
The Rise and Fall of
Distributed Computing

Journeys to the Center of
Distributed Computing

The infinitely big The infinitely small

The Rise and Fall of
Distributed Computing

Academics vs. Engineers

Relevance vs. Innovation

Distributed Computing
Research

Road to Salvation

“Puisque ces mystères nous dépassent, feignons
d'en être les organisateurs” J. Cocteau

Hadware (Mutex 1965)

Applications (SIFT 1978)

Middleware (FLP 1985)

« Computing’s central challenge is how
not to make a mess of it …» E. Dijkstra

Journeys to the Center of DC

X000 implementations

Distributed Payment

P vs NP

Asynchronous vs Synchronous

« To understand a distributed computing problem:
bring it to shared memory » T. Lannister

Is payment an asynchronous problem?

Shared MemoryMessage Passing

Message Passing

p1

p2

p3

Send

Receive

Shared Memory

p1

p2

Write()

Read()

1

1

Atomic Registers

ó

Message Passing ó Shared Memory
Modulo Quorums

Atomicity

Wait-freedom

Payment Object

Is payment an
asynchronous problem?

Counter: Specification

A counter has two operations inc() and
read(); it maintains an integer x init to 0

read():
return(x)

inc():
x := x + 1;
return(ok)

Counter: Algorithm
The processes share an array of registers
Reg[1,..,N]
inc():

Reg[i].write(Reg[i].read() +1);
return(ok)

read():
sum := 0;
for j = 1 to N do

sum := sum + Reg[j].read();
return(sum)

Counter*: Specification

Counter* has, in addition, operation dec()

dec():
if x > 0 then x := x - 1; return(ok)
else return(no)

Can we implement Counter*
asynchronously?

2-Consensus with Counter*

§ Registers R0 and R1 and Counter* C - initialized to 1

§ Process pI:
§ propose(vI)
§ RI.write(vI)
§ res := C.dec()
§ if(res = ok) then

ü return(vI)
ü else return(R{1-I}.read())

Impossibility [FLP85,LA87]

§ Corollary: no asynchronous algorithm implements
Counter* among two processes using registers

§ Theorem: no asynchronous algorithm implements
consensus among two processes using registers

§ The consensus number of an object is the maximum
number of processes than can solve consensus with it

Payment Object (PO): Specification

Pay(a,b,x): transfer amount x from a to b if a > x
(return ok; else return no)

Important. Only the owner of a invokes Pay(a,*,*)

§ Can PO be implemented asynchronously?
§ What is the consensus number of PO?

Snapshot: Specification

A snapshot has operations update() and
scan(); it maintains an array x of size N

scan():
return(x)

update(i,v):
x[i] := v;
return(ok)

The Payment Object: Algorithm

Every process stores the sequence of its outgoing
payments in its snapshot location

To pay, the process scans, computes its current
balance: if bigger than the transfer, updates and
returns ok, otherwise returns no
To read, scan and return the current balance

PO can be implemented
asynchronously

Consensus number of PO is 1

Consensus number of PO(k) is k

Faster and Simpler
Payment Systems (AT2)

AT2_S (PODC 2019)

AT2_D (DNS 2020)

AT2_R (DISC 2019)

Journey to the Center of DC

Blockchain

Bitcoin

Ethereum

Proof of work

Smart contracts
Consensus

Secure Broadcast

Atomicity

Wait-freedom

Quorums

Snapshot

Distributed Tracing

Gossip Algorithms (DISC 2020)
Populations Protocols

Applications

Middleware

Journeys to the Center of DC

Distributed ML

PODC 2020 / ArXiv 2020 / SRDS 2020

Folklore & Misunderstandings

Causal transactions are fast & robust
(IPDPS 2020)
SMR ó Consensus (DISC 2018)

Distributed systems are synchronous
(DC 2018)

Hardware

Applications

Middleware

Journeys to the Center of DC

RDMA

Consensus with 2f+1 and f+1 (vs 3f+1
and 2f+1) and 2 steps (vs 4 steps) –
PODC 2018/2019

µ: SMR in 1µs / 1ms

Remote shared / protected memory

NVRAM

Persistent objects with durable
linearizability / detectable recovery

Tight bound: 1 pfence per operation
(SPAA 2019)

MCAS with 2 pfences and k+1 CASes
per k-Cas (DISC 2020)

- Hardware (Mutex 1965)

- Applications (SIFT 1978)
- Middleware (FLP 1985)

Journeys to the Center of DC

The Rise and Fall of
Distributed Computing

S. Baehni G. Damaskinos
R. Boichat M. El Mhamdi
A.Doudou M. Matteo
P. Dutta S. Rouault
M. Kapalka A. Guirgis
R. Levy I. Zablotchi
M. Monod A. Xygkis
B. Pochon M. Pavlovic
J. Spring A. Seredinshi
P. Eugster M. Taziki
S. Handurukande R. Patra
P. Kouznetsov T. David
M. Vukolic M. Yabandeh
G. Losa D. Alistarh
A. Dragojevic M. Letia
V. Buschkov V. Trigonakis
D. Khozaya J. Wang
K. Antoniadis R. Banabic
J. Komatovic N. Knezevic

