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Research



Road to Salvation

“Puisque ces mystères nous dépassent, feignons
d'en être les organisateurs” J. Cocteau



Hadware (Mutex 1965)

Applications  (SIFT 1978)

Middleware (FLP 1985)

« Computing’s central challenge is how 
not to make a mess of it …» E. Dijkstra

Journeys to the Center of DC



X000 implementations 

Distributed Payment



P vs NP

Asynchronous vs Synchronous

« To understand a distributed computing problem: 
bring it to shared memory » T. Lannister

Is payment an asynchronous problem? 
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Atomic Registers



ó

Message Passing ó Shared Memory
Modulo Quorums



Atomicity

Wait-freedom

Payment Object

Is payment an 
asynchronous problem? 



Counter: Specification

A counter has two operations inc() and 
read(); it maintains an integer x init to 0

read():
return(x) 

inc():
x := x + 1;
return(ok)



Counter: Algorithm
The processes share an array of registers
Reg[1,..,N]
inc():

Reg[i].write(Reg[i].read() +1);
return(ok)

read():
sum := 0;
for j = 1 to N do

sum := sum + Reg[j].read();
return(sum)



Counter*: Specification

Counter* has, in addition, operation dec()

dec():
if x > 0 then x := x - 1; return(ok)
else return(no)

Can we implement Counter* 
asynchronously?



2-Consensus with Counter*  

§ Registers R0 and R1 and Counter* C - initialized to 1

§ Process pI:
§ propose(vI)
§ RI.write(vI)
§ res := C.dec()
§ if(res = ok) then

ü return(vI)
ü else return(R{1-I}.read())



Impossibility [FLP85,LA87]

§ Corollary: no asynchronous algorithm implements 
Counter* among two processes using registers

§ Theorem: no asynchronous algorithm implements 
consensus among two processes using registers



§ The consensus number of an object is the maximum 
number of processes than can solve consensus with it



Payment Object (PO): Specification

Pay(a,b,x): transfer amount x from a to b if a > x 
(return ok; else return no)

Important. Only the owner of a invokes Pay(a,*,*)

§ Can PO be implemented asynchronously? 
§ What is the consensus number of PO?



Snapshot: Specification

A snapshot has operations update() and 
scan(); it maintains an array x of size N

scan():
return(x) 

update(i,v):
x[i] := v;
return(ok)



The Payment Object: Algorithm

Every process stores the sequence of its outgoing
payments in its snapshot location 

To pay, the process scans, computes its current
balance: if bigger than the transfer, updates and 
returns ok, otherwise returns no
To read, scan and return the current balance



PO can be implemented
asynchronously

Consensus number of PO is 1

Consensus number of PO(k) is k



Faster and Simpler
Payment Systems (AT2) 

AT2_S (PODC 2019)

AT2_D (DNS 2020)

AT2_R (DISC 2019)



Journey to the Center of DC

Blockchain 

Bitcoin 

Ethereum

Proof of work

Smart contracts 
Consensus

Secure Broadcast

Atomicity

Wait-freedom

Quorums

Snapshot



Distributed Tracing

Gossip Algorithms (DISC 2020)  
Populations Protocols



Applications

Middleware

Journeys to the Center of DC



Distributed ML

PODC 2020 / ArXiv 2020 / SRDS 2020 



Folklore & Misunderstandings

Causal transactions are fast & robust
(IPDPS 2020) 
SMR ó Consensus (DISC 2018) 

Distributed systems are synchronous
(DC 2018) 



Hardware

Applications  

Middleware

Journeys to the Center of DC



RDMA

Consensus with 2f+1 and f+1 (vs 3f+1 
and 2f+1) and 2 steps (vs 4 steps) –
PODC 2018/2019

µ:  SMR in 1µs / 1ms  

Remote shared / protected memory



NVRAM

Persistent objects with durable 
linearizability / detectable recovery

Tight bound: 1 pfence per operation
(SPAA 2019)

MCAS with 2 pfences and k+1 CASes
per k-Cas (DISC 2020)



- Hardware (Mutex 1965)

- Applications  (SIFT 1978)
- Middleware (FLP 1985)
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