
Composing Relaxed Transactions

Vincent Gramoli
The University of Sydney

vincent.gramoli@sydney.edu.au

Rachid Guerraoui
EPFL

rachid.guerraoui@epfl.ch

Mihai Letia
EPFL

mihai.letia@epfl.ch

Abstract—As the classic transactional abstraction is sometimes
considered too restrictive in leveraging parallelism, a lot of work
has been devoted to devising relaxed transactional models with
the goal of improving concurrency. Nevertheless, the quest for
improving concurrency has somehow led to neglect one of the
most appealing aspects of transactions: software composition,
namely, the ability to develop pieces of software independently
and compose them into applications that behave correctly in the
face of concurrency. Indeed, a closer look at relaxed transactional
models reveals that they do jeopardize composition, raising the
fundamental question whether it is at all possible to devise such
models while preserving composition. This paper shows that the
answer is positive.

We present outheritance, a necessary and sufficient condition
for a (potentially relaxed) transactional memory to support
composition. Basically, outheritance requires child transactions
to pass their conflict information to their parent transaction,
which in turn maintains this information until commit time.
Concrete instantiations of this idea have been used before, classic
transactions being the most prevalent example, but we believe
to be the first to capture this as a general principle as well
as to prove that it is, strictly speaking, equivalent to ensuring
composition.

We illustrate the benefits of outheritance using elastic trans-
actions and show how they can satisfy outheritance and provide
composition without hampering concurrency. We leverage this
to present a new (transactional) Java package, a composable
alternative to the concurrency package of the JDK, and evaluate
efficiency through an implementation that speeds up state of the
art software transactional memory implementations (TL2, LSA,
SwissTM) by almost a factor of 3.

Index Terms—transactional memory; multicore processing;
scalability

I. INTRODUCTION

One of the most desirable properties in software engi-

neering is composition. Basically, pieces of software, called

components, should be developed and tested independently

and then later composed to create larger software pieces

and ultimately applications. Szyperski [1] argues that in all

engineering disciplines, after having matured, composition has

come to play a crucial role. It has now come to software

engineering to embrace composition, naming reuse, time to

market, quality and viability as some of the key benefits.

Composition in the sequential domain has been studied

extensively and techniques such as object oriented program-

ming have proved to be very useful in this regard. How-

ever, recent technological trends have introduced concurrency
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into programming, rendering composition significantly more

challenging. Key properties such as atomicity and deadlock
freedom are hard to preserve under composition.

Other research [2], [3] considers parallel composition of

software. In this view, two operations π and π′ are said to

be composed when they are executed in parallel by different

processes. We consider our work to be complementary in the

sense that we reason about concurrent composition of soft-

ware. An operation obtained through concurrent composition

invokes a set of simpler (child) operations in sequence just like

in the case of sequential composition, but multiple instances

of the composed operation can be executed in parallel, just

like in the case of parallel composition.

The following simple example from Harris et al. [4]

illustrates the difficulty of concurrent composition in the case

of lock-based programs: remove and put cannot be composed

into a move operation because a concurrent execution with

two instances of move, one moving a value from key k to k′

and another one from key k′ to k would be deadlock-prone.

In the same vein, lock-free implementations are generally

hard to compose. It is for instance impossible to use the

remove and put operations of a hash table to obtain a

concurrent move operation that can be used to rebalance the

table after a resize [5]. Indeed, the difficulty of composing

lock-free operations [6], [7] is a major limitation of the

java.util.concurrent package [8] of the JDK. For example, the

size method of the ConcurrentSkipListMap class is known

to not be atomic, forcing the user to explicitly lock existing

sequential data structures in a coarse-grained manner, which

then severely hampers concurrency.

A memory transaction is an appealing concurrent program-

ming abstraction for it makes programs easily composable [4],

[9]–[11]. Composing with transactions simply consists of

encapsulating operations inside a new transaction [4], without

needing to modify the code, in contrast with techniques based

on compare-and-swap [12]. The result is a composition that

preserves atomicity and deadlock-freedom. One can further-

more use transactions to compose operations that are them-

selves obtained through composition, and so on. This modular

development process has the potential to greatly simplify the

task of the programmer.

Yet, transactions in their classic form are often considered

too restrictive [13]. They tend to reduce concurrency by over-

conservatively aborting transactions even in executions that
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Fig. 1. Composing an insertIfAbsent.

would semantically be correct at the application level, should

the transactions be actually committed. Several variants of the

original transactional abstraction have been proposed, all pro-

moting concurrency by accounting for application semantics

when orchestrating transaction interleaving [14]–[19]. These

are referred to as relaxed (or weak) models because they

allow more interleavings with the intent of providing better

performance. Typically, these models do not blindly reason at

the level of memory reads and writes when detecting conflicts

between concurrent transactional operations, but rather require

from the programmer to somehow encode the way higher-level

operations conflict. Zhang et al. [20] show relaxed transactions

to significantly outperform classic transactions using realistic

workloads such as the STAMP [21] benchmark suite.

However, the attention has mainly been devoted to ef-

ficiently implementing these models, forgetting sometimes

about one of the most appealing aspects of transactions,

namely composition. In fact, a closer look reveals that com-

position can sometimes easily be compromised when relaxing

the original transactional model.

To illustrate the composition problem, consider the elastic

model [16] designed to take advantage of the semantics of

search data structures. Elastic transactions improve concur-

rency by ignoring conflicts generated by their read-only prefix,

as in the case of lists, trees, etc. Now assume a set abstraction

having the operations contains(x) and insert(x) implemented

using elastic transactions, and a programmer willing to com-

pose them to obtain the operation insertIfAbsent(x, y). This

operation will insert x only if y is not present in the set. The

programmer is now required to make a choice about whether

to label the transaction as elastic, and he must choose wisely.

If he chooses to make it elastic, the insertIfAbsent will not

generate any conflicts based on its read-only prefix, including

the entire contains(y) operation, as shown in Figure 1. If such

conflicts are ignored, a concurrent transaction could insert y
after the insertIfAbsent finds it absent but before inserting

x. The result is an execution that violates atomicity. As an

alternative, the model allows the programmer to make the

insertIfAbsent a regular transaction, thus loosing the perfor-

mance of having composed elastic insert and contains instead

of ones implemented using regular transactions. Whatever the

choice, either correctness or performance is sacrificed.

The motivation of our work is to determine whether

relaxing the original transaction model inherently hampers

composition. We believe the question to be fundamental

because, without its ability to facilitate concurrent software

composition, the transaction abstraction loses most of its

appeal. Relaxed transactions provide a means for experienced

programmers to use advanced features of a transactional

memory in order to gain performance. It is through

composition that novice programmers can reuse these relaxed

transactions and improve the efficiency of their programs.

This paper starts by defining a framework to reason about

the notion of concurrent composition of software. We believe

this framework to be interesting in its own right since, to the

best of our knowledge, the problem of concurrent composition

has not been studied theoretically. In short, we propose a

simple yet precise way to capture the very idea that one

should be able to construct a new operation that invokes

existing operations in sequence. Given that existing operations

behave correctly in the face of concurrency, both new and old

operations must execute correctly in a concurrent setting. In

our context, the desired correctness criterion is atomicity.

To the best of our knowledge, the present paper is the first

to clearly define a correctness criterion for composing relaxed

transactions. We continue by presenting a property we call

outheritance, which we show to be necessary and sufficient for

ensuring composition of relaxed transactions. The property is

defined using the notion of a protected set. Basically, every

transaction t protects certain elements (memory locations,

locks, etc.) in order to detect when atomicity might be violated.

These elements form what we call the protected set of t. In

a nutshell, outheritance stipulates that the protected set of the

child transactions must be included in the protected set of the

parent transaction, to preserve atomicity under composition.

Concrete instantiations of the principle we call outheritance

have been used before. Probably the most notable one is

represented by classic transactions, using flat nesting. A classic

transaction protects all the memory locations it accesses and

after commit, they are protected by its parent transaction.

However, we believe outheritance to be a general principle that

can be used for ensuring atomicity of different types of relaxed

transactions or even other synchronization mechanisms. Due

to its simple formulation, outheritance can easily be used to

check the composability of a relaxed transactional model, as

well as when designing a new model, to ensure that it provides

composition.

We show however that outheritance can be achieved

without necessarily hampering concurrency and performance.

We describe our new Software Transactional Memory

(STM), called OE-STM, which satisfies outheritance while

implementing the elastic transaction model [16]. (Outheritance

is by no means tied to any specific transactional model and

other models could have been considered instead of the elastic

one). We compare our STM to three state-of-the-art ones,

TL2 [22], LSA [23] and SwissTM [24]. Our STM speeds up
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these STMs by up to 2.7× on a 64-hardware-thread machine.

The rest of the paper is organized as follows. Section II

introduces our system model and Section III defines compo-

sition. Section IV presents outheritance and shows it to be

necessary and sufficient for composition. Section V describes

the design of our new STM, which we used to build the trans-

actional alternative to the concurrency package of the JDK

described in Section VI. Section VII shows the performance of

this package. Section VIII reviews related work and Section IX

concludes the paper.

II. SYSTEM MODEL

Our transactional model builds upon that of Weihl [25],

which we refine by introducing the notion of protection
element that abstracts away the conflict detection mechanisms

employed by relaxed transactional models. Using this we then

proceed to define relax-serializability, a correctness condition

for relaxed transactions, as well as a correctness criterion for

composing these transactions.

For our purposes, a system is composed of processes and

objects. Objects represent the state of the system; they provide

operations through which processes executing transactions

examine and change the system state. Objects are the only

mean through which processes can pass information among

themselves. We denote by O the set of objects in the system

and for an object o ∈ O, o.ops is the set of operations provided

by the object, while o.vals is the set of return values of

these operations. Processes are sequential threads of control

that change the state of the system by executing transactions
supplied by a transactional memory. We denote by P the,

potentially infinite, set of processes in the system.

We consider that a transactional memory exposes an inter-

face allowing processes to start transactions, invoke operations

on objects in the system, and finally attempt to commit

the transaction. A transaction can either commit, making its

changes visible to other transactions, or abort, in which case

none of its changes are visible. Each transaction has a unique

transaction identifier t ∈ T , where T is the set of all

transaction identifiers. The transactional memory guarantees

serializability, or relax-serializability, as defined later in this

section. Throughout this work we are interested only in

transaction instances and, by abuse of notation, we refer to

them simply as transactions.

As we are reasoning about the atomicity properties of a

transactional memory system, we are interested in events that

occur at the interface between the transactional memory and

the objects. To make our reasoning simpler, we also consider

virtual events representing the beginning, commit or abort of

transactions. Thus we identify several types of events:

• process p ∈ P begins transaction t ∈ T , written

〈begin(t), p〉;
• transaction t ∈ T invokes operation op ∈ o.ops on object

o, written 〈op, o, t〉;

• operation op of object o invoked by transaction t ∈ T
terminates with result v ∈ o.vals, written 〈v, o, t〉;

• transaction t ∈ T executed by process p ∈ P commits,

written 〈commit(t), p〉;
• transaction t ∈ T executed by process p ∈ P aborts,

written 〈abort(t), p〉.
As we do not reason about progress properties of the transac-

tional memory, we found no need to separate the 〈begin(t), p〉,
〈commit(t), p〉 and 〈abort(t), p〉 events into invocation and

response pairs.

We model an observation of the system as a finite sequence

of events and we use the operator · to denote sequence

concatenation. We consider the virtual event 〈begin(t), p〉 to

precede the first operation invocation performed by transaction

t, while the virtual event 〈commit(t), p〉 follows the last

response received by the transaction.

For a sequence of events H and an object o ∈ O, we denote

by H|o the subsequence of H containing events involving

object o. For a transaction identifier t ∈ T and a process

p ∈ P , we say that transaction t is executed by process p
in event sequence H , if H contains the event 〈begin(t), p〉.
We then denote by H|p the subsequence of H containing the

events involving transactions executed by p.

A sequence of events is said to be a transaction having

transaction identifier t if:

• the first event is a 〈begin(t), p〉 for some process p;

• the next events are pairs of matching invocation and

response events involving transaction t;
• the sequence ends with either a commit event

〈commit(t), p〉 or an abort event 〈abort(t), p〉.
Not all event sequences make sense as observations and as

such we restrict our attention on sequences where for every

process p that appears in H , H|p can be extended by possibly

appending a response and a commit event to a sequence of

transactions. We refer to these “well-formed” sequences as

histories.

For a history H , we define transactions(H) to be the

set of transactions t such that 〈begin(t), p〉 ∈ H for some

process p. We then define committed(H) to be the sub-

set of transactions(H) containing all transactions t such

that 〈commit(t), p〉 ∈ H and aborted(H) as the sub-

set containing all transactions t such that 〈abort(t), p〉 ∈
H . We also define live(H) as the set live(H) =
transactions(H) \ (committed(H) ∪ aborted(H)). We de-

note by committed-ops(H) the subsequence of H containing

all operation invocation and response events that involve trans-

actions t ∈ committed(H). As we continue to reason about

the correctness of committed and live transactions, we remove

from histories all events involving aborted transactions.

In the same way as Weihl [25], we consider the serial
specification o.seq of an object o to model the acceptable

behavior of the object in a sequential environment. If ω is

a sequence of pairs [op, v], with op ∈ o.ops and v ∈ o.vals,

then o.seq is the set of all sequences ω that are considered

acceptable behavior for the object in a sequential environment.

As concurrency control would not be necessary in systems
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where all operations trivially commute, we state the following

non-triviality condition. We use it when arguing that our

outheritance condition is indeed necessary for correct com-

position. For an object o, a sequence ω of pairs [op, v], with

op ∈ o.ops and v ∈ o.vals, is said to be trivially commutative
if ∀ω′, ω′′ sequences of [op, v] pairs of o, ω · ω′ · ω′′ ∈ o.seq
if and only if ω · ω′′ · ω′ ∈ o.seq.

For a history H and any two events e, e′ ∈ H , we

denote the binary and anti-reflexive relation e′ follows e in

H by e ≺ e′. By abuse of notation, for two transactions

t, t′ ∈ committed(H), if 〈commit(t), p〉 ≺ 〈commit(t′), p′〉
in H we also say that t′ follows t in H and we denote it by

t ≺ t′. We say that t′ immediately follows t in H and denote

it by t ≺i t′ if t ≺ t′ and �t′′ ∈ committed(H) \ {t, t′}
such that t ≺ t′′ ≺ t′ in H . We say that two transactions,

t executed by process p, and t′, executed by p′, are con-
current in history H if 〈begin(t), p〉 ≺ 〈begin(t′), p′〉 and

〈begin(t′), p′〉 ≺ 〈commit(t), p〉 in H . History H is said to

be sequential if no transactions are concurrent in H .

For a history H we denote by ops(H) the subsequence of H
containing all the operation events (invocations and responses).

For a sequential history H , we define opseq(H) to be the

sequence obtained from ops(H) by mapping all the matching

pairs of invocation and response events 〈op, o, t〉, 〈v, o, t〉 to

operation, value pairs [op, v]. To do the opposite, for an object

o and transaction identifier t, we denote by ω �→ t the sequence

of events obtained by converting every pair [op, v] ∈ ω to the

pair of events 〈op, o, t〉, 〈v, o, t〉.
A sequential history H is said to be legal if for every object

o that appears in H , opseq(H|o) ∈ o.seq. Two histories H
and H ′ are said to be equivalent if for every process p, H|p =
H ′|p.

Any history H induces an irreflexive partial order <H on

transactions in H: t <H t′ if 〈commit(t), p〉 ≺ 〈begin(t′), p′〉
in H . Note that <H is stricter than ≺; indeed t <H t′ implies

t ≺ t′ but not the opposite.

A history H is said to be serializable if there exists a legal

sequential history S such that:

• committed-ops(H) is equivalent to ops(S), and

• <H⊆<S .

Note that we will be considering the strict form of serializ-

ability [26] for the course of this work.

A. The protection element abstraction

As classic transactional semantics proved too restrictive for

concurrent data structures such as lists and trees [16], relaxed
transactions have been designed to take advantage of the extra

concurrency by ignoring some conflicts. To illustrate, consider

a linked list along with an add operation that goes from the

head towards the tail of the list and inserts an element at some

position. Now an add operation, implemented using a classic

transaction, is inserting an element somewhere in the middle

of the list, while in the meantime another add is modifying

the head of the list. In this situation, most implementations

would cause one of the transactions to unnecessarily abort

in order to avoid the complex detection of cycles in the

conflict graph [13] and still guarantee serializability. However,

an elastic transaction [16] would consider this to be a false

conflict and hence allow both transactions to commit since

semantically the execution does not violate atomicity. This

type of transaction ignores conflicts caused by its read-only

prefix.

In order to reason about relaxed transactions we introduce

the notion of a protection element, an abstract entity used to

model different existing conflict detection schemes. To each

object o ∈ O we associate a protection element ε(o) that

is acquired by transaction t before invoking an operation

op ∈ o.ops. Transaction t will then release ε(o) when the

conflict becomes benign. Between the acquisition of ε(o) by

t and its release, we say that ε(o) belongs to the protected set

of t, denoted by P (t). Informally, a transaction maintains a

protected set in order to detect conflicts between operations it

has already applied and operations applied by other concurrent

transactions. In Section IV we show that passing the protected

set to the parent at commit time is a necessary and sufficient

condition for ensuring composition.

An important note is that we chose not to include commu-

tativity in our model. Indeed it would be a simple extension to

associate a protection element to each operation of the object

instead of the object itself. Then a transaction executing an

operation must acquire the protection element associated to

the operation as well as those associated to other operations of

the object that do not commute with that operation. We chose

not to include this extension as it would make expressing our

idea more complicated while bringing no extra insight.

We therefore extend histories by adding two types of

events: the acquisition of protection element ε(o) by process

p, denoted by 〈a(ε(o)), p〉, and the matching release event

〈r(ε(o)), p〉. In order to be as general as possible, we only

require that in any history H , the invocation and response

of any operation op ∈ o.ops, invoked by transaction t exe-

cuted by process p, be between a pair of acquire and next

matching release event of protection element ε(o) by process

p, 〈a(ε(o)), p〉 ≺ 〈op, o, t〉 ≺ 〈v, o, t〉 ≺ 〈r(ε(o)), p〉. We do

not allow an acquire or release event between the last response

event of a transaction t and the commit event of t. For a history

H and a protection element ε(o), we denote by H|ε(o) the

subsequence of H containing the acquire and release events

involving ε(o).
Using the mechanism of protection elements, we model

transactions that do not require all their operations to appear to

execute as a single atomic unit. Before invoking an operation

on an object, the transaction must acquire the corresponding

protection element, which is then released when the conflict

becomes benign. This could be anywhere between just after the

response of the operation and the commit of the transaction.

In the case of classic transactions, the protection element

associated with a memory location is acquired right before

reading or writing the location and released after the commit

of the transaction. In order to model transactional memories

using deferred updates, we consider the protection element to

be acquired at the point where the invocation was received by
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the transactional memory, even though the actual invocation

on the object is performed at commit time. For modeling the

early release mechanism of DSTM [14], the protection element

is released when the release operation of the transactional

memory is called, while for elastic transactions, it is released

after a new protection element is acquired.

For a history H and a transaction t ∈ committed(H)
executed by process p, the minimal protected set of t, denoted

by Pmin(t) is the set of protection elements ε(o) for which

〈begin(t), p〉 ≺ 〈a(ε(o)), p〉 ≺ 〈commit(t), p〉 ≺ 〈r(ε(o)), p〉.
In other words, the minimal protected set contains the pro-

tection elements that are acquired by process p during the

execution of transaction t and are not released at the time

when t commits. We also define the kernel of transaction t as

the set ker(t) = {o ∈ O|ε(o) ∈ Pmin(t)}.

The notion of protection element is more general than a

lock and it can model any way in which a transactional

memory detects conflicts between transactions. For example,

an invisible read also needs to acquire a protection element

corresponding to the respective location, meaning that the

transaction will recheck the location for consistency before

committing, or until it releases the protection element.

The minimal protected set of a transaction t ensures that the

abstract postcondition of t is not violated until the elements of

the set are released. The content of this set does not depend

only on the data structure and semantics of t but also on other

transactions that can be executed concurrently. To illustrate,

consider a set abstraction S, implemented with a linked list,

where transaction t is performing an insert(x). If the only

other possible concurrent transactions are some remove(x′)
and contains(x′′), it is safe to consider Pmin(t) to be the

element preceding x. The postcondition x ∈ S cannot be

violated without modifying the element preceding x. However,

if we consider that a concurrent transaction can perform an

empty() operation that removes all elements from the list by

setting the head pointer to null, Pmin(t) must be reevaluated

because the empty() operation can remove x without changing

the element preceding it.

The reason for which operations sometimes need to acquire

elements outside of their minimal protected set is that for

many search structures such as lists, trees, graphs, etc., the

minimal protected set is not known from the start and the

operation needs to find the data and the elements from its

minimal protected set.

B. Relax-serializability

As serializability proved too restrictive for efficiently im-

plementing concurrent data structures such as lists and trees,

we continue to define relax-serializability, the correctness

criterion that we use to reason about relaxed transactions. This

condition is weaker than classical serializability and allows us

to obtain executions that, although not serializable, are correct

at the application level. In a nutshell, relax-serializability

allows transactions to be interleaved at a finer granularity.

Transactions can be interleaved as long as the acquire and

release events involving the same protection element are not.

A history H is said to be relax-serial if for every protection

element ε(o) that is acquired or released in H , the sequence

H|ε(o) is a sequence of pairs of matching acquire and release

events, starting with an acquire event. History H is said to be

relax-serializable if there exists a legal relax-serial history S
such that:

• committed-ops(H) is equivalent to ops(S), and

• <H⊆<S .

We say that a history H contains relaxed transactions if

H is relax-serializable but not serializable. Note that since

relaxation is a property of a history, we cannot say if a single

transaction is relaxed or which transaction from a history is

relaxed.

To show that relax-serializability allows for more correct

histories compared to classic serializability, consider the fol-

lowing history from which we have omitted events showing

transaction begin and commit as well as operation response

events.

〈a(ε(o1)), p1〉, 〈read, o1, t1〉, 〈a(ε(o2)), p1〉, 〈read, o2, t1〉,

〈r(ε(o1)), p1〉, 〈a(ε(o1)), p2〉, 〈write, o1, t2〉, 〈a(ε(o3)), p2〉,

〈read, o3, t2〉, 〈r(ε(o1)), p2〉, 〈r(ε(o3)), p2〉, 〈a(ε(o3)), p1〉,

〈write, o3, t1〉, 〈r(ε(o2)), p1〉, 〈r(ε(o3)), p1〉

This history is relax-serial since every protection element

is released before being acquired. However, there is no

serial history equivalent to it since this would imply both

〈read, o1, t1〉 ≺ 〈write, o1, t2〉, leading to t1 < t2, as well

as 〈read, o3, t2〉 ≺ 〈r(ε(o3)), p1〉, leading to t2 < t1. This

history is therefore not serializable.

III. COMPOSITION

To better capture the intuition behind composition, we use

as an example the Collection interface from the JDK, used to

represent a group of objects. This interface has methods to

add or remove elements from the group, check if an element

belongs to the group, and so on, and is implemented by

a number of classes such as HashSet, TreeSet, LinkedList,
etc. Assume that a programmer, say Alice, starts writing a

class implementing this interface, but she only implements the

methods that she needs in her program, leaving the others as

stubs. As such, Alice correctly implements add, remove and

contains, but she does not implement others methods, such

as addAll, that adds several elements to the group in a single

atomic step.

Now a second programmer, Bob, gets the code written by

Alice, wants to reuse it, but Bob also needs the addAll method.

Bob quickly thinks that he can implement the addAll method

by calling the add method for each of the elements that he

wants to add and decides to use a loop to accomplish his task.

Bob is relying on the correctness of the methods implemented

by Alice but also on the fact that when he puts together these

correct building blocks, the result is also correct. An important

observation is that the newly created addAll method must

behave as intended when other operations such as add and
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remove are executed concurrently. This issue is specific to

concurrent programming.

As another example, Bob could use the add and remove
methods written by Alice to implement a move operation that

moves an element between two collections. Bob would again

be relying on the fact that the whole, here the move, is equal

to the sum of the parts, the add and remove. Bob would of

course like his move operation to be able to run concurrently

with instances of add and remove.

Our definition of composition captures the concept of cre-

ating a new operation by using existing operations as building

blocks, and having the new operation invoke the existing ones.

Starting with a set of atomic operations, the programmer would

be able to compose them to obtain new atomic operations.

For a history H , a set of transactions C ⊆ committed(H)
is said to be a composition of process p if:

• all t ∈ C are executed by p, and

• ∀t ∈ C, either ∃t′ ∈ C such that t ≺i t′ in history H|p
or ∀t′ ∈ C \{t}, t′ ≺ t in H|p; in the latter case, t is the

supremum of C, denoted by Sup(C).

We impose the additional requirement that |C| ≥ 2, where

|C| denotes the cardinal of C. We do this because it does not

make sense to have an empty composition or one containing

a single transaction.

Definition 3.1 (Strongly composable): Let H be a history

and C a composition over H . History H is said to be strongly

composable with respect to C if there exists a relax-serial

history S such that all of the following hold:

• ops(S) is equivalent to committed-ops(H),

• <H⊆<S ,

• ∀ti, tj ∈ C with ti ≺ tj , �tk ∈ transactions(S) \ C,

such that ti ≺ tk ≺ tj in S.

Informally, the above definition requires all transactions ti
and tj from composition C to appear to execute one imme-

diately after the other when observed from any object in the

system. One might consider this to be a reasonable correctness

condition for composing relaxed transactions. However, in the

next section we show that this condition is too strong and

therefore we relax it by only requiring ti and tj to appear

one immediately after the other when observed from objects

o ∈ ker(ti), a condition we call weak composability.

Definition 3.2 (Weakly composable): Let H be a history

and C a composition over H . History H is said to be weakly

composable with respect to C if there exists a relax-serial

history S such that all of the following hold:

• ops(S) is equivalent to committed-ops(H),

• <H⊆<S ,

• ∀t ∈ C and ∀o ∈ ker(t), �t′ ∈ transactions(S) \ C
such that t ≺ t′ ≺ sup(C) in history S|o.

If C is a set of compositions, a relaxed-sequential history

H is said to be strongly (weakly) composition-consistent with

respect to C if ∀C ∈ C, H is strongly (weakly) composable

with respect to C.

Outherit
Pmin(t)

t’

C

t

Fig. 2. Outheritance: minimal protected set is passed to the composed
transaction.

IV. OUTHERITANCE

We now define outheritance and, although it is not sufficient

for ensuring strong composition (Theorem 4.2), we show it to

be both necessary (Theorem 4.3) and sufficient (Theorem 4.4)

for ensuring that a (potentially relaxed) transactional memory

provides weak composition.

Definition 4.1 (Outheritance): A history H is said to sat-

isfy outheritance with respect to composition C executed by

process p if, ∀t ∈ C and ∀ε(o) ∈ Pmin(t), �e = 〈r(ε(o)), p〉
such that 〈commit(t), p〉 ≺ e ≺ 〈commit(Sup(C)), p〉 in H .

Informally, outheritance prevents each protection element

from the minimal protected set of each transaction in C from

being released before the commit of the last transaction in C.

Figure 2 shows transaction t passing its minimal protected set

Pmin(t) containing two elements to composition C. These

protection elements will not be released until the last trans-

action in C commits. For a transactional memory to satisfy

outheritance, it needs to ensure that all the produced histories

satisfy outheritance. This is done by making the transactions

being composed pass their protection elements (be they locks

or something else) to their parent transaction, which in turn

will hold them until it commits.

Some relaxed transactional models such as that of Felber

et al. [16] do not satisfy outheritance and therefore can break

composition. Indeed, one can compose two elastic transac-

tions inside another elastic transaction, causing the protection

elements of the first composed transaction to be released as

soon as it commits instead of passing them to the resulting

transaction, situation depicted in Figure 1. Since this practice

can produce executions that are not atomic, the authors provide

a workaround, namely by advising the programmer to predict

these situations and use regular mode when composing.

A. Outheritance and strong composition

In this section we prove that outheritance is not a sufficient

condition for ensuring that a relaxed transactional memory

ensures strong composition.

Theorem 4.2: There exists a history H and a composition

C over H such that H satisfies outheritance with respect to

C but does not satisfy strong composition with respect to C.

Proof. We perform this proof by construction. History H
contains three transactions, t1, t2 and t3, with t1 and t3
executed by process p1 and t2 executed by p2 such that

t1 <H t2 and t1 <H t3. We also consider composition
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t1 t3

a(e2)

c.inc()->2

r(e2)
t2

time

a(e1)

x.w(2)->ok

a(e2)

c.inc()->1

r(e2)

x.r()->2

r(e1)a(e2)

c.inc()->3

r(e2)

Fig. 3. Execution that satisfies outheritance but does not satisfy strong composition.

C = {t1, t3} over H . Let H be the following history:

H = 〈begin(t1), p1〉, 〈a(ε1), p1〉, 〈w(2), x, t1〉, 〈ok, x, t1〉,

〈commit(t1), p1〉, 〈begin(t3), p1〉, 〈a(ε2), p1〉, 〈inc(), c, t3〉,

〈1, c, t3〉, 〈r(ε2), p1〉, 〈begin(t2), p2〉, 〈a(ε2), p2〉, 〈inc(), c, t2〉,

〈2, c, t2〉, 〈commit(t2), p2〉, 〈r(ε2), p2〉, 〈a(ε2), p1〉,

〈inc(), c, t3〉, 〈3, c, t3〉, 〈r(ε2), p1〉, 〈r(), x, t3〉, 〈2, x, t3〉,

〈commit(t3), p1〉, 〈r(ε1), p1〉.

This situation is depicted in Figure 3.

If we combine t1 <H t3 with t1 <H t2 we obtain two

possible orderings, t1 ≺ t2 ≺ t3 and t1 ≺ t3 ≺ t2. Since t1 ≺
t2 ≺ t3 does not satisfy composition C, the only possibility

we are left with is t1 ≺ t3 ≺ t2.

As such, history H is equivalent to history S, where

t1 ≺ t3 ≺ t2. This makes 〈inc(), c, t2〉 ≺ 〈2, c, t2〉 ≺
〈inc(), c, t3〉 ≺ 〈3, c, t3〉 in S and opseq(S|c) = [inc, 1],
[inc, 3], [inc, 2]. However opseq(S|c) 
∈ c.seq and therefore

S is not a legal history.

We therefore conclude that H is not equivalent to any relax-

serial history S such that <H⊆<S and t1 ≺i t3, i.e. H is

not strongly composable with respect to C and our proof is

complete. �

B. Ensuring weak composition

In this section we prove that outheritance is both necessary

(Theorem 4.3) and sufficient (Theorem 4.4) for ensuring that

a (potentially relaxed) transactional memory ensures weak

composition.

Theorem 4.3: For any history H and any composition C
over H such that ∃t ∈ (C ∩ live(H)), with t executed by

process p, and H satisfies outheritance with respect to C, if

we extend H to history H ′ = H ·〈r(ε(o)), p〉 such that H ′ does

not satisfy outheritance with respect to C and opseq(H|o) is

not trivially commutative, then H ′ can be extended to history

H ′′ that is not weakly composable with respect to C.

Proof. If H ′ = H · 〈r(ε(o)), p〉 does not satisfy outheritance

with respect to C while H does satisfy it, we deduce that

ε(o) is part of the minimal protected set Pmin(t′) of some

t′ ∈ (C ∩ committed(H)).
Since opseq(H|o) is not trivially commutative, there exist

two sequences of operations of o, ωo and ω′o such that

opseq(H|o) · ωo · ω′o ∈ o.seq but opseq(H|o) · ω′o · ωo 
∈
o.seq. Hence we can append to H ′ a new transaction t′′

executed by some process p′, 〈begin(t′′), p′〉, 〈a(ε(o)), p′〉 ·
ωo �→ t′′ · 〈commit(t′′), p′〉, 〈r(ε(o)), p′〉. We can now com-

plete transaction t by appending 〈a(ε(o)), p〉 · ω′o �→ t ·
〈commit(t), p〉, 〈r(ε(o)), p〉 to the resulting sequence and we

obtain H ′′.
If S is a relax-serial history such that committed-ops(H) is

equivalent to ops(S) and <H⊆<S , then committed-ops(H ′′)
is equivalent to ops(S′) for

S′ = S · 〈r(ε(o)), p〉, 〈begin(t′′), p′〉, 〈a(ε(o)), p′〉 · ωo �→ t′′·
〈commit(t′′), p′〉, 〈r(ε(o)), p′〉, 〈a(ε(o)), p〉 · ω′o �→ t·

〈commit(t), p〉, 〈r(ε(o)), p〉
that is relax-serial but does not satisfy composition with

respect to C since t′ ≺ t′′ ≺ t in history S′|o.

History committed-ops(H ′′) is also equivalent to ops(S′′)
for

S′′ = S · 〈r(ε(o)), p〉, 〈a(ε(o)), p〉 · ω′o �→ t · 〈commit(t), p〉,
〈r(ε(o)), p〉, 〈begin(t′′), p′〉, 〈a(ε(o)), p′〉 · ωo �→ t′′·

〈commit(t′′), p′〉, 〈r(ε(o)), p′〉
and t′ ≺ t ≺ t′′ in history S′′|o, but S′′ is not legal since

opseq(S′′|o) = opseq(H|o) · ω′o · ωo 
∈ o.seq. �
According to Theorem 4.3, it is necessary for all histories

produced by a transactional memory to satisfy outheritance

in order to ensure composition. Informally, the proof argues

that releasing a single protection element ε(o) that belongs to

Pmin(t′) such that the history obtained violates outheritance,

is enough to produce a history that is not weakly composable

with respect to C and thus violates correctness. The condition

of not having operations trivially commute is necessary for

excluding cases where all executions are correct even without

concurrency control. Systems where all operations trivially
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commute are not particularly interesting for concurrency con-

trol.

Theorem 4.4: Any relax-serializable history H that satisfies

outheritance with respect to composition C is weakly com-

posable with respect to C.

Proof. We perform this proof by contradiction. Assume there

exists a relax-serializable history H that satisfies outheritance

with respect to C but is not weakly composable with respect

to C.

Let p be the process that executes composition C. Since

H is relax-serializable, then there exists a relax-serial history

S such that ops(S) is equivalent to committed-ops(H) and

<H⊆<S . Since S is equivalent to committed-ops(H), it

follows that S|p = H|p. And since H satisfies outheritance

with respect to C, we have that ∀t ∈ C and ∀ε(o) ∈
Pmin(t), �e = 〈r(ε(o))〉 such that 〈commit(t), p〉 ≺ e ≺
〈commit(Sup(C), p)〉 in H . And because 〈commit(t), p〉, e
and 〈commit(Sup(C), p)〉 all involve process p, it follows

that 〈commit(t), p〉 ≺ e ≺ 〈commit(Sup(C), p)〉 in history

H|p and in S|p, since S|p = H|p and finally in history S. We

therefore have that relax-serial history S satisfies outheritance

with respect to composition C.

Since H is not weakly composable with respect to C, but S
is relax-serial, ops(S) is equivalent to committed-ops(H) and

<H⊆<S , it follows that ∃t, t′ ∈ C, t′′ ∈ transactions(S) \
C, and ε(o) ∈ Pmin(t) such that t ≺ t′′ ≺ t′

in history S|o. Since S is a relax-serial history and

∀o ∈ ker(t), 〈commit(t′), p〉 ≺ 〈r(ε(o)), p〉, then �e =
〈a(ε(o)), p′〉 such that 〈commit(t), p〉 ≺ e ≺ 〈commit(t′), p〉.
Therefore �e′ = 〈op, o, t′′′〉 in S such that 〈commit(t), p〉 ≺
e′ ≺ 〈commit(t′), p〉. It follows that in history S|o, �e′′ =
〈op, o, t′′′〉 such that commit(t) ≺ e′′ ≺ commit(t′). We

conclude that history S|o is equivalent to history S′ where

commit(t′′′) ≺ commit(t) ≺ commit(t′) and we have

reached a contradiction. �
According to Theorem 4.4, it is sufficient for all histories

produced by a transactional memory to satisfy outheritance in

order for composition to be ensured.

V. OE -STM

We briefly present here our software transactional memory,

OE-STM (Outheritance-Elastic STM) that allows program-

mers to compose relaxed (elastic) transactions while preserv-

ing both atomicity and performance. It is largely based on

E-STM of Felber et al. [16], which we modified in order to

satisfy outheritance and thus correctly compose.

The elastic transaction model allows the programmer to use

either an elastic or a regular transaction for implementing an

operation, depending on the semantics of that operation. An

elastic transaction ignores all conflicts induced by its read-

only prefix, i.e., all conflicts involving its reads that precede its

first write access. In the implementation, an elastic operation is

executed optimistically and during its execution it temporarily

keeps track of the immediate past read access while ensuring

1: outherit()t:
2: if tparent �=⊥ then
3: tparent.add-to-protected-set(read-set, last-read-entry,write-set)

4: add-to-protected-set(r-s, l-r ,w-s)t:
5: r-set ← r-set ∪ r-s ∪ l-r
6: w-set ← w-set ∪ w-s

Fig. 4: Changes to elastic transactions to satisfy outheritance.

that each read returns a consistent value. Upon writing, the

transaction starts keeping track permanently of all accesses

including the immediate past read. At commit-time, the trans-

action checks that the access sequence it kept track of appears

to be atomic and decides to commit or abort accordingly. More

precisely, if a transaction π invokes only read operations, then

the minimal protected set of π is Pmin(π) = {rn}, where

rn is the last memory location read by π. Otherwise, if rk is

the first memory location written by transaction π, its minimal

protected set is Pmin(π) = {rk, . . . , rn}, where rn is the last

memory location accessed by π.

In order to satisfy outheritance, elastic transactions must

pass their protected set to their parent transaction when

committing. More concretely, they need to add the read set

as well as the last read memory location into the read set

of the parent transaction and also add the write set to that

of the parent. Figure 4 presents the pseudocode that needs

to be added to E-STM in order to satisfy outheritance. The

outherit() function must be invoked by every transaction

before invoking the usual commit function of E-STM. This

function first checks if the transaction has a parent, and if

so, invokes the add-to-protected-set function of the parent, to

which it passes its read set, last read location and write set.

The parent transaction then proceeds to add them to its own

read and write set.

VI. ILLUSTRATION: A JAVA TRANSACTIONAL PACKAGE

We illustrate the importance of composition (and thus

outheritance) for a relaxed transactional model by building

a highly-concurrent composable Java package, called e.e.c
(edu.epfl.compositional). Our solution provides composition,

unlike the similar j.u.c (java.util.concurrent) package [8].

Our implementation performs very well compared to other

composable alternatives, as shown in Section VII.

a) The java.util.concurrent package.: Although this

package provides invaluable low level atomic primitives for

concurrent programming, it is not composable and sev-

eral of its methods violate atomicity. For instance, the

JDK6 documentation describes the ConcurrentSkipListSet
by saying that “the bulk operations addAll, removeAll [...]

are not guaranteed to be performed atomically” while the

ConcurrentLinkedQueue iterator is said to be “weakly con-

sistent”. This lack of atomicity makes it hard to reason about

the semantics of these methods. For example, the concurrent

execution of removeAll and addAll that both take as argument

a Collection containing integers 1 and 2 may lead to an

inconsistent state where only one of the two integers is present.
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To compose the methods of these lock-free algorithms

while preserving atomicity, the modifications could apply

speculatively on some copy of the whole data structure before

a current copy pointer could be compared-and-swapped from

the former copy to the new one, provided that no concurrent

accesses were executed. The time and space complexity of

such a solution justified the implementation of non-atomic

operations in java.util.concurrent.

SkipListSet
add(Value val)

begin[relaxed]
Node[] preds = new Node[topLevel+1];
Node curr = head;
Node next = curr.getNext(topLevel);
for (int l = topLevel; l>0; l--) {
next = curr.getNext(l);
while (next.getVal() < val) {

curr = next;
next = curr.getNext(l);

}
preds[l] = cur;

}
if (next.getVal() != val) {
node = new Node(getVal(), getRndLevel());
for (int j=0; j<topLevel; j++) {

node.getNext(j) = preds[j].getNext(j);
preds[j].setNext(j, node);

}
}
return (next.getVal() != val);

end

addAll(Collection c)
begin

boolean result = false;
for (Value x : c) result |= this.add(x);
return result;

end

Fig. 5: The pseudocode for operations add and addAll of

SkipListSet of the e.e.c.

b) The edu.epfl.compositional package.: Figure 5 depicts

the atomic operations add and addAll of SkipListSet, the skip

list implementation of a set abstraction in e.e.c.

One can see that the add implementation is similar to its

sequential counterpart: no locks or synchronization primitives

are exposed to the programmer. What makes the code concur-

rent are the region delimiters begin[relaxed] and end indicating

that the region should execute as a relaxed transaction. All

reads and writes are then instrumented automatically as long

as they appear in the delimited region. Section VII further

details automatic transactional instrumentation in Java.

The addAll operation performs a series of invocations of

add, delimited by begin and end. This code is almost identical

to the one used when composing sequential programs. No

modification to the add operation are needed and the addAll
executes correctly and efficiently.

VII. EVALUATION

We evaluate our transactional memory implementation,

OE-STM, using as benchmark the new Java package,

edu.epfl.compositional (e.e.c), that we introduced in Sec-

tion VI. In short, our e.e.c package is a composable alternative

to the JDK concurrency package. This package provides

classes having set operations contains, add and remove, as

well as operations resulting from their composition such as

removeAll and addAll that are all part of the Java Collection
interface. Although these composed operations tend to limit

concurrency, due to their results depending on elements lo-

cated at different places in the data structure, we show that our

solution scales well with the level of parallelism and performs

better than other state-of-the art STMs.

A. Experimental setting

We compare OE-STM against bare sequential code as well

as state-of-the-art STMs using an UltraSPARC T2 with 8

cores, each running up to 8 hardware threads. For each run

we average the number of executed operations per millisecond

and aborts (for STMs) over 10 runs of 10 seconds each. We

use Java SE 1.6.0 12-ea in server mode and HotSpot JVM

11.2-b01. All our workloads comprise 20% attempted updates

on a data structure containing 212 elements. More precisely,

each add/remove picks a random value among a range of 213

for a success rate of 1/2, while each addAll/removeAll takes

one value v in the same range and a second value as the

closest integer to v/2. The rest is made up 80% of contains
operations.

B. Performance comparison

TL2 [22] is an efficient STM featuring writes that are

not visible before commit-time and timestamp intervals for

validating transactions at commit-time; LSA [23] relies on

a lazy snapshot algorithm that uses eager lock acquirement

and extends the validity interval of the transaction as much

as possible in order to increase concurrency; SwissTM [24]

builds upon LSA while adding mixed eager and lazy conflict

resolution to abort as soon as possible while trying to maxi-

mize throughput.

Our STM relies on bytecode instrumentation framework

Deuce [27], which instruments delimited Java accesses using

the transactional read/write functions defined by the trans-

actional memory. For the sake of comparison, we reused

the existing Java version of LSA, TL2 and we implemented

SwissTM and OE-STM. To improve concurrency, all STMs

protect memory locations at the granularity level of object

fields.

We report the throughput as the number of operations

performed per millisecond as well as the abort ratio obtained

when using three data structures, LinkedListSet (Figure 6),

SkipListSet (Figure 7), HashSet (Figure 8). An interesting ob-

servation is that the throughput does not drop when increasing

the ratio of addAll/removeAll operations from 5% to 10%. OE-

STM offers a higher throughput than other STMs at a high

level of parallelism, while having similar performance at low

parallelism. The cause for the latter effect might be due to the

heavy metadata management needed by relaxed transactions.

The abort rate obtained on the linked list benchmark (Fig-

ure 6) is significantly higher for classic transactions (LSA,

TL2, SwissTM) than it is for relaxed transactions, thus mo-

tivating the need for relaxed STMs that provide composition,

such as OE-STM. Consequently, OE-STM has a much higher
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Fig. 6: Throughput and abort ratio of bare sequential code, OE-STM, LSA, TL2 and SwissTM on the LinkedListSet of e.e.c
when running 5% (left) and 15% (right) of addAll/removeAll.
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Fig. 7: Throughput and abort ratio of bare sequential code, OE-STM, LSA, TL2 and SwissTM on the SkipListSet of e.e.c
when running 5% (left) and 15% (right) of addAll/removeAll.
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Fig. 8: Throughput and abort ratio of bare sequential code, OE-STM, LSA, TL2 and SwissTM on the HashSet of e.e.c when

running 5% (left) and 15% (right) of addAll/removeAll.
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throughput on LinkedListSet than other STMs. Specifically,

OE-STM improves on the performance of other STMs by at

least 6.6×. This is due to the nature of the data structure whose

linear time accesses are good candidates for concurrency opti-

mization using relaxed transactions. Moreover, except for OE-

STM, other STMs almost never exceed sequential performance

(their normalized throughput remains below 1).

Only on the SkipListSet benchmark does another STM per-

form as well as OE-STM. In this particular workload relaxed

transactions do not seem to benefit performance very much.

The reason is that each update may modify up to O(log n)
nodes, inducing contention that cannot be avoided through

relaxation. Also, the benefit of relaxation is proportional to

the number of nodes that transactions need to traverse, which

is much lower in the case of a skiplist than for a linear data

structure such as a linked list. Finally, OE-STM performs

much better than other STMs on the HashSet benchmark

(Figure 8), where the load factor of the hash table (i.e., number

of nodes / number of buckets) is set to 512 in order to increase

contention.

To conclude, OE-STM composes like regular STMs while

offering better performance through the use of relaxed transac-

tions that diminishing contention when the application permits.

VIII. RELATED WORK

The problem of composing objects with certain proper-

ties to obtain atomic transactions was previously studied by

Weihl [25]. Unlike his work, we compose relaxed transactions

in order to obtain new transactions that are also relaxed. For

this we consider relax-serializability, a condition that is strictly

weaker than classic serializability used by Weihl.

Transactional boosting [28] is a transactional model where

objects are not only reads/write registers as in classic transac-

tional memories, but also more general objects from a separate

thread-safe library. In order to detect conflicts between opera-

tions on these objects, abstract locks are used. To represent this

behavior in our model, a process would acquire the protection

element associated to an object o whenever a transaction exe-

cuted by the process acquires an abstract lock corresponding to

o. Since on rollback it is not sufficient to restore the memory to

the state from before starting the transaction, the programmer

must define a compensating operation for every operation the

transaction executes. Although not described in the paper,

passing abstract locks from the child to the parent transaction

would make transactional boosting satisfy outheritance and

therefore provide composition.

Open nesting [15] is a relaxed transactional model that

allows the programmer to define open transactions that use

abstract locks for providing multi-level conflict detection. As

in the case of transactional boosting, each open transaction

has an abort handler that reverts its effect in case of rollback.

As this solution does not satisfy outheritance, no guarantees

of atomicity are given and the programmer is responsible for

ensuring correctness. The authors do however give guidelines

to the programmer for ensuring correctness when using open

nesting. In order to model multi-level concurrency control

using protection elements, one would associate to each abstract

lock a distinct protection element, which would be then

acquired and released at the same time as respective abstract

lock. In these conditions, outheritance would still guarantee

relax-serializability at the lower level, but one could violate

outheritance and still obtain the desired correctness of higher

level transactions.

View transactions [19] are a type of relaxed transactions that

use programmer-specified view pointers to define the critical

view of a transaction, which is basically equivalent to our

notion of a minimal protected set. When committing, a view

transaction must pass its critical view to its parent transaction

(if any), thus satisfying outheritance and ensuring composition.

Kulkarni et al. [29] provide yet another concrete instan-

tiation of our principle, outheritance, this time passing the

protected set from a child to the parent in the context of

automatic parallelization. By satisfying outheritance, their

approach ensures correct composition.

The classic way of using a transactional memory to obtain

a thread-safe implementation of some abstract operation is

to have every access to shared data instrumented by the

transactional memory. Bronson [30] proposed solutions where

only some accesses to shared data are transactional, while

others are performed using synchronization from a separate

thread-safe library, as in the case of transactional boosting.

When composing such an implementation, the transactional

memory passes information about the transactional accesses

to the parent transaction as required by outheritance, allowing

operations to compose correctly.

Chandy and Sanders [2] reason about parallel composition

by extending predicate transformer theory to concurrent pro-

gramming. They find some properties to be all-component,
meaning that if all the components have the property, then their

composition will have it as well, while other properties are

exists-component, if at least one component has the property,

then their composition will as well.

Gössler and Sifakis [3] describe a parallel composition

operator that preserves deadlock-freedom. They distinguish

between composability, the property of a component to meet

a given property after being composed, and compositionality,

which allows one to infer properties of a system from its

components’ properties. Our work falls into the latter category,

namely one can infer the atomicity of composed operations

from the atomicity of their sub-operations. This inference

is valid when the system satisfies outheritance, which is in

essence a concurrent composition operator.

Gava and Garnier [31] present a practical parallel compo-

sition operator using a continuation-passing-style transforma-

tion. This composition operator, useful for divide-and-conquer

style algorithms among others, can be used many times in a

single program, making it important for it to have an efficient

implementation. In the same vein, an efficient concurrent com-

position based on our outheritance principle has the potential

of being widely used in concurrent programming.

Fei and Lu [32] have studied composition in the context of

scientific workflows. They provide a workflow composition
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framework in which workflows are the only operands for

composition, as well as workflow constructs such as Map and

Reduce. An easy programming model featuring straightfor-

ward composition has the potential of being the go-to solution

for scientific computing.

IX. CONCLUDING REMARKS

Transactional memory is commonly advertised as an ap-

pealing abstraction to bring concurrency to the masses. It

hides the difficult challenges of synchronization and makes

it possible for inexperienced programmers to compose con-

current software. This appealing view conveys however a

dumbing down of the programmers, for composition, at least

in its classic implicit and transparent sense, is possible only

if all programmers use transactions. Certain programmers are

however skilled enough to seek less transparent concurrency

abstractions that boost efficiency by enabling interleavings

that would be prevented by the original transactional scheme.

Relaxed transactional models are such abstractions. While

boosting concurrency, their usage jeopardizes the composition

dream.

This paper describes outheritance, a concrete property for

ensuring that a transactional memory providing relaxed trans-

actions composes. Using it, one can easily see if a given

transactional memory ensures composition or can build a new

one that does provide it. In short, outheritance stipulates that

each child transaction must pass its conflict information to its

parent transaction, which in turn maintains it until commit

time. An important note is that outheritance is not tied to

any specific type of relaxation and can be used for building

transactional memories providing various types of relaxed

transactions [33]. As future work we plan to experiment with

using outheritance for composing multiple types of relaxed

transactions inside the same transactional memory.

The applicability of relaxed transactions spans beyond the

scope of the search data structures shown in this paper.

Another direction for future work is to use outheritance for

the out of order transactions used in the k-means finding

problem [34] or the snapshot isolated transactions used in

database applications [35].
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