
- wait-freedom -

"   Every correct transaction eventually commits

"  NB. We allow the possibility for a transaction to
abort a finite number of times as long as it
eventually commits

Eventual progress

T1

T2

read()

write()

commit

O1

O1

write()

O2

read()

O2

abort

"  Impossible in an asynchronous system

Eventual progress

"  NB. This impossibility is fundamentally
different from FLP: It holds for any underlying
object

Conditional progress
- obstruction-freedom -

"  A correct transaction that eventually does not
encounter contention eventually commits

"  Obstruction-freedom is indeed possible

DSTM
"   To write O, T requires a write-lock on O (use C&S);
T aborts T’ if some T’ acquired a write-lock on O (use C&S)

"   To read O, T checks if all objects read remain valid - else
abort (use C&S)

"   Before committing, T releases all its locks (use C&S)

DSTM uses C&S

"  C&S is the strongest synchronization
primitive

"  Is OF-TM possible with less than C&S?
e.g., R/W objects

OF-TM

Program
R/W/TC/A Scheduler

TM

Low-level objects?

Compare&Swap

Register

Queue Test&Set

…

Fetch&Add

Snapshot (1)

(2)

(∞)

(..)

Consensus number of OF-TM?

FO-consensus

A process can decide or abort
"   No two different values can be decided
"   A value decided was proposed

"  If abort is returned from propose(v)
then (1) there is contention and (2) v
cannot be returned

OF-TM <=> FO-consensus

"   From OF-TM to FO-consensus: propose() is
performed within a transaction

"   From FO-consensus to OF-TM: slightly more
tricky - as for DSTM but using a one shot
object instead of C&S

Consensus

propose(vi) returns a value vj (no abort)

"  No two different values can be decided
"  A value decided was proposed

OF-consensus vs consensus

"  OF-consensus can implement consensus
among exactly 2 processes

"   Algorithm
"   P1 writes its value and keeps proposing until it

decides a value
"   P2 either decides or reads the value

Computability

The consensus number of OF-TM is 2

"  OF-TM cannot be implemented with R/W

"  OF-TM does not need C&S

Simplicity
1. Why do we care?

Transactional memory

2. What should we expect?

3. What might we expect?
Opacity

Obstruction-freedom

Those are my principles

If you don’t like them

I have others

G. Marx

What opacity in the jungle ?

Two ways compatibility
(GHKS10)

Program

TM

Hardware

What progress beyond OF?

Boosting obstruction-freedom

OF-TM CM

Contention managers
"   Aggressive: always aborts the victim

"   Backoff: wait for some time (exponential backoff) and
then abort the victim

"   Karma: priority = cumulative number of shared objects
accessed – work estimate. Abort the victim when
number of retries exceeds difference in priorities.

"   Polka: Karma + backoff waiting

Greedy contention manager

"  State
"  Priority (based on start time)
"  Waiting flag (set while waiting)

"  Wait if other has
"  Higher priority AND not waiting

"  Abort other if
"   Lower priority OR waiting

Off-line scheduler (GHP’95)

"  Compare the TM protocol with an
off-line scheduler that knows:

"   The starting time of transactions
"   Which objects are accessed
(i.e., conflicts)

Competitive ratio

"  Let s be the number of objects accessed by
all transactions

"  Compare time to commit all transactions
"  Greedy is O(s)-competitive with the off-line

scheduler
"  GHP’05 O(s2)
"  AEST’06 O(s)

What progress beyond OF?

OF-TM CM: <>P

WF-TM

The weakest CM-FD to
implement WF-TM (GKK’06)

Eventual global progress
- lock-freedom -

"   Some correct transaction eventually commits

"  NB. OSTM ensures eventual global progress

"   Eventual global progress is the strongest liveness
property that can be ensured by an STM

Permissiveness (GHS’08)

A TM is permissive if it never
aborts when it should not

Permissiveness

"   Let P be any safety property and H any P-safe
history prefix of a deterministic TM

"  We say that a TM is permissive w.r.t P if
"   Whenever <H;commit> satisfies P
"   <H;commit> can be generated by the TM

Permissiveness

"  No TM can be permissive with respect
to opacity (or serializability)

Probabilistic permissiveness

"  Let P be any safety property and H any
history generated by a TM

"  The TM is probabilistic permissive with
respect to P if
"   Whenever <H;commit> satisfies P:
"   <H;commit> can be generated by TM

with a positive probability

Probabilistic permissiveness

"  There is a probabilistically permissive TM with
respect to opacity: AVSTM

"  AVSTM should outperform all TMs

"   In theory…

Probabilistic permissiveness

"  AVSTM indeed outperforms all TMs under
very high contention

"  AVSTM does not perform well under low
contention

"  AVSTM combined with a pragmatic TM:
"   TL2 under normal mode and then fall-

back to AVSTM

Transactions are conquering the parallel
programming world

They sound familiar and thus make the
programmer happy

Getting them correct is in fact tricky and
that should make YOU happy

A slide to remember

"   lpdwww.epfl.ch

"  Transactions@epfl

Biblio

