
Demystifying Bitcoin

Prof R. Guerraoui EPFL & Collège de France & UM6P

Have you heard about?

Perspectives

- (1) The journalist
 - (2) The user
 - (3) The participant
 - (4) The engineer
 - (5) The scientist

(1) The Journalist

7 2008: Financial crisis – Nakamoto (1/21m) From 1c to 8000\$ through 20000\$

From trading hardware to general trading

C 2014: Ethereum (CH) - Now 800 \$

Contemporary 2020: Libra - FacebookCoin

Areas Braci Braci Braci Braci Braci Braci Braci Braci 12200-877 860 974 7577 32025 32025 160077 46007 46007 870746 2007-22000 10 20200-20201 20201 20201 20201 20201 20201 20201 2020-20 THE PLAN 122 est 4172 4172 4173 4173 4024 4024 4024 4024 Addressed Pry-G-1044 #44 2724ебе <u>1977:12</u> <u>2977:28</u> <u>1050:00</u> <u>1050</u> 11771 267 267 27736 76000 27736 784470 784470 784470 780487 78047 780487 78047 78057 78047 78057 78047 78057 4 Sha--26-1 197677 12546 12576 12246 12266 12266 12266 12845 12845 12845 12845 12845 12845 12845 12845 12845 1056 92765 12855 2273 And time 294212 4600 - 294312 1261849 12618497602022760202 299812 4600 - 294312 4600 - 294312 4600 - 294312 8049531 8049531 80797 13907779 226 66 7020 694302 67 7920

5 6	3			7				
6			1	9	5			
	9	8					6	
8				6				3
8 4 7			8		3			1
7				2				1 6
	6					2	8	
			4	1	9			5 9
				8			7	9

Perspectives

- (1) The journalist
 - (2) The user
 - (3) The participant
 - (4) The engineer
 - (5) The scientist

(2) The User

BLOCKCHAIN				🌲 🖒 SIGN OUT
DASHBOARD Transactions BITCOIN	BE YOUR OWN BAN	NK.®	® 0.00000546 BTC ♦ 0.102338636	803627092 ETH \$23.08
ETHER New!	ALL SENT RECEIVED		Export Private Key	Search Q
 BUY & SELL SECURITY CENTER SETTINGS FAQ 	 ✓ SENT July 21 @ 10:10 AM ☑ Transaction Confirmed √ 	To: 0x9970b7e233555a037311be1f3261b59393d6981 From: My Ethereum Wallet	f Add a description	0.0001 ETH
	> SENT July 18 @ 02:54 PM	To: 0x16a6920db1f14fc473325cf94a5e2d20c1fba868 From: My Ethereum Wallet	Add a description	0.0001416 ETH
	> RECEIVED July 17 @ 11:44 AM	To: My Ethereum Wallet From: 0x3b0bc51ab9de1e5b7b6e34e5b960285805c4	Add a description	0.08380039 ETH
	> RECEIVED July 13 @ 03:03 PM	To: My Ethereum Wallet From: 0xeed16856d551569d134530ee3967ec79995e	2051 test, hey jamie! 🧷	0.01966193 ETH

(2) The User

The wallet: 1 private key + several public keys

Transaction validation

signing + gossiping + mining + chaining

Transaction commitment

• After time t: thousands of users have seen it

(3) The Participant

Honey, I'm home!

I found a block today!

5	3			7				
5 6	-		1	9	5			
	9	8					6	
8				6				3
8 4 7			8		3			1
7				2				1 6
	6					2	8	
			4	1	9			5
				8			7	9

(3) The Participant

(3) The Participant

- To validate a transaction, a miner has to solve a puzzle including it
 - Fairness and cooperation
- Incentive: 12 bitcoins / puzzle
 - 50 bitcoins 3 years ago
- Total: 21 millions bitcoins
 - Now: 17 millions

(4) The Engineer

- Joinning (a P2P network)
 - Signing (a transaction)

- Gossiping (the transaction)
 - Gathering (a block)
 - Mining (proof of work nonce)

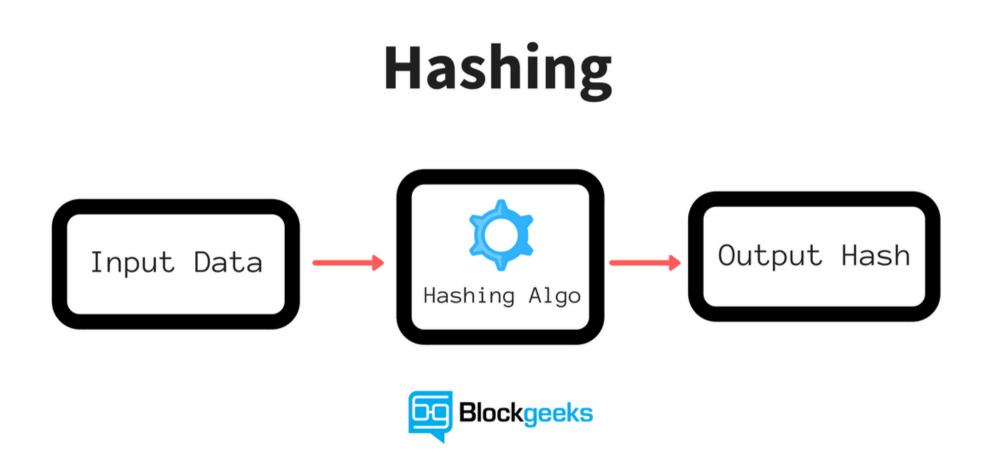
- Chaining (hash)
 - Gossiping (the block)
 - Committing/Aborting

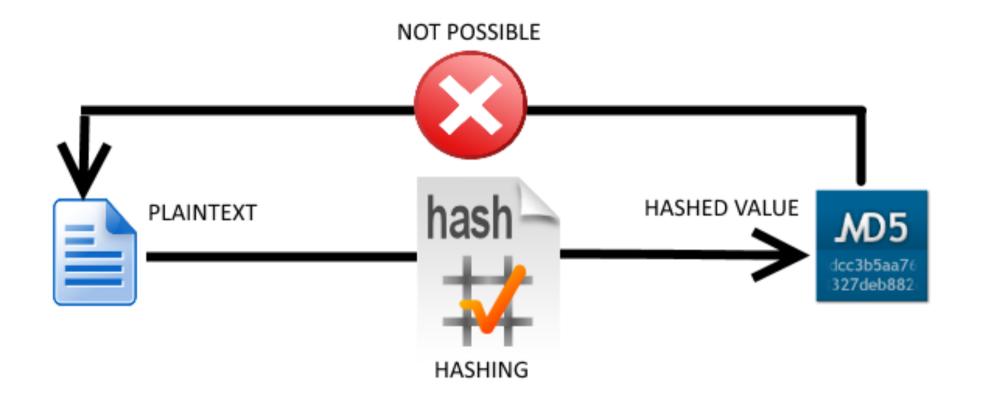
TECHNOLOGIES OF A BLOCKCHAIN

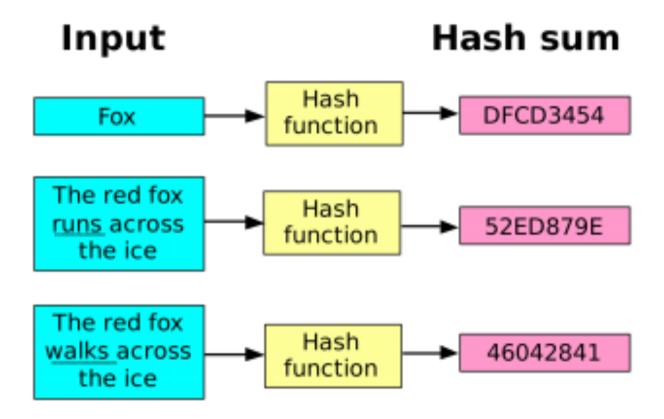
Asymmetric Encryption Transaction signing

Hash Functions Transaction/block hashing as well as obfuscating public keys

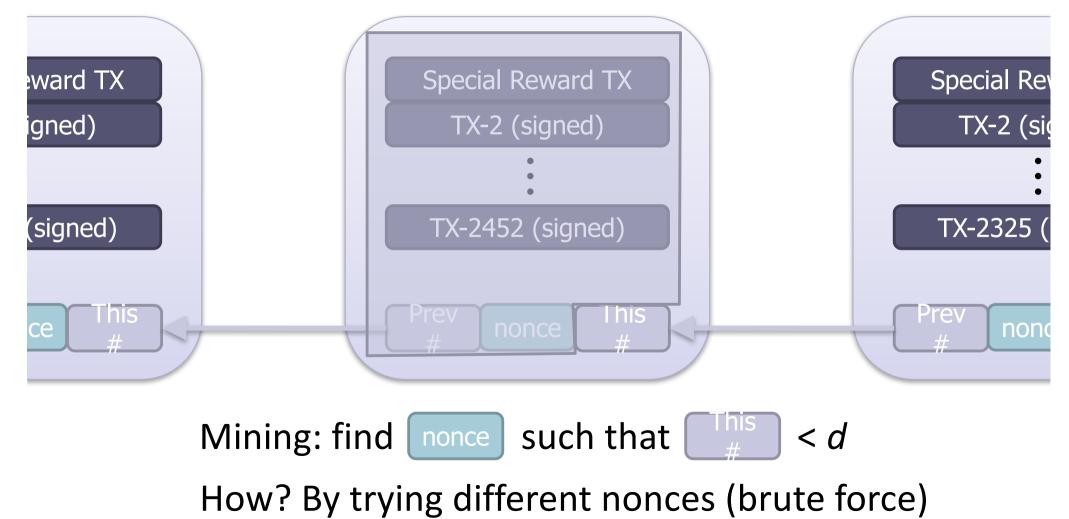
Merkle Trees Efficient way to package transactions into blocks

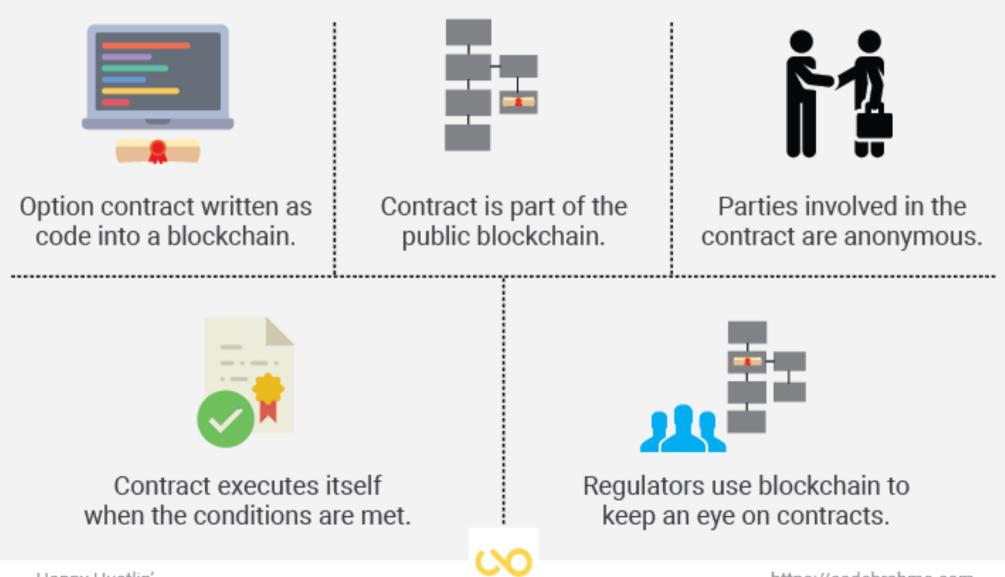

Key-Value Database Lookups of previous transactions (prevent double-spends)



Proof of Work Method to achieve consensus




The Big Picture

Bitcoin block

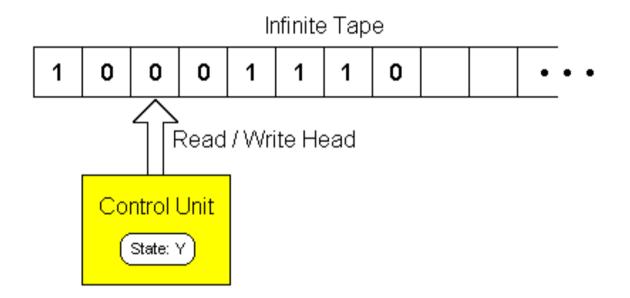
Block: 1 ø Nonce: 2790 Data: NCore Hash: 0000c5f693ac77a18ae73ace5df932457fc62e8dfa23c2f3c6d8ebb125ba7843 Mine

Smart Contracts

Happy Hustlin'

https://codebrahma.com

-> (C GitHub, Inc. [US] https://github.com
	NEW NEW
33	<pre>partner_1 = contract.storage[I_PARTNER_1]</pre>
34	<pre>partner_2 = contract.storage[I_PARTNER_2]</pre>
35	
36	if state == S_PROPOSED and tx.sender == partner_2 and tx.data[0] == partner_1:
37	contract.storage[I_STATE] = S_MARRIED
38 39	
10	else if state == S_MARRIED and tx.sender == partner_1 or tx.sender == partner_2:
41	<pre>if tx.data[0] == TX_WITHDRAW: creator = contract.storage[I_WITHDRAW_CREATOR]</pre>
42	if creator != 0 and contract.storage[I_WITHDRAW_T0] == tx.data[1] and contract.storage[I_WITHDRAW_AMOUNT] == tx.d
43	mktx(tx.data[1], tx.data[2], 0, 0)
44	contract.storage[I_WITHDRAW_TO] = 0
45	contract.storage[I_WITHDRAW_AMOUNT] = 0
46	contract.storage[I_WITHDRAW_CREATOR] = 0
47	else:
48	<pre>contract.storage[I_WITHDRAW_T0] = tx.data[1]</pre>
49	contract.storage[I_WITHDRAW_AMOUNT] = tx.data[2]
50	contract.storage[I_WITHDRAW_CREATOR] = tx.sender
51	
52	<pre>else if tx.data[0] == TX_DIVORCE:</pre>
53	<pre>creator = contract.storage[I_DIVORCE_CREATOR]</pre>
54	if creator != 0 and creator != tx.sender:
55	<pre>balance = block.account_balance(contract.address)</pre>
56	<pre>mktx(partner_1, balance / 2, 0, 0)</pre>
57	mktx(partner_2, balance / 2, 0, 0)
58	contract storage[T_STATE] = S_DTVORCED


Perspectives

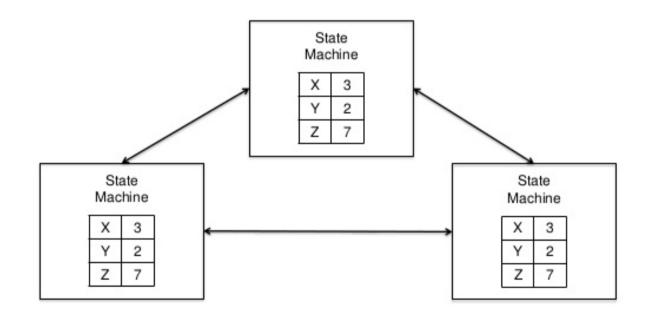
- (1) The journalist
 - (2) The user
 - (3) The participant
 - (4) The engineer
 - (5) The scientist

(5) The Scientist

- Conjecture 1: Turing Universality
- Conjecture 2: P is not NP
- Theorem 1: Lamport (Consensus) Universality
- Theorem 2: Consensus Impossibility

Turing Universality (36)

P vs NP (Nash/GV 50 – Ford 70)


? *? = 91

7 * 13 = ?

5 6	3			7				
6			1	9	5			
	9	8					6	
8				6				3
8 4 7			8		3			1 6
7				2				6
	6					2	8	
			4	1	9			5 9
				8			7	9

Lamport Universality (78)

Basic consensus

Consensus Universality (78)

Safety: No two nodes must choose different values.

The chosen value must have been proposed by a node.

Liveness: Each node must eventually choose a value.

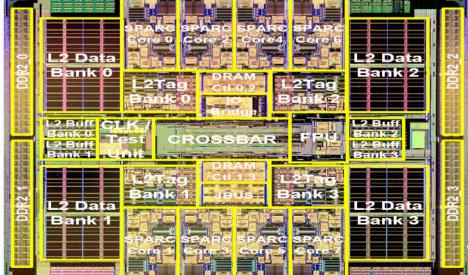
Every service can be implemented in a highly available manner using Consensus

Consensus Impossibility (84)

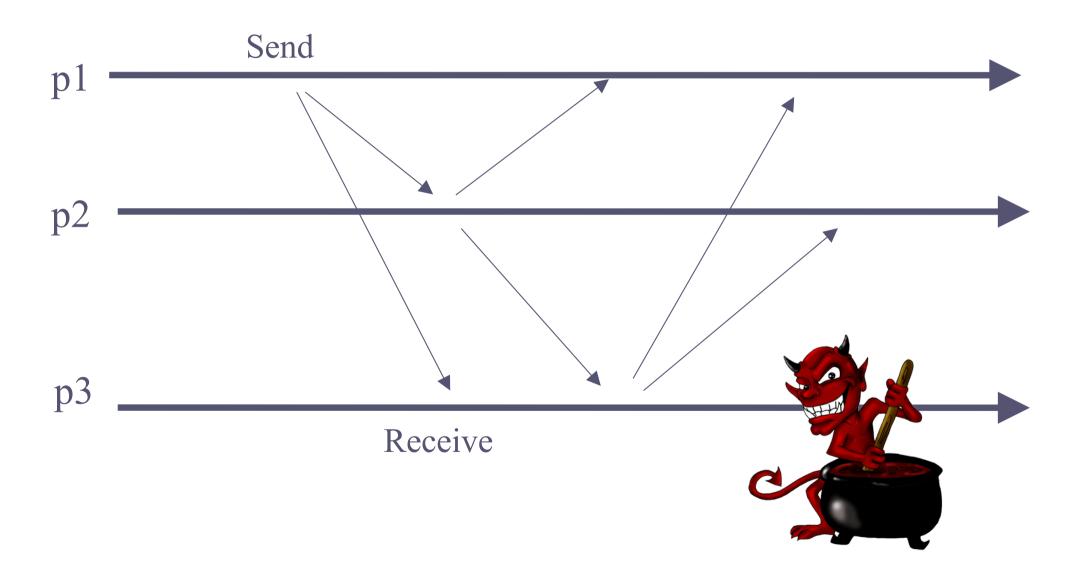
Consensus is impossible in an asynchronous system

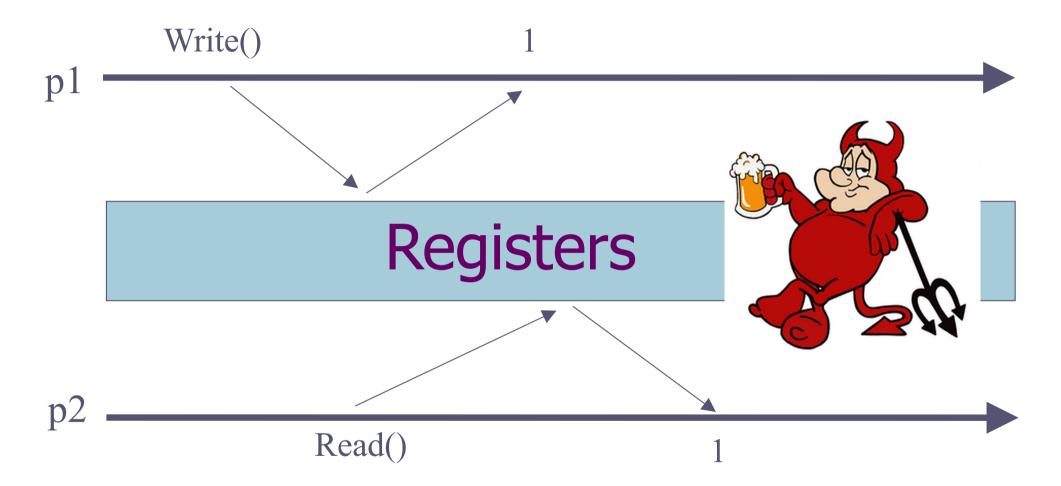
Perspectives


- (1) The journalist
 - (2) The user
 - (3) The participant
 - (4) The engineer
 - (5) The scientist

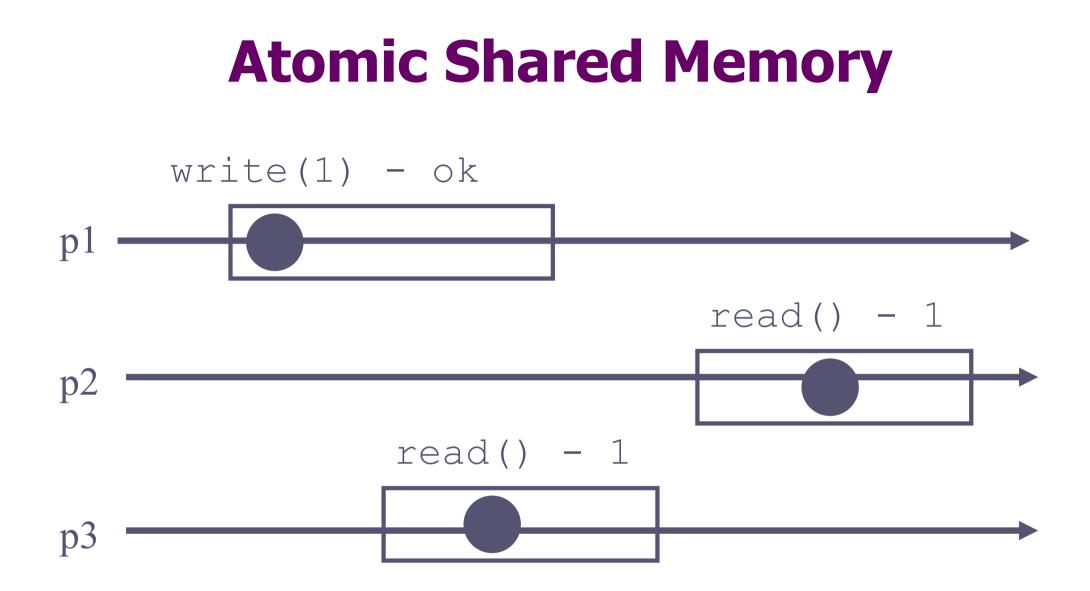

Can we implement a payment system asynchronously?

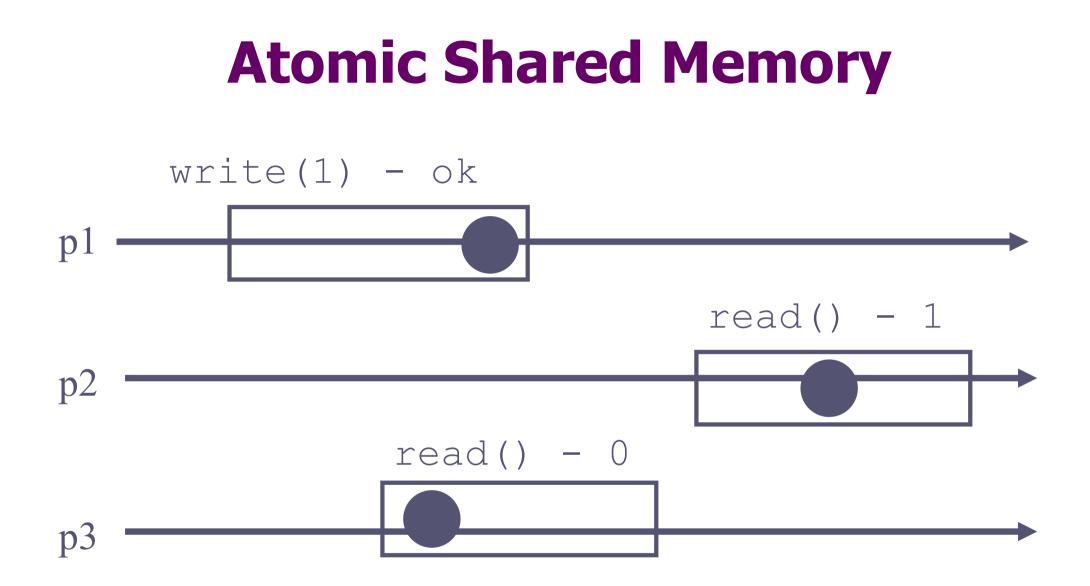
The infinitely big





The infinitely small

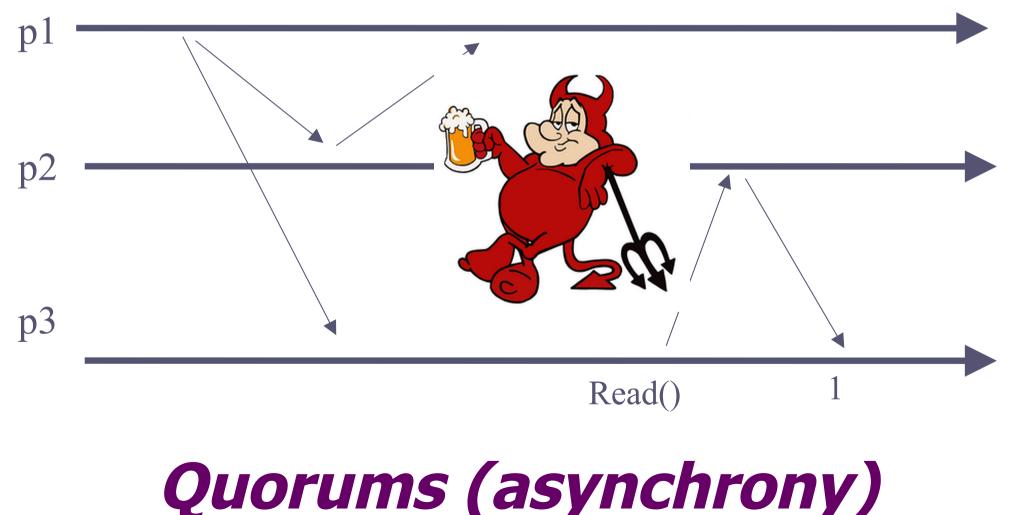

Message Passing



Shared Memory

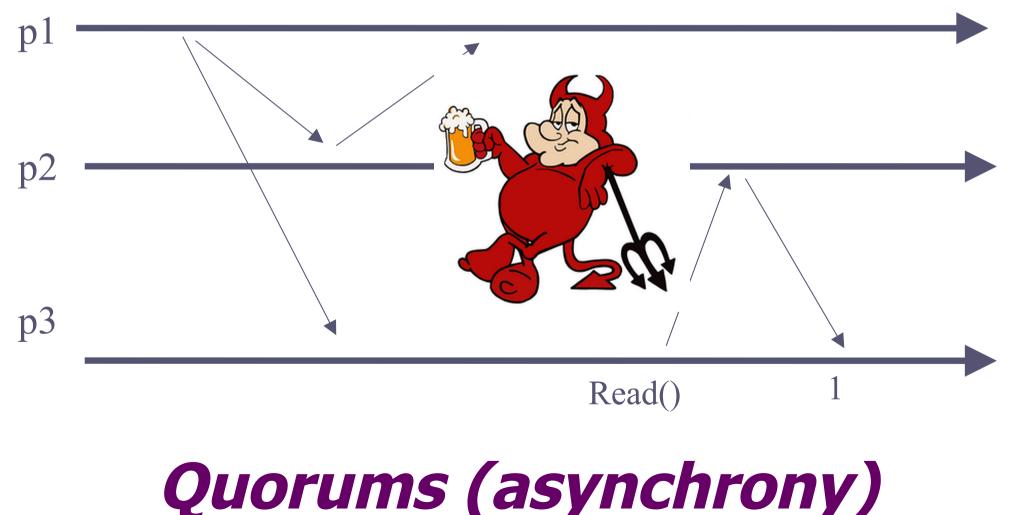
Message Passing

Non-Atomic Shared Memory

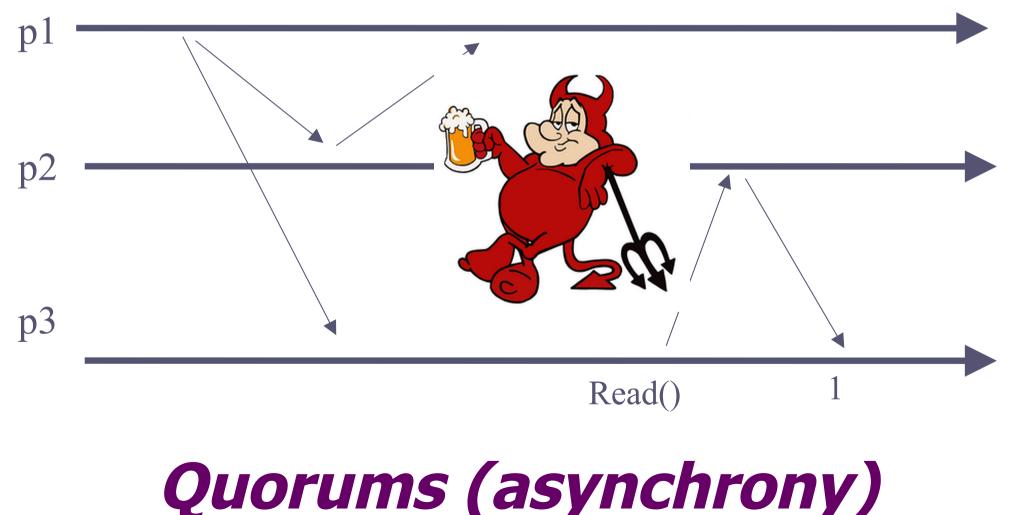

write(1) - ok p1 read() - 0p2 read() - 1p3

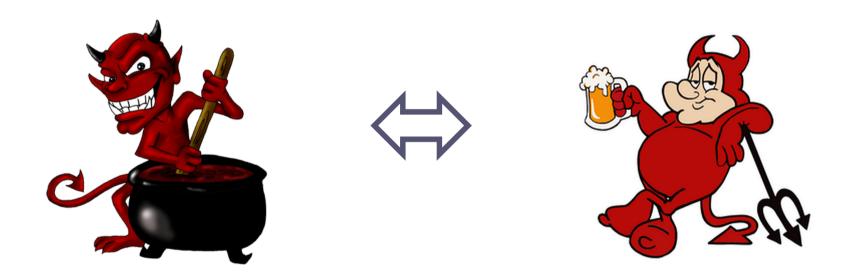
Non-Atomic Shared Memory

write(1) - ok p1 read() - 0p2 read() - 1p3


Message Passing \Leftrightarrow Shared Memory

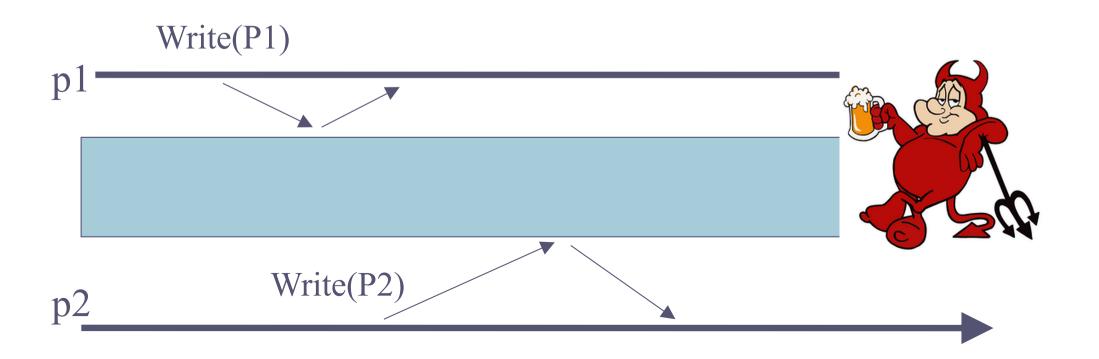
Write(1) Ok


Message Passing \Leftrightarrow Shared Memory


Write(1) Ok

Message Passing \Leftrightarrow Shared Memory

Write(1) Ok



Optimization is the source of all evil » D. Knuth

P vs NP

7 * 13 = ? ? * ? = 91

Asynchronous vs Synchronous

Atomicity

Wait-freedom

Can we implement a payment system asynchronously?

Counter: Specification

- A counter has two operations inc() and read(); it maintains an integer x init to 0
- read():
 return(x)
- // inc():

 - return(ok)

Counter: Algorithm

- The processes share an array of registers Reg[1,..,N]
- // inc():
 - Reg[i].write(Reg[i].read() +1);
 - return(ok)
 - read():
 - sum := 0;
 - \checkmark for j = 1 to N do

r sum := sum + Reg[j].read();

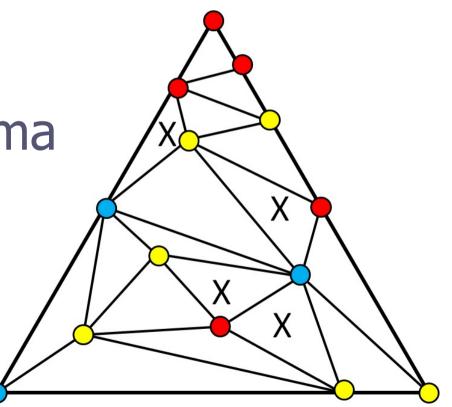
return(sum)

Counter*: Specification

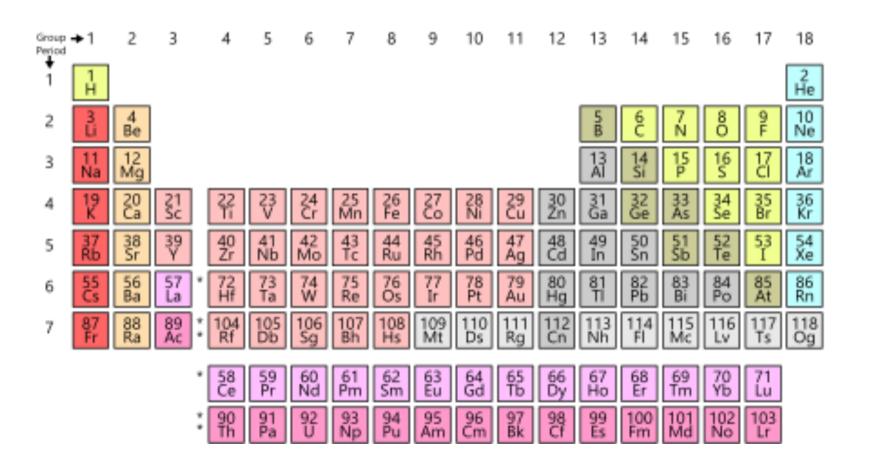
- Counter* has, in addition, operation dec()
- dec():
 if x > 0 then x := x 1; return(ok)
 else return(no)

Can we implement Counter* asynchronously?

2-Consensus with Counter*


- Registers R0 and R1 and Counter* C initialized to 1
- Process pI:
- propose(vI)
 RI.write(vI)
 res := C.dec()
 if(res = ok) then
 - ✓ return(vI)✓ else return(R{1-I}.read())

Impossibility [FLP85,LA87]


 Theorem: no asynchronous algorithm implements consensus among two processes using registers

 Corollary: no asynchronous algorithm implements Counter* among two processes using registers Theorem: no asynchronous algorithm implements set-agreement using registers

Sperner's Lemma

The **consensus number** of an object is the maximum number of processes than can solve consensus with it

Payment Object (PO): Specification

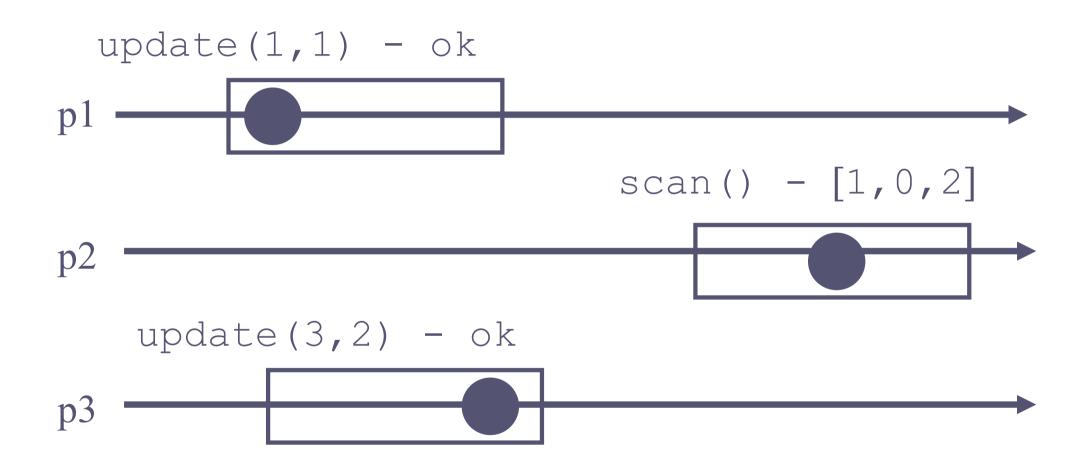
- Pay(a,b,x): transfer amount x from a to b if a >
 x (return ok; else return no)
- NB. Only the owner of a invokes Pay(a,*,*)

 Questions: can PO be implemented asynchronously? what is the consensus number of PO?

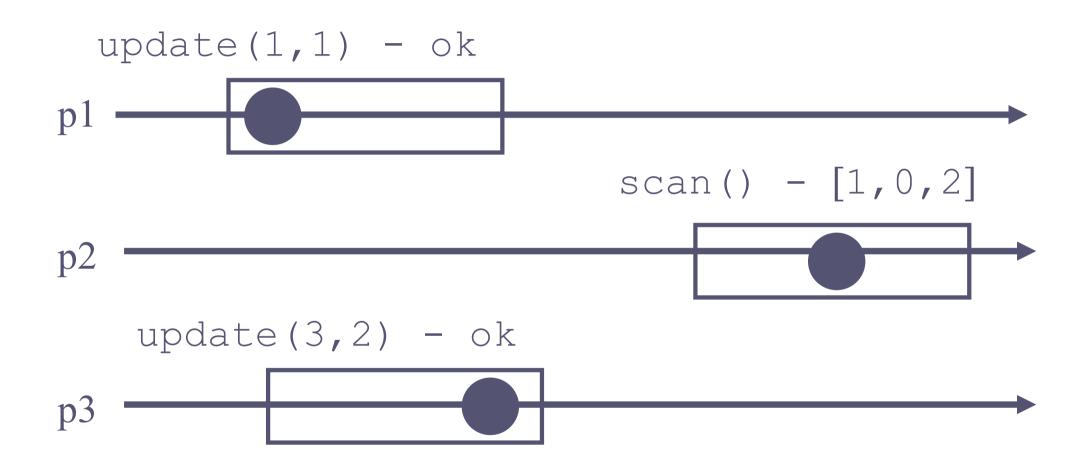
Payment Object (PO): Specification

- Pay(a,b,x): transfer amount x from a to b if a >
 x (return ok; else return no)
- NB. Only the owner of a invokes Pay(a,*,*)

 Questions: can PO be implemented asynchronously? what is the consensus number of PO?

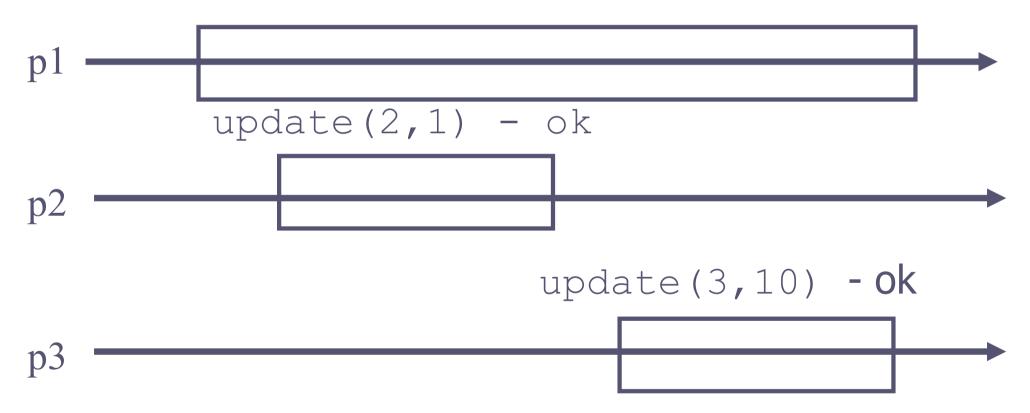

Snapshot: Specification

- A snapshot has operations update() and scan(); it maintains an array x of size N
- scan():
 return(x)
 update(i,v):
 x[i] := v;
 return(ok)


Algorithm?

- The processes share one array of N registers Reg[1,..,N]
- scan():
 - \checkmark for j = 1 to N do
 - r x[j] := Reg[j].read();
 - return(x)
- update(i,v):
 - Reg[i].write(v); return(ok)

Atomicity?



Atomicity?

Atomicity?

scan() - [0,0,10]

Key idea for atomicity

To scan, a process keeps reading the entire snapshot (i.e., collecting), until two arrays are the same

Key idea for wait-freedom

- To update, scan then write the value and the scan
- To scan, a process keeps collecting and returns a collect if it did not change, or some collect returned by a concurrent scan

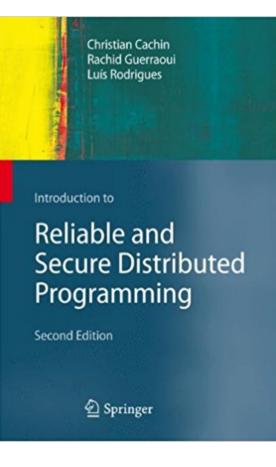
The Payment Object: Algorithm

- Every process stores the sequence of its outgoing payments in its snapshot location
- To pay, the process scans, computes its current balance: if bigger than the transfer, updates and returns ok, otherwise returns no
- To read, scan and return the current balance

PO can be implemented Asynchronously

Consensus number of PO is 1

Consensus number of PO(k) is k


(5) The Scientist

- Conjecture 1: Turing Universality
- Conjecture 2: P is not NP
- Theorem 1: Lamport (Consensus) Universality
- Theorem 2: Consensus Impossibility
- Theorem 3: PO < Consensus</p>

Payment System (AT2) ~ AT2_S ~ AT2_D ~ AT2_R

- Number of lines of code: one order of magnitude less
- Latency: seconds (at most)

References

ALGORITHMS FOR CONCURRENT SYSTEMS Rachid Guerraoui Petr Kuznetsov

