Demystifying Bitcoin

Prof R. Guerraoui
EPFL & College de France & UM6P

‘¢

.

Have you heard about?

Bitcoin _
Blockchain th
ereum
Signhatures Draof of y
roof of wor
Smart contracts
Turing Completeness NP vs P

Consensus Snapshot

Perspectives

(1) The journalist
(2) The user
(3) The participant
(4) The engineer

(5) The scientist

(1) The Journalist

- 2008: Financial crisis — Nakamoto (1/21m)
» From 1c to 8000$ through 20000%

- From trading hardware to general trading

2014: Ethereum (CH) - Now 800 $

- 2020: Libra - FacebookCoin

2l L AP L
Sery7 I
‘ ot Iovyau‘! o1y IS

g
o 7]eR%

b U
(08

Nhif OO

A=W

“+
4

O Un

Perspectives

(1) The journalist
(2) The user
(3) The participant
(4) The engineer

(5) The scientist

(2) The User

BLOCKCHAIN
®

{x} DASHBOARD BE YOUR OWN BANK.
Transactions

& Send & Request
® siTcoN

ETHER New! & SENT RECEIVED

C’\
i} BUY & SELL " SENT To: 0x9970b7e233555a037311be1f3261b59393d6981f
P — . July 21 @ 10:10 AM From: My Ethereum Wallet
»5:% SETTINGS ['_7‘1 Transaction Confirmed v/
® raQ

> SENT
July 18 @ 02:54 PM

> RECEIVED
July 17 @ 11:44 AM

> RECEIVED
July 13 @ 03:03 PM

To: 0x16a6920db114fc473325cf94a5e2d20c1 fba868
From: My Ethereum Wallet

To: My Ethereum Wallet
From: 0x3b0bc51ab9dele5b7b6e34e5b960285805¢41736

To: My Ethereum Wallet
From: Oxeed16856d551569d134530ee3967ec79995e2051

test, hey jamie! &

A ¢ SIGNouT

0.00000546 BTC | ¢0.102338636803627092 ETH

$23.08

Export Private Key | Search Q

0.0001 ETH

Transaction Fee:

0.0001416.. ETH

0.08380039 ETH

0.01966193 ETH

(2) The User

' The wallet: 1 private key + several public keys

" Transaction validation
» signing + gossiping + mining + chaining

" Transaction commitment
» After time t: thousands of users have seen it

(3) The Participant

Honey, I'm home!
| found a block today!

5 7
6 95

6

8 6 3

4 -3 1

7 2 6
278

19| |5

8 719

+

”Miner Jack"

2

Block:

Nonce:

Data:

Hash:

(3) The Participant

2790
NCore

0000cS5693ac7 7alBae7 3aceS5df932457fcb2e8dfa23c2f3chd8ebb125ba7843

(3) The Participant

To validate a transaction, a miner has to
solve a puzzle including it

» Fairness and cooperation

Incentive: 12 bitcoins / puzzle
» 50 bitcoins 3 years ago

"Total: 21 millions bitcoins
» Now: 17 millions

(4) The Engineer
7 Joinning (a P2P network)

~ Signing (a transaction) e

~ Gossiping (the transaction)

~ Gathering (a block)

~ Mining (proof of work - nonce)
~ Chaining (hash)

~ Gossiping (the block)
~ Committing/Aborting

TECHNOLOGIES OF A BLOCKCHAIN

Asymmetric Hash Functions
EﬂCFYDtiOﬂ Transaction/block hashing as well

Transaction signing as obfuscating public keys

Merkle Trees Key-Value Database

Efficient way to package Lookups of previous transactions
]
I

transactions into blocks (prevent double-spends)

PZ2P Communication
Protocol

Sharing transactions and blocks

Proof of Work

Method to achieve consensus

Hashing

Input Data jj = —p ll Output Hash
Hashing Algo

@ Blockgeeks

NOT POSSIBLE

PLAINTEXT h ash N HASHED VALUE

L —

HASHING

Input

Hash sum

Hash
function

Hash
function

Hash
function

The Big Picture

Bitcoin block

'ward TX Special Reward TX Special Re
gned) TX-2 (signed) TX-2 (sig

ce | DS 0 1 [—
Mining: find C] such that Cj <d

How? By trying different nonces (brute force)

Block: 0 1
Nonce: 2790
Data: NCore

Hash: 0000cS51693ac7 7alBae7 3ace Sdf93245 7fc62e8dfa23c2f3chd8ebb125ba7843

Smart Contracts

==

Option contract written as Contract is part of the Parties involved in the
code into a blockchain. i public blockchain. i contract are anonymous.

. .
... ‘-.......--.......-.-....--f.-....-...-.-.--.-.....-.‘...-...-....-...-....--..-.-..-.-...-.-.-...-...--.
.

&’) (1

Contract executes itself Regulators use blockchain to
when the conditions are met. : keep an eye on contracts.

Happy Hustlin’ https://codebrahma.com

& < C { GitHub, Inc. [US] https://github.com@ll [| | B¢ 0 B 5 S
33 partner_1 = contract.storage[I_PARTNER_1]
34 partner_2 = contract.storage[I_PARTNER_2]
35
36 ;¥a S_PROPOSED and tx.sender == partner_2 and tx.data[@] == partner_1:
37 contract storage[I_STATE] = S_MARRIED
38
39 else if state == S_MARRIED and tx.sender == partner_1 or tx.sender == partner_2:
40 if tx.data[@] == TX_WITHDRAW:
41 creator = contract.storage[I_WITHDRAW_CREATOR]
42 if creator != @ and contract.storage[I_WITHDRAW_TO] == tx.data[1] and contract.storage[I_WITHDRAW_AMOUNT] == tx. d
43 mktx(tx.data[1], tx.data[2], @, @)
44 contract.storage[I_WITHDRAW_TO] = @
45 contract.storage[I_WITHDRAW_AMOUNT] = ©
46 contract.storage[I_WITHDRAW_CREATOR] = @
47 else:
48 contract.storage[I_WITHDRAW_TO] = tx.data[1]
49 contract.storage[I_WITHDRAW_AMOUNT] = tx.data[2]
50 contract.storage[I_WITHDRAW_CREATOR] = tx.sender
51
52 else if tx.data[@] == TX_DIVORCE:
53 creator = contract.storage[I_DIVORCE_CREATOR]
54 if creator != @ and creator != tx.sender:
55 balance = block.account_balance(contract.address)
56 mktx(partner_1, balance / 2, @, @)
57 mktx(partner_2, balance / 2, @, @)

SR rantrart ctnraocalT CTATE]l = € NTUNRCEN

Perspectives

(1) The journalist
(2) The user
(3) The participant
(4) The engineer

(5) The scientist

(5) The Scientist

Conjecture 1: Turing Universality

Conjecture 2: P is not NP

Theorem 1: Lamport (Consensus) Universality

" Theorem 2: Consensus Impossibility

Turing Universality (36)

Infinite Tape
1170|0011 1]1]0 * o0
& ‘ Read / VWrite Head

Control Unit

?

*9

91

7*13 =7

P vs NP (Nash/GV 50 — Ford 70)

o

N A~

Lamport Universality (78)

Basic consensus

State

Machine

X! 3

Y | 2

Z |7
State State
Machine Machine
X1| 3 < > X| 3
Y| 2 Y | 2
Z |7 Z |7

Consensus Unlversallly (78)

(

_

\
Safety: No two nodes must choose different values.
The chosen value must have been proposed by a node.
Liveness: Each node must eventually choose a value. y

Every service can be implemented in a highly
available manner using Consensus

Consensus Impossibility (84)

Consensus is impossible in an
asynchronous system

Perspectives

(1) The journalist
(2) The user
(3) The participant
(4) The engineer

(5) The scientist

Payment System

Can we implement a payment
system asynchronously?

The infinitely big

L

.

Rt DR

" BaRBHRA]

|
Y

The infinitely small

Message Passing

Send

pITV

p2

p3 \ /
Recelve

Shared Memory

Write() 1

N\~

Registers

N

Read() |

p2

<~ Message Passing

Atomic Shared Memory

write(l) - ok

Atomic Shared Memory

write(l) - ok

Non-Atomic Shared Memory

write (1) - ok

Non-Atomic Shared Memory

write (1) - ok

Message Passing < Shared Memory

Write(1) Ok

Quorums (asynchrony)

Message Passing < Shared Memory

Write(1) Ok

Quorums (asynchrony)

Message Passing < Shared Memory

Write(1) Ok

Quorums (asynchrony)

« To understand a distributed computing problem:
bring it to shared memory » T. Lannister

« Optimization is the source of all evil » D. Knuth

Pvs NP

7*13=7 ? %9 =9]

Asynchronous vs Synchronous

Write(P1)

pl ~

0 Write(Pz)/v \

Payment System

“Atomicity

Wait-freedom

Can we implement a payment
system asynchronously?

Counter: Specification

A counter has two operations inc() and
read(); it maintains an integer x /init to 0

read():
return(x)

inc():
X:i=X+1;
return(ok)

Counter: Algorithm

The processes share an array of registers
Req[1,..,N]

inc():
~ Req[i].write(Reqg[i].read() +1);

return(ok)

read():
sum := 0;
forj=1toNdo

sum := sum + Reg[j].read();

return(sum)

Counter*: Specification

Counter* has, in addition, operation dec()

dec():
if x > 0 then x :=x - 1; return(ok)
else return(no)

Can we implement Counter*
asynchronously?

2-Consensus with Counter*

« Registers RO and R1 and Counter* C - initialized to 1

« Process pl.
propose(vI)
RI.write(vI)
res := C.dec()
if(res = ok) then
v return(vI)
v else return(R{1-I}.read())

Impossibility [FLP85,LA87]

« Theorem: no asynchronous algorithm implements
consensus among two processes using registers

« Corollary: no asynchronous algorithm implements
Counter* among two processes using registers

« Theorem: no asynchronous algorithm implements
set-agreement using registers

The consensus number of an object is the maximum
number of processes than can solve consensus with it

Cooup -] 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Period
’1
IH lfe
» [l 1HHBHE
' |E ARBEREIE
« BE AR ERBRBRIRIEEE
s [[E ABRRBEBRBERE
o &[5 AEEREBREE
" R) e e e w8
&5 || &5 || &
IBEIEIES

Payment Object (PO): Specification

Pay(a,b,x): transfer amount x fromato b ifa >
X (return ok; else return no)

NB. Only the owner of a invokes Pay(a,*,*

« Questions: can PO be implemented asynchronously?
what is the consensus number of PO?

Payment Object (PO): Specification

Pay(a,b,x): transfer amount x fromato b ifa >
X (return ok; else return no)

NB. Only the owner of a invokes Pay(a,*,*

« Questions: can PO be implemented asynchronously?
what is the consensus number of PO?

Snapshot: Specification

A snapshot has operations update() and
scan(); it maintains an array x of size N

scan():
return(x)

update(i,v):
X[1] i=V;
return(ok)

Algorithm?

" The processes share one array of N registers
Reg[1,..,N]

scan():
forj=1toNdo
X[j] := Req[j].read();
return(x)
update(i,v):
- Req[i].write(v); return(ok)

Atomicity?

update(l,1) - ok

update (3,2) - ok

p—— T

Atomicity?

update(l,1) - ok

update (3,2) - ok

p—— T

Atomicity?

scan () —~ [0,0,10]
— 7 |
update(2,1) - ok

p—f——t————

update (3,10) -0k

———————— 1

Key idea for atomicity

To scan, a process keeps reading the entire snapshot
(i.e., collecting), until two arrays are the same

Key idea for wait-freedom

To update, scan then write the value and the scan

To scan, a process keeps collecting and returns a

collect if it did not change, or some collect returned
by a concurrent scan

The Payment Object: Algorithm

Every process stores the sequence of its outgoing
payments in its snapshot location

To pay, the process scans, computes its current

balance: if bigger than the transfer, updates and
returns ok, otherwise returns no

To read, scan and return the current balance

PO can be implemented
Asynchronously

Consensus number of PO is 1

Consensus number of PO(k) is k

(5) The Scientist

Conjecture 1: Turing Universality
- Conjecture 2: Pis not NP

" Theorem 1: Lamport (Consensus) Universality
Theorem 2: Consensus Impossibility

" Theorem 3: PO < Consensus

Payment System (AT2)

AT2_S
AT2_D
AT2_R

Number of lines of code: one order of magnitude less

Latency: seconds (at most)

References

Rachid Guerao ——
. FOR CONCURRENT
SYSTEMS Sinam

Introduction to

Reliable and
Secure Distributed
Programming

Second Edition

‘a Springer

........

