
Demystifying Bitcoin

Prof R. Guerraoui
EPFL & Collège de France & UM6P 



Have you heard about?

Blockchain 
Bitcoin 

Ethereum

Turing Completeness NP vs P
Consensus

Proof of work
Signatures

Smart contracts 

Snapshot



Perspectives
(1) The journalist 

(2) The user 

(3) The participant

(4) The engineer

(5) The scientist



(1) The Journalist 

2008: Financial crisis – Nakamoto (1/21m)  
From 1c to 8000$ through 20000$

2014: Ethereum (CH) - Now 800 $

From trading hardware to general trading

2020: Libra - FacebookCoin
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(2) The User



(2) The User

The wallet: 1 private key + several public keys  

Transaction validation 
signing + gossiping + mining + chaining  

Transaction commitment 
After time t: thousands of users have seen it



(3) The Participant



(3) The Participant



(3) The Participant
To validate a transaction, a miner has to 
solve a puzzle including it 

Fairness and cooperation 

Total: 21 millions bitcoins 
Now: 17 millions 

Incentive: 12 bitcoins / puzzle
50 bitcoins 3 years ago



(4) The Engineer
Joinning (a P2P network)  

Gossiping (the transaction)  

Mining (proof of work - nonce)
Chaining (hash) 

Committing/Aborting 

Gathering (a block)  

Signing (a transaction)  

Gossiping (the block)  











The Big Picture 

Special Reward TX
TX-2 (signed)

TX-2452 (signed)

•••

Prev
# nonce This 

#
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Mining:	find														such	that														<	dnonce This 
#

How?	By	trying	different	nonces (brute	force)
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(5) The Scientist

Conjecture 1: Turing Universality 

Conjecture 2: P is not NP 

Theorem 1: Lamport (Consensus) Universality  

Theorem 2: Consensus Impossibility  



Turing Universality (36)



P vs NP (Nash/GV 50 – Ford 70)

?  * ?  = 91

7 * 13 = ?



Lamport Universality (78) 



Every service can be implemented in a highly 
available manner using Consensus 

Safety: No two nodes must choose different values.
The chosen value must have been proposed by a node.

Liveness: Each node must eventually choose a value.

Consensus Universality (78)



Consensus is impossible in an 
asynchronous system 

Consensus Impossibility (84)
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Payment System

Can we implement a payment 
system asynchronously?



The infinitely big

The infinitely small



Message Passing 

p1

p2

p3

Send

Receive



Shared Memory

p1

p2

Write()

Read()

1

1

ó Message Passing 

Registers



Atomic Shared Memory

p1

p2

p3

write(1) - ok

read() - 1

read() - 1



Atomic Shared Memory

p1

p2

p3

write(1) - ok

read() - 1

read() - 0
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Message Passing ó Shared Memory
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« Optimization is the source of all evil » D. Knuth

« To understand a distributed computing problem: 
bring it to shared memory » T. Lannister

ó



P vs NP

Asynchronous vs Synchronous 

?  * ?  = 917 * 13 = ?

p1

p2

Write(P1)

Write(P2)



Atomicity

Wait-freedom

Payment System

Can we implement a payment 
system asynchronously?



Counter: Specification

A counter has two operations inc() and 
read(); it maintains an integer x init to 0

read():
return(x) 

inc():
x := x + 1;
return(ok)



Counter: Algorithm
The processes share an array of registers 
Reg[1,..,N]
inc():

Reg[i].write(Reg[i].read() +1);
return(ok)

read():
sum := 0;
for j = 1 to N do

sum := sum + Reg[j].read();
return(sum)



Counter*: Specification

Counter* has, in addition, operation dec()

dec():
if x > 0 then x := x - 1; return(ok)
else return(no)

Can we implement Counter* 
asynchronously?



2-Consensus with Counter*  

§ Registers R0 and R1 and Counter* C - initialized to 1

§ Process pI:
§ propose(vI)
§ RI.write(vI)
§ res := C.dec()
§ if(res = ok) then 

ü return(vI)
ü else return(R{1-I}.read())



Impossibility [FLP85,LA87]

§ Corollary: no asynchronous algorithm implements 
Counter* among two processes using registers

§ Theorem: no asynchronous algorithm implements 
consensus among two processes using registers



Sperner’s Lemma

§ Theorem: no asynchronous algorithm implements     
set-agreement using registers



§ The consensus number of an object is the maximum 
number of processes than can solve consensus with it



Payment Object (PO): Specification

Pay(a,b,x): transfer amount x from a to b if a > 
x (return ok; else return no)
NB. Only the owner of a invokes Pay(a,*,*)

§ Questions: can PO be implemented asynchronously? 
what is the consensus number of PO?
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Snapshot: Specification

A snapshot has operations update() and 
scan(); it maintains an array x of size N

scan():
return(x) 

update(i,v):
x[i] := v;
return(ok)



Algorithm?

The processes share one array of N registers 
Reg[1,..,N]
scan():

for j = 1 to N do 
x[j] := Reg[j].read();

return(x) 
update(i,v):

Reg[i].write(v); return(ok)



Atomicity?
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Atomicity?

p1

p2

p3

scan()      - [0,0,10]

update(2,1) - ok

update(3,10) - ok



Key idea for atomicity 
To scan, a process keeps reading the entire snapshot 
(i.e., collecting), until two arrays are the same

To update, scan then write the value and the scan 

Key idea for wait-freedom

To scan, a process keeps collecting and returns a 
collect if it did not change, or some collect returned 
by a concurrent scan



The Payment Object: Algorithm 

Every process stores the sequence of its outgoing 
payments in its snapshot location 

To pay, the process scans, computes its current 
balance: if bigger than the transfer, updates and 
returns ok, otherwise returns no
To read, scan and return the current balance



PO can be implemented
Asynchronously

Consensus number of PO is 1

Consensus number of PO(k) is k



(5) The Scientist

Conjecture 1: Turing Universality

Conjecture 2: P is not NP 

Theorem 1: Lamport (Consensus) Universality

Theorem 2: Consensus Impossibility

Theorem 3: PO < Consensus



Payment System (AT2) 

AT2_S
AT2_D

AT2_R

Number of lines of code: one order of magnitude less

Latency: seconds (at most) 
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