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Have you heard about?

Bitcoin _
Blockchain th
ereum
Signhatures Draof of y
roof of wor
Smart contracts
Turing Completeness NP vs P

Consensus Snapshot



Perspectives

(1) The journalist
(2) The user
(3) The participant
(4) The engineer

(5) The scientist



(1) The Journalist

- 2008: Financial crisis — Nakamoto (1/21m)
» From 1c to 8000$ through 20000%

- From trading hardware to general trading

2014: Ethereum (CH) - Now 800 $

- 2020: Libra - FacebookCoin
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(2) The User

BLOCKCHAIN
®

{x} DASHBOARD BE YOUR OWN BANK.
Transactions

& Send & Request
® siTcoN

ETHER New! & SENT RECEIVED

C’\
i} BUY & SELL " SENT To: 0x9970b7e233555a037311be1f3261b59393d6981f
P — . July 21 @ 10:10 AM From: My Ethereum Wallet
»5:% SETTINGS ['_7‘1 Transaction Confirmed v/
® raQ

>  SENT
July 18 @ 02:54 PM

> RECEIVED
July 17 @ 11:44 AM

>  RECEIVED
July 13 @ 03:03 PM

To: 0x16a6920db114fc473325cf94a5e2d20c1 fba868
From: My Ethereum Wallet

To: My Ethereum Wallet
From: 0x3b0bc51ab9dele5b7b6e34e5b960285805¢41736

To: My Ethereum Wallet
From: Oxeed16856d551569d134530ee3967ec79995e2051

test, hey jamie! &

A ¢ SIGNouT

0.00000546 BTC | ¢0.102338636803627092 ETH

$23.08

Export Private Key | Search Q

0.0001 ETH

Transaction Fee:

0.0001416.. ETH

0.08380039 ETH

0.01966193 ETH



(2) The User

' The wallet: 1 private key + several public keys

" Transaction validation
» signing + gossiping + mining + chaining

" Transaction commitment
» After time t: thousands of users have seen it



(3) The Participant

Honey, I'm home!
| found a block today!
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Block:

Nonce:

Data:

Hash:

(3) The Participant

2790
NCore

0000cS5693ac7 7alBae7 3aceS5df932457fcb2e8dfa23c2f3chd8ebb125ba7843



(3) The Participant

To validate a transaction, a miner has to
solve a puzzle including it

» Fairness and cooperation

Incentive: 12 bitcoins / puzzle
» 50 bitcoins 3 years ago

"Total: 21 millions bitcoins
» Now: 17 millions



(4) The Engineer
7 Joinning (a P2P network)

~ Signing (a transaction) e

~ Gossiping (the transaction)

~ Gathering (a block)

~ Mining (proof of work - nonce)
~ Chaining (hash)

~ Gossiping (the block)
~ Committing/Aborting




TECHNOLOGIES OF A BLOCKCHAIN

Asymmetric Hash Functions
EﬂCFYDtiOﬂ Transaction/block hashing as well

Transaction signing as obfuscating public keys

Merkle Trees Key-Value Database

Efficient way to package Lookups of previous transactions
]
I

transactions into blocks (prevent double-spends)

PZ2P Communication
Protocol

Sharing transactions and blocks

Proof of Work

Method to achieve consensus




Hashing

Input Data jj = —p ll Output Hash
Hashing Algo

@ Blockgeeks



NOT POSSIBLE

PLAINTEXT h ash N HASHED VALUE

L —

HASHING




Input

Hash sum

Hash
function

Hash
function

Hash
function




The Big Picture

Bitcoin block

'ward TX Special Reward TX Special Re
gned) TX-2 (signed) TX-2 (sig

ce | DS 0 1 [ —
Mining: find C] such that Cj <d

How? By trying different nonces (brute force)




Block: 0 1
Nonce: 2790
Data: NCore

Hash: 0000cS51693ac7 7alBae7 3ace Sdf93245 7fc62e8dfa23c2f3chd8ebb125ba7843



Smart Contracts

==

Option contract written as Contract is part of the Parties involved in the
code into a blockchain. i public blockchain. i contract are anonymous.

. .
................................................... ‘-.......--.......-.-....--f.-....-...-.-.--.-.....-.‘...-...-....-...-....--..-.-..-.-...-.-.-...-...--.
.

&’ ) (1

Contract executes itself Regulators use blockchain to
when the conditions are met. : keep an eye on contracts.

Happy Hustlin’ https://codebrahma.com



& < C { GitHub, Inc. [US] https://github.com@ll [ | | B¢ 0 B 5 S
33 partner_1 = contract.storage[I_PARTNER_1]
34 partner_2 = contract.storage[I_PARTNER_2]
35
36 ;¥a S_PROPOSED and tx.sender == partner_2 and tx.data[@] == partner_1:
37 contract storage[I_STATE] = S_MARRIED
38
39 else if state == S_MARRIED and tx.sender == partner_1 or tx.sender == partner_2:
40 if tx.data[@] == TX_WITHDRAW:
41 creator = contract.storage[I_WITHDRAW_CREATOR]
42 if creator != @ and contract.storage[I_WITHDRAW_TO] == tx.data[1] and contract.storage[I_WITHDRAW_AMOUNT] == tx. d
43 mktx(tx.data[1], tx.data[2], @, @)
44 contract.storage[I_WITHDRAW_TO] = @
45 contract.storage[I_WITHDRAW_AMOUNT] = ©
46 contract.storage[I_WITHDRAW_CREATOR] = @
47 else:
48 contract.storage[I_WITHDRAW_TO] = tx.data[1]
49 contract.storage[I_WITHDRAW_AMOUNT] = tx.data[2]
50 contract.storage[I_WITHDRAW_CREATOR] = tx.sender
51
52 else if tx.data[@] == TX_DIVORCE:
53 creator = contract.storage[I_DIVORCE_CREATOR]
54 if creator != @ and creator != tx.sender:
55 balance = block.account_balance(contract.address)
56 mktx(partner_1, balance / 2, @, @)
57 mktx(partner_2, balance / 2, @, @)

SR rantrart ctnraocalT CTATE]l = € NTUNRCEN



Perspectives

(1) The journalist
(2) The user
(3) The participant
(4) The engineer

(5) The scientist



(5) The Scientist

Conjecture 1: Turing Universality

Conjecture 2: P is not NP

Theorem 1: Lamport (Consensus) Universality

" Theorem 2: Consensus Impossibility



Turing Universality (36)

Infinite Tape
1170|0011 1]1]0 * o0
& ‘ Read / VWrite Head

Control Unit
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Lamport Universality (78)

Basic consensus

State

Machine

X! 3

Y | 2

Z |7
State State
Machine Machine
X1| 3 < > X| 3
Y| 2 Y | 2
Z |7 Z |7




Consensus Unlversallly (78)

(

\_

\
Safety: No two nodes must choose different values.
The chosen value must have been proposed by a node.
Liveness: Each node must eventually choose a value. y

Every service can be implemented in a highly
available manner using Consensus



Consensus Impossibility (84)

Consensus is impossible in an
asynchronous system
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Payment System

Can we implement a payment
system asynchronously?



The infinitely big
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Message Passing

Send

pITV

p2

p3 \ /
Recelve



Shared Memory

Write() 1

N\~

Registers

N

Read() |

p2

<~ Message Passing



Atomic Shared Memory

write(l) - ok




Atomic Shared Memory

write(l) - ok




Non-Atomic Shared Memory

write (1) - ok




Non-Atomic Shared Memory

write (1) - ok




Message Passing < Shared Memory

Write(1) Ok

Quorums (asynchrony)



Message Passing < Shared Memory

Write(1) Ok

Quorums (asynchrony)



Message Passing < Shared Memory

Write(1) Ok

Quorums (asynchrony)



« To understand a distributed computing problem:
bring it to shared memory » T. Lannister

« Optimization is the source of all evil » D. Knuth



Pvs NP

7*13=7 ? %9 =9]

Asynchronous vs Synchronous

Write(P1)

pl ~

0 Write(Pz)/v \




Payment System

“Atomicity

Wait-freedom

Can we implement a payment
system asynchronously?



Counter: Specification

A counter has two operations inc() and
read(); it maintains an integer x /init to 0

read():
return(x)

inc():
X:i=X+1;
return(ok)



Counter: Algorithm

The processes share an array of registers
Req[1,..,N]

inc():
~ Req[i].write(Reqg[i].read() +1);

return(ok)

read():
sum := 0;
forj=1toNdo

sum := sum + Reg[j].read();

return(sum)



Counter*: Specification

Counter* has, in addition, operation dec()

dec():
if x > 0 then x :=x - 1; return(ok)
else return(no)

Can we implement Counter*
asynchronously?



2-Consensus with Counter*

« Registers RO and R1 and Counter* C - initialized to 1

« Process pl.
propose(vI)
RI.write(vI)
res := C.dec()
if(res = ok) then
v return(vI)
v else return(R{1-I}.read())



Impossibility [FLP85,LA87]

« Theorem: no asynchronous algorithm implements
consensus among two processes using registers

« Corollary: no asynchronous algorithm implements
Counter* among two processes using registers



« Theorem: no asynchronous algorithm implements
set-agreement using registers




The consensus number of an object is the maximum
number of processes than can solve consensus with it

Cooup -] 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
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’1
IH lfe
» [l 1HHBHE
' |E ARBEREIE
« BE AR ERBRBRIRIEEE
s [[E ABRRBEBRBERE
o &[5 AEEREBREE
" R ) e e e w8
&5 || &5 || &
IBEIEIES



Payment Object (PO): Specification

Pay(a,b,x): transfer amount x fromato b ifa >
X (return ok; else return no)

NB. Only the owner of a invokes Pay(a,*,*

« Questions: can PO be implemented asynchronously?
what is the consensus number of PO?



Payment Object (PO): Specification

Pay(a,b,x): transfer amount x fromato b ifa >
X (return ok; else return no)

NB. Only the owner of a invokes Pay(a,*,*

« Questions: can PO be implemented asynchronously?
what is the consensus number of PO?



Snapshot: Specification

A snapshot has operations update() and
scan(); it maintains an array x of size N

scan():
return(x)

update(i,v):
X[1] i=V;
return(ok)



Algorithm?

" The processes share one array of N registers
Reg[1,..,N]

scan():
forj=1toNdo
X[j] := Req[j].read();
return(x)
update(i,v):
- Req[i].write(v); return(ok)



Atomicity?

update(l,1) - ok

update (3,2) - ok

p—— T




Atomicity?

update(l,1) - ok

update (3,2) - ok

p—— T




Atomicity?

scan () —~ [0,0,10]
— 7 |
update(2,1) - ok

p—f——t————

update (3,10) -0k

———————— 1




Key idea for atomicity

To scan, a process keeps reading the entire snapshot
(i.e., collecting), until two arrays are the same

Key idea for wait-freedom

To update, scan then write the value and the scan

To scan, a process keeps collecting and returns a

collect if it did not change, or some collect returned
by a concurrent scan



The Payment Object: Algorithm

Every process stores the sequence of its outgoing
payments in its snapshot location

To pay, the process scans, computes its current

balance: if bigger than the transfer, updates and
returns ok, otherwise returns no

To read, scan and return the current balance



PO can be implemented
Asynchronously

Consensus number of PO is 1

Consensus number of PO(k) is k



(5) The Scientist

Conjecture 1: Turing Universality
- Conjecture 2: Pis not NP

" Theorem 1: Lamport (Consensus) Universality
Theorem 2: Consensus Impossibility

" Theorem 3: PO < Consensus



Payment System (AT2)

AT2_S
AT2_D
AT2_R

Number of lines of code: one order of magnitude less

Latency: seconds (at most)
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