In search for lost universality

Journey to the Center of
Distributed Computing



Roadmap

~ The lost universality
~ Consensus Is hecessary but impossible

~The quest for universality
~ Consensus is sufficient

- Circumventing universality



Universality

moving CPU

011]

readiwrite device —)H

1T10(1T|1T]|0(0

memory tape




The Lost Universality

~ The infinitely big ~ The infinitely small



Counter: Specification

A counter has two operations /nc() and
read();, it maintains an integer x /nit to 0

read():
return(x)

nc():
X:=X+1;
return(ok)



Counter: Algorithm

The processes share an array of registers
Reg[1,..,N]

nc().
Regl[i].write(Reqgl[i].read() +1);
return(ok)
read():
sum := 0;
forj=1toNdo
sum := sum + RegJj].read();
‘return(sum)



Counter*: Specification

Counter* has, in addition, operation gec()

dec():
if x > 0 then x := x - 1; return(ok)
else return(no)

Can we implement Counter*
asynchronously?



2-Consensus with Counter*

» Registers RO and R1 and Counter* C - initialized to 1

» Process plI.:
propose(VvI)
RI.write(vI)
res := C.dec()
if(res = ok) then
return(vI)
else return(R{1-I}.read())

S X



Impossibility [FLP85,LA87]

« Theorem: no asynchronous algorithm implements
consensus among two processes using registers

« Corollary: no asynchronous algorithm implements
Counter* among two processes using registers

Sperner’s Lemma

=
N
LG




Roadmap

~ The lost universality
~ Consensus Is hecessary but impossible

~The quest for universality
~ Consensus is sufficient

- Circumventing universality



Roadmap

~ The lost universality
~ Consensus Is hecessary but impossible

~The quest for universality
~ Consensus is sufficient

- Circumventing universality



.~ The consensus number of an object is the maximum
number of processes than can solve consensus with it

cop ] 23 4 5 & 7 & % W M 12 13 14 15 16 17 18
o e
4 P HHHHEBEF
(3 AFEEMHE
d [BEEERREAEAEEEBEREBEE
4 HEHERFREBREFHEEEBERE
d [ HEEHEBREAEEREEEERBEE
?.%.%&ﬁ@@ﬁ%ﬂ%ﬁ%%ﬁ%&
IHE? o) 85 |5 || & || =
llllllllllllll



Roadmap

~ The lost universality
~ Consensus Is hecessary but impossible

~The quest for universality
~ Consensus is sufficient

- Circumventing universality



Consensus Universality [L78]

« Theorem:. every object can be implemented with
consensus



Eventual Synchrony

The weakest failure detector question

Indulgent algorithms: Paxos, PBFT

The next 700 BFT protocols



2 |ng||22||22|(Re| (22|88 |2
= ow |G |10 | (2| |8 || == | |=3[|2S
e w0||2n |2y (e 3222 (22|22
L ~z || | (B2 (58| |Bs|| 22| |BE||SS
- ou || 25| (N8| [R5 |82 2= |Bs|(BE
m - || 02||58| |95 |5F| 22| |5F|[Sa
(o] o e ESESRERES
W . B3| [52)|23||=2) 28|
d 2 o7 | 92| 2x(|28| 28|85
e o RO ||9E| == | |85 | |B3||RE
(%] @ <s|[32|[25][22] [25][z2
H - Q||| 22|38 |=E||R2
oL no| (322|183 (22||s
oL (|98 |[rn|(E8] |2x|[ae
| | e e R

| [ [ 3| |2

e ES EEIEE EE




RDMA

~ Remote shared / protected memory

~ Consensus with 2f+1 and f+1 (vs 3f+1
and 2f+1) and 2 steps (vs 4 steps) —
PODC 2018/2019

~Mg: SMRin 1ps / 1ms — OSDI 2020



NVRAM

~ Persistent objects with durable
linearizability / detectable recovery

~Tight bound: 1 pfence per operation
(SPAA 2019)

~MCAS with 2 pfences and k+1 CASes
per k-Cas (DISC 2020)



Bitcoin: A Peer-to-Peer Electronic Cash System

Satoshi Nakamoto
satoshin@gmx.com
www.bitcoin org

Abstract. A purely peer-to-peer version of electronic cash would allow online
payments to be sent directly from one party to another without going through a
financial mstitution. Digital signatures provide part of the solution, but the main
benefits are lost if a trusted third party is still required to prevent double-spending.
We propose a solution to the double-spending problem using a peer-to-peer network.
The network timestamps transactions by hashing them into an ongoing chain of
hash-based proof-of-work, forming a record that cannot be changed without redoing
the proof-of-work. The longest chain not only serves as proof of the sequence of
events witnessed. but proof that it came from the largest pool of CPU power. As



Pvs NP

Asynchronous vs Synchronous

Is payment an asynchronous problem?

« To understand a distributed computing problem:
bring it to shared memory » T. Lannister



L7 r
L0 0]

7 rGe
L0

Message Passing  Shared Memory

i




Message Passing

Send

N

p2

p3 \ /
Recelve




Shared Memory




Message Passing < Shared Memory
Modulo Quorums

i

&

N




Is payment an
asynchronous problem?

Payment Object

“Atomicity

Wait-freedom



Payment Object (PO): Specification

Pay(a,b,x): transfer amount x fromato b if a > x
(return ok; else return no)

Important. Only the owner of a invokes Pay(a,*,*

« Can PO be implemented asynchronously?
» What is the consensus number of PO?



Snapshot: Specification

A snapshot has operations upadate() and
scan();, it maintains an array x of size NV

scan():
return(x)

update(i,v):
X[1] i=vV;
return(ok)



The Payment Object: Algorithm

Every process stores the sequence of its outgoing
payments in its snapshot location

To pay, the process scans, computes its current

balance: if bigger than the transfer, updates and
returns ok, otherwise returns no

To read, scan and return the current balance



PO can be implemented
asynchronously

Consensus number of PO is 1

Consensus number of PO(K) is k



Faster and Simpler
Payment Systems (AT2)

AT2_S (PODC 2019)

AT2_D (DNS 2020)

AT2_R (DISC 2019)



Journey to the Center of DC

Bitcoin Atomicity
Blockchain Wait-freedom

Snapshot
Proof of work

Consensus
Smart contracts

Quorums

Ethereum Secure Broadcast



Distributed ML

PODC 2020 / ArXiv 2020 / SRDS 2020



Programming languages to the
rescue

How to write a better universal Internet
machine ?

How to write better universal
programs?



