
Demystifying Bitcoin

Prof R. Guerraoui
EPFL & Collège de France & UM6P

Have you heard about?

Blockchain
Bitcoin

Ethereum

Turing Completeness NP vs P
Consensus

Proof of work
Signatures

Smart contracts

Snapshot

Perspectives
(1) The journalist

(2) The user

(3) The participant

(4) The engineer

(5) The scientist

(1) The Journalist

2008: Financial crisis – Nakamoto (1/21m)
From 1c to 8000$ through 20000$

2014: Ethereum (CH) - Now 800 $

From trading hardware to general trading

2020: Libra - FacebookCoin

Perspectives
(1) The journalist

(2) The user

(3) The participant

(4) The engineer

(5) The scientist

(2) The User

(2) The User

The wallet: 1 private key + several public keys

Transaction validation
signing + gossiping + mining + chaining

Transaction commitment
After time t: thousands of users have seen it

(3) The Participant

(3) The Participant

(3) The Participant
To validate a transaction, a miner has to
solve a puzzle including it

Fairness and cooperation

Total: 21 millions bitcoins
Now: 17 millions

Incentive: 12 bitcoins / puzzle
50 bitcoins 3 years ago

(4) The Engineer
Joinning (a P2P network)

Gossiping (the transaction)

Mining (proof of work - nonce)
Chaining (hash)

Committing/Aborting

Gathering (a block)

Signing (a transaction)

Gossiping (the block)

The Big Picture

Special Reward TX
TX-2 (signed)

TX-2452 (signed)

•••

Prev
nonce This

#

Bitcoin	block

Special Reward TX
2 (signed)

2478 (signed)

•••

nonce This
#

Special Reward TX
TX-2 (signed)

TX-2325 (signed)

•••

Prev
nonce

Mining:	find														such	that														<	dnonce This
#

How?	By	trying	different	nonces (brute	force)

Perspectives
(1) The journalist

(2) The user

(3) The participant

(4) The engineer

(5) The scientist

(5) The Scientist

Conjecture 1: Turing Universality

Conjecture 2: P is not NP

Theorem 1: Lamport (Consensus) Universality

Theorem 2: Consensus Impossibility

Turing Universality (36)

P vs NP (Nash/GV 50 – Ford 70)

? * ? = 91

7 * 13 = ?

Lamport Universality (78)

Every service can be implemented in a highly
available manner using Consensus

Safety: No two nodes must choose different values.
The chosen value must have been proposed by a node.

Liveness: Each node must eventually choose a value.

Consensus Universality (78)

Consensus is impossible in an
asynchronous system

Consensus Impossibility (84)

Perspectives
(1) The journalist

(2) The user

(3) The participant

(4) The engineer

(5) The scientist

Payment System

Can we implement a payment
system asynchronously?

The infinitely big

The infinitely small

Message Passing

p1

p2

p3

Send

Receive

Shared Memory

p1

p2

Write()

Read()

1

1

ó Message Passing

Registers

Atomic Shared Memory

p1

p2

p3

write(1) - ok

read() - 1

read() - 1

Atomic Shared Memory

p1

p2

p3

write(1) - ok

read() - 1

read() - 0

Non-Atomic Shared Memory

p1

p2

p3

write(1) - ok

read() - 0

read() - 1

Non-Atomic Shared Memory

p1

p2

p3

write(1) - ok

read() - 0

read() - 1

Message Passing ó Shared Memory

p1

p2

p3

Write(1) Ok

Read() 1

Quorums (asynchrony)

Message Passing ó Shared Memory

p1

p2

p3

Write(1) Ok

Read() 1

Quorums (asynchrony)

Message Passing ó Shared Memory

p1

p2

p3

Write(1) Ok

Read() 1

Quorums (asynchrony)

« Optimization is the source of all evil » D. Knuth

« To understand a distributed computing problem:
bring it to shared memory » T. Lannister

ó

P vs NP

Asynchronous vs Synchronous

? * ? = 917 * 13 = ?

p1

p2

Write(P1)

Write(P2)

Atomicity

Wait-freedom

Payment System

Can we implement a payment
system asynchronously?

Counter: Specification

A counter has two operations inc() and
read(); it maintains an integer x init to 0

read():
return(x)

inc():
x := x + 1;
return(ok)

Counter: Algorithm
The processes share an array of registers
Reg[1,..,N]
inc():

Reg[i].write(Reg[i].read() +1);
return(ok)

read():
sum := 0;
for j = 1 to N do

sum := sum + Reg[j].read();
return(sum)

Counter*: Specification

Counter* has, in addition, operation dec()

dec():
if x > 0 then x := x - 1; return(ok)
else return(no)

Can we implement Counter*
asynchronously?

2-Consensus with Counter*

§ Registers R0 and R1 and Counter* C - initialized to 1

§ Process pI:
§ propose(vI)
§ RI.write(vI)
§ res := C.dec()
§ if(res = ok) then

ü return(vI)
ü else return(R{1-I}.read())

Impossibility [FLP85,LA87]

§ Corollary: no asynchronous algorithm implements
Counter* among two processes using registers

§ Theorem: no asynchronous algorithm implements
consensus among two processes using registers

Sperner’s Lemma

§ Theorem: no asynchronous algorithm implements
set-agreement using registers

§ The consensus number of an object is the maximum
number of processes than can solve consensus with it

Payment Object (PO): Specification

Pay(a,b,x): transfer amount x from a to b if a >
x (return ok; else return no)
NB. Only the owner of a invokes Pay(a,*,*)

§ Questions: can PO be implemented asynchronously?
what is the consensus number of PO?

Payment Object (PO): Specification

Pay(a,b,x): transfer amount x from a to b if a >
x (return ok; else return no)
NB. Only the owner of a invokes Pay(a,*,*)

§ Questions: can PO be implemented asynchronously?
what is the consensus number of PO?

Snapshot: Specification

A snapshot has operations update() and
scan(); it maintains an array x of size N

scan():
return(x)

update(i,v):
x[i] := v;
return(ok)

Algorithm?

The processes share one array of N registers
Reg[1,..,N]
scan():

for j = 1 to N do
x[j] := Reg[j].read();

return(x)
update(i,v):

Reg[i].write(v); return(ok)

Atomicity?

p1

p2

p3

update(1,1) - ok

scan() - [1,0,2]

update(3,2) - ok

Atomicity?

p1

p2

p3

update(1,1) - ok

scan() - [1,0,2]

update(3,2) - ok

Atomicity?

p1

p2

p3

scan() - [0,0,10]

update(2,1) - ok

update(3,10) - ok

Key idea for atomicity
To scan, a process keeps reading the entire snapshot
(i.e., collecting), until two arrays are the same

To update, scan then write the value and the scan

Key idea for wait-freedom

To scan, a process keeps collecting and returns a
collect if it did not change, or some collect returned
by a concurrent scan

The Payment Object: Algorithm

Every process stores the sequence of its outgoing
payments in its snapshot location

To pay, the process scans, computes its current
balance: if bigger than the transfer, updates and
returns ok, otherwise returns no
To read, scan and return the current balance

PO can be implemented
Asynchronously

Consensus number of PO is 1

Consensus number of PO(k) is k

(5) The Scientist

Conjecture 1: Turing Universality

Conjecture 2: P is not NP

Theorem 1: Lamport (Consensus) Universality

Theorem 2: Consensus Impossibility

Theorem 3: PO < Consensus

Payment System (AT2)

AT2_S
AT2_D

AT2_R

Number of lines of code: one order of magnitude less

Latency: seconds (at most)

References

