Speculating Seriously

Rachid Guerraoui, EPFL

The World is turning IT

IT is turning distributed

Everybody should come to disc/podc

But some don’t

Indeed theory
scares practitioners

But wait, there is more

We need be less conservative

We can do so and have fun

i.e., still do theory

This talk

So what do we do exactly?

As distributed computing community, we study
agreement, renaming, concurrent objects,
gossip, routing, etc

As theoreticians, we study complexity

Complexity in a centralized setting

Number of cells/steps on a single
tape Turing machine

Complexity in a distributed setting

We count the number of rounds/messages

In a given model...

Processes Adversary

Satan
Lucifer
Scheduler
Model

Model (set of runs)

Model

Centralized: C(P)

Distributed: C(P,M)

Example:
a highly available state machine

A robust Turing machine

A universal construction

A data center

State Machine Replication

_client | ~gieont |
A%yee

T

— =\ T
—_— ¢
— =

/

/

@

The lllusion of a robust server

The single server illusion

_ client [client | | client |
N\

State machine

* The state of the server is modeled by a history
of requests h

* The client invokes request r on the server and
gets back a history h of requests (reply); we
say the client delivers h

State machine

The single server illusion

e (Ordering) If c1 delivers a history h1l and c2
delivers a history h2, then either h1 is prefix
of h2 or vice et versa

* (Real-time) If c1 delivers h1 before c2
invokes r, then h1 is prefix of h2(r)

 (Validity) In every delivered history, every
request appears at most once and only if it
was invoked by some client

The robust server illusion

* O,RV (single server illusion)
+

* (HA) If a correct client c invokes a request r, c
eventually delivers a history h(r) including r

What complexity?
C(SMR,M) = X

Every SMR algorithm has a run of M where some
(correct) client requires X rounds to get a reply

There is a SMR algorithm of which no (correct) client
requires more than X rounds to get a reply

Model

What complexity?

Orthodox answer

“Infinity”

What complexity?

Pragmatic answer

“1 round-trip”

Wrong?

The Fish does not think
The Fish doesn’t need to think

The Fish knows

Iggy Pop

Complexity?

There is an algorithm that returns a reply
after 1 round-trip

When the system is synchronous, failure-
free and contention free

Quorum (GKQV10)

N 7
A N A

p3
p4

Model?

Complexity?

What if there is contention?

“2 round-trips”

Complexity?

What if there are t failures?

“t + 2 rounds”

Complexity?

Does the system need to be synchronous?

“few rounds of synchrony are enough”

Complexity?

What if the system is really asynchronous?

“infinity”
Orthodox: “now we are talking”

What is really going on?

Speculations...

Sync
Sync
Sync
Sync
Sync

Plan for the worst
Optimize for the common

What is the common?

nrony and no failure

nrony, no fai
nrony, no fai

nrony, no fai

nrony, no fai

ure or contention

ure,
ure,

ure,

ittle contention

high contention,

ittle contention, small requests

SMR Algorithms

 PBFT [OSDI'99, SOSP'01]
* Q/U [SOSP'05]

 HQ [OSDI'06]

e Zyzzyva [SOSP'07]
 Mencius [OSDI'08]

Getting each protocol to really work is a
Dantean task

* 30.000 lines of non-trivial C code
 Manual proof is a nightmare

 Model checking is impossible

Beyond SMR

* Concurrent object implementations
* Transactional memory

e Sensor networks

Wanted

Theoretical foundations

What is really going on?
Hierarchical complexity

Complexity in distributed computing

Speculative

C(P.M) vs C(P.M1,M2,....M)

Speculative algorithm

C(A/PM1,M2,...,Mn-1,M) = (c1,c2,..,cn)

cl<c2<c3,..<cnl<cn

How to prove speculative
lower bounds

C(PM1,M2,..,Mn-1,M) = ?

How to write/prove speculative
algorithms?

| have a dream

Switch(model)

Case M1:s
Case M2: s

Case M3: s

pecu
pecu

pecu

ation1();
ation2();

ation3();

Case M: conservative();

ABSTRACT

(Abortable state machine replication)

e A SMR abstraction that can either:

- Commit a request (as in SMR)
- Or

- Abort a request and return a (unforgable
digest of request) history to invoke another
Abstract instance

- The conditions under which Abstract can
abort define a specific instance

Abstract examples

Abort is allowed only in case of asynchrony

Abort is allowed only in case of contention or
asynchrony

Abort is allowed only in case of asynchrony and
high-contention

Abort is allowed only in case of asynchrony or k
failures

A
A

oort is allowed

oort Is never a

only after committing k requests

lowed

Abstract properties

* O-C: If histories h(rl) and h(r2) are committed, then
one is the prefix of the other

O-A: If history h(rl) is committed and history h(r2)
is aborted, then h(rl) is prefix of h(r2)

Abstract initialization

* Init requests are made of a request and a
history

* Initialization property: any common prefix of
init histories is a prefix of any committed or
aborted history

Abstract compositions

Invoke (m) chient Commit{m,h(m))
I 4
ﬁwoke1 Abort, Invoke, Abort, Invoke, ¢ommit_
(my) (mgh,(m)) (m;) (my,hy(m)) " (m.) (m_.h (m))
Abstract #1 Abstract #2 | --- | Abstract #n

Mg =<INIT m him)= (i=1)
m? =m

Aliph

Uses 4 instances

— Quorum: 30% reduced latency when no time-out
or contention,8% of PBFT code

— Zyzylight: 100% improved throughput when no
time-out and little contention, 15% PBFT code

— Chain: achieves up to 400% improvedpeak
throughput when no time-out and high contention

— MPBFT: commits at least m requests

We need be less conservative

We can do so and have fun

i.e., still do theory

This talk

Beyond SMR

* Concurrent object implementations
* Transactional memory

e Sensor networks

Thank you for your attention

Example : AQuorum

< 4000 lines of code
Decentralized approach (« quorum »)

Outperforms all BFT protocols we know of in
terms of latency

Model checked in +Cal

Cost of switching

54ms with a history log of 32 requests
147 ms with a history log of 100 requests

Request and reply of 8 bytes

NB. In this case, the best-case latency is 1ms

