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Abstract—We present WHATSUP, a collaborative filtering
system for disseminating news items in a large-scale dynamic
setting with no central authority. WHATSUP constructs an
implicit social network based on user profiles that express the
opinions of users about the news items they receive (like-dislike).
Users with similar tastes are clustered using a similarity metric
reflecting long-standing and emerging (dis)interests. News items
are disseminated through a novel heterogeneous gossip protocol
that (1) biases the orientation of its targets towards those with
similar interests, and (2) amplifies dissemination based on the
level of interest in every news item.

We report on an extensive evaluation of WHATSUP through
(a) simulations, (b) a ModelNet emulation on a cluster, and
(c) a PlanetLab deployment based on real datasets. We show
that WHATSUP outperforms various alternatives in terms of
accurate and complete delivery of relevant news items while
preserving the fundamental advantages of standard gossip:
namely, simplicity of deployment and robustness.

Keywords-recommendation system; social networks; epi-
demic protocols

I. INTRODUCTION

The stream of news items we are exposed to is huge

and keeps growing exponentially. This calls for automatic

techniques to filter the right content for every one, alleviating

the need to spend a substantial amount of time browsing

information online. Explicit subscription-based approaches

(e.g. RSS, pub/sub, online social networks) are not always

relevant in this context: they either filter too much or not

enough. Personalized news recommender systems, based on

so-called social or collaborative filtering (CF) [1], are much

more appropriate for they operate in a dynamic and fine-

grained manner to automate the celebrated word-of-mouth

pattern by which people recommend useful items to each

other. However, CF approaches require the maintenance of

huge amounts of information as well as significant com-

putation resources, especially in the context of continuous

streams of news items that must be instantly delivered to

users that potentially change interests over time.

The motivation of this work is to determine whether a CF

instant news system is feasible in a completely decentralized

manner. Intuitively, a P2P approach is attractive because it

naturally scales and circumvents a central entity that controls

all user profiles potentially exploiting them for commercial

purposes. Yet, the absence of a central authority with global

Figure 1: Interactions between (1) user opinion; (2) WUP: implicit
social network; (3) BEEP: news dissemination protocol

knowledge makes the filtering very challenging and calls

for CF schemes that need to cope with partial and dynamic

interest profiles.

We present in this paper WHATSUP: the first decentralized

instant news recommender system. WHATSUP consists of

a simple user interface and two distributed protocols: WUP

and BEEP (Figure 1), which are key in providing an implicit

publish-subscribe abstraction. They enable users to receive

published items without having to specify explicit subscrip-

tion filters. The user interface captures the opinions of users

on the news items they receive through a simple like/dislike

button. A user profile collects the resulting implicit interests

in a vector associating news items with user opinions. This

provides the driving information for the operation of WUP

and BEEP.

The axiom underlying WHATSUP, as for any CF

scheme [1], is that users who have exhibited similar tastes

in the past are likely to be interested in the same news items

in the future.

WUP maintains a dynamic implicit social network, a

directed graph linking nodes (reflecting users) with similar

interests. WUP periodically samples the network by gos-

siping profiles and connects similar users by mixing ran-

domization to seek completeness (or recall), and similarities

to seek accuracy (or precision). The similarity metric we

consider accounts for the ever-changing interests of users

and prevents the formation of isolated islands of interest.

News items are disseminated using BEEP (Biased Epi-

dEmic Protocol), a novel heterogeneous epidemic protocol
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obeying the explore-and-exploit principle. The protocol bi-

ases dissemination towards nodes that are likely to have

similar tastes (exploit), while introducing enough random-

ness and serendipity (ability of making fortunate discover-

ies while looking for something unrelated) to tolerate the

inherent unreliability of the underlying network as well as

to prevent interesting news items from being isolated within

specific parts of the network (explore). If a user likes a

news item, BEEP forwards it along the (implicit) social-

network topology constructed using WUP. Otherwise, BEEP

gives the item a chance to visit other parts of the network.

The news-dissemination process generates a wave of profile

updates, in turn potentially impacting the WUP network

topology. Unlike classical gossip protocols [2], which aim

at delivering news items to all users, BEEP targets specific

subsets of users determined dynamically for each news item.

To our knowledge, it is the first gossip protocol to provide

heterogeneity along multiple dimensions: amplification and

orientation. Amplification tunes the number of times a node

gossips a news item (its fanout). This acts as a social filter

based on the opinions of the users exposed to news items.

Orientation biases the choice of gossip targets towards users

with similar tastes.

We fully implemented WHATSUP and we extensively

evaluated it both by simulation and by deploying it over

a cluster as well as on PlanetLab. Specifically, our results

compare the performance of WHATSUP against various

alternatives, including social cascades, a traditional topic-

based pub/sub system, as well as distributed CF schemes.

We show that WHATSUP outperforms competitors in terms

of precision (i.e. accuracy), recall (i.e. completeness) and

their harmonic mean (i.e. F1-Score) on several datasets: a

synthetic one, a real one crawled from Digg, and a news

survey we conducted ourselves. For instance, we show on

the survey dataset that WHATSUP improves the precision

of the dissemination by up to 5% upon traditional gossip

protocols whilst requiring only less than half the messages

and preserving the robustness of gossip protocols, e.g., more

than 20% message loss in our cluster experiment has a

negligible impact. Our similarity metric increases the F1-

Score by 10% on average compared to the traditional cosine

similarity metric [3] for an equivalent cost on the network

(i.e. number of messages). Finally, WHATSUP decreases the

quality of the dissemination by only 5% when compared to

its centralized version with global knowledge.

To summarize, this paper presents two contributions,

each, we believe, interesting in its own right: a clustering

protocol, WUP, integrating a proximity metric, and BEEP,

a heterogeneous dissemination protocol. The integration of

these protocols within the same coherent system, of which

we provide an implementation and extensive evaluation can

also be viewed as an actual contribution. The system is

available at http://www.irisa.fr/asap/whatsup.

II. WUP

WUP builds and maintains an implicit social network and

is itself based on two gossip protocols. The lower-layer

random-peer-sampling (RPS) protocol [4] ensures connec-

tivity by building and maintaining a continuously changing

random topology. The upper-layer clustering protocol [5]

uses this overlay to provide nodes with the most similar

candidates to form their WUP social network.

At each node n, each protocol maintains a view, a data

structure containing references to other nodes: the RPS

neighbors and the WUP neighbors. Each entry in each view

is associated with a node and contains (i) its IP address, (ii)

its node ID, (iii) its profile (as defined in Section II-B), as

well as (iv) a timestamp specifying when the information in

the entry was generated by the associated node. Periodically,

each protocol selects the entry in its view with the oldest

timestamp [4] and sends it a message containing its profile

with half of its view in the case of the RPS (typical parameter

in such protocols), or its entire view for WUP (the view sizes

and frequencies of each protocol are given in Section IV).

In the RPS, the receiving node renews its view by keeping

a random sample of the union of its own view and the

received one. The union of the RPS views represents a

continuously changing random graph [4]. In WUP, instead,

the receiving node selects the nodes from the union of its

own and the received views whose profiles are closest to

its own according to a similarity metric. This metric is

an asymmetric variation of the well-known cosine simi-

larity [3]: it seeks to maximize the number of items that

were liked in both profiles being compared. It also strives to

minimize spam by discouraging a node, n, with profile Pn,

from selecting a neighbor, c, with profile Pc, that explicitly

dislikes the items that n likes. We achieve this by dividing

the number of liked items in common between the two

profiles by the number of items liked by n on which c
expressed an opinion. We define sub(Pn, Pc) as the subset of

the scores in Pn associated with the items that are present in

Pc. By further dividing by the number of items liked by c (as

in cosine similarity), we then favor neighbors that have more

restrictive tastes. The asymmetric structure of this metric is

particularly suited to push dissemination (i.e. users choose

the next hops of news items but have no control on who

sends items to them) and improves cold start with respect

to cosine similarity as explained in Section V-A.

Similarity(n, c) =
sub(Pn, Pc) · Pc

‖sub(Pn, Pc)‖ ‖Pc‖

A. News item

A news item consists of a title, a short description, and a

link to further information. The source of an item (the user

publishing it) associates it with a timestamp indicating its

creation time and a dislike-counter field initialized to zero
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that sums the number of dislikes obtained by the item. The

WUP algorithm also uses an 8-byte hash as the identifier of

the news item. This hash is not transmitted but computed

by nodes when they receive the item.

B. Profiles

WUP records information about interest for items in

profile data structures. A profile is a set of triplets: identifier,

timestamp, and score; P ∈ {< id , t, s > |id ∈ N , t ∈
T, s ∈ [0, 1]}. Identifier and timestamp are defined as above,

and each profile contains only a single entry for a given

identifier. The score, instead, represents the level of interest

for an item: 1 meaning interesting, and 0 not interesting.

WUP associates each node with a profile, the user profile

(P̃ ), which contains information about the node’s own inter-

ests. The scores associated with this profile are integer values

(like-dislike). To disseminate news items, nodes employ an

additional profile structure, the item profile (P I ). Unlike a

user profile, the item profile is associated with a news item.

Its score values are real numbers and are obtained through

the aggregation of the profiles of the users that liked the

item along its dissemination path. As a result, two copies of

the same item along two different paths will have different

profiles. This causes an item profile to reflect the interests of

the portion of the network it has traversed. The item profile

can also be viewed as a community profile expressing the

interests of an implicit social network of nodes.

C. Updating profiles

Updating user profiles (P̃ ): A node updates its profile

whenever it expresses its opinion on a news item either

by clicking the like or the dislike button (line 5 or 7 in

Algorithm 1), or when generating a new item (line 14). In

either case, the node inserts a new tuple containing the news

item’s identifier, its timestamp, and a score value of 1 if it

liked the item and 0 otherwise.

Updating item profiles (P I ): The item profile of an

item I records the interests of the users who like I by

aggregating their profiles along I’s path. This works as

follows. Let n be a node that likes I . When n receives I
for the first time, it first updates its own user profile, P̃ , as

described above. Then, it iterates through all the tuples in

P̃ (line 3). Let id be the identifier of one such tuple and let

sn be its score. Node n checks if I’s item profile already

contains a tuple for id (addToNewsProfile function).

If so (line 20), let s be the tuple’s score value in I’s item

profile; n replaces s with the average between s and sn—

the score in n’s user profile. This averaging gives the same

weight to both scores, s and sn: it thus personalizes I’s

item profile according to n’s interests. If I’s item profile

contains no tuple for id , node n inserts the tuple from its

own user profile into I’s item profile (line 22). When a

new item is generated (function generateNewsItem in

Algorithm 1), the source initializes the corresponding item

profile by integrating its own user profile (line 15).

Algorithm 1: WUP: receiving / generating an item.

1 on receive (item < id
I , tI >, profile P I , dislike counter dI ) do

2 if iLike(idI
) then

3 for all < id, t, s >∈ P̃

4 addToNewsProfile(< id, t, s >, P I
)

5 add < id
I , tI , 1 > to P̃

6 else

7 add < id
I , tI , 0 > to P̃

8 for all < id, t, s >∈ P I

9 if t older than profile window then

10 remove < id, t, s > from P I

11 BEEP.forward((< id
I , tI >, P I , dI ))

12 function generateNewsItem(item id
I
)

13 P I ← ∅; dI ← 0; tI ← currentTime

14 add < id
I , tI , 1 > to P̃

15 for all < id, t, s >∈ P̃

16 addToNewsProfile(< id, t, s >, P I
)

17 BEEP.forward((< id
I , tI >, P I , dI ))

18 function addToNewsProfile(< id, t, sn >, P I
)

19 if ∃s| < id, ∗, s >∈ P I then

20 s← s+sn

2

21 else

22 P I ←< id, t, sn >

D. Initialization

A node, n, that is joining the system for the first time

(cold start) contacts a random node, and inherits its RPS

and WUP views. It then builds a fresh profile by selecting

and rating the 3 most popular news items from the profiles of

the nodes in its the selected RPS view. This process results

in a profile and in a WUP view that are very unlikely to

match n’s interests. However, it provides n with a way to

enter the WUP social network. Because the WUP metric

takes into account the size of user profiles, nodes with

very small profiles containing popular items such as joining

nodes are more likely to be part of the WUP views of other

nodes and quickly receive additional news items. This allows

them to fill their profiles with more relevant content, thereby

acquiring closer neighbors.

E. Profile window

The information stream is continuously evolving. In order

to take into account only the current interests of users and

to dynamically connect similar users, all profiles are cleaned

of old items. Specifically, each node periodically purges its

user profile of all the tuples whose timestamps are older

than a profile window. Similarly, nodes purge item profiles

of non-recent items before forwarding items to BEEP for

dissemination (lines 8 to 10). The value of this profile

window defines the reactivity of the system with respect

to user interests as discussed in Section IV-D.
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It is important to note that the profile window also causes

inactive users who have not provided ratings during the cur-

rent window to have empty profiles, thus being considered

as new nodes. Yet, as in the case of initialization, the WUP

metric allows these users to reintegrate quickly as soon as

they connect and resume receiving news items.

III. BEEP

BEEP is a novel gossip-based dissemination protocol

embodying two mechanisms: orientation and amplification,

both triggered by the opinions of users on news items.

Orientation leverages the information provided by WUP to

direct news items towards the nodes that are most likely

to be interested in them. Amplification varies the number

of dissemination targets according to the probability of

performing a useful forwarding action. Orientation and am-

plification make BEEP the first user-driven gossip protocol

to provide heterogeneity in the choice as well as in the

number of dissemination targets, achieving differentiated

delivery. BEEP follows the well-known SIR (Susceptible,

Infected, Removed) [2] model. A node receiving a news

item for the first time updates the item’s profile as described

in Section II-C. Then, it forwards the item to fanout (f )

other nodes chosen according to its opinion on the item, as

described in the following. A node receiving an item it has

already received simply drops it.

Figure 2: Orientation and amplification mechanisms of Beep

A. Forwarding a disliked item

With reference to Algorithm 2 and Figure 2, consider

Bob, who does not like item I sent by Carlos. BEEP first

verifies if the dislike-counter field of the item has already

reached the prescribed TTL (line 25). If it has, it drops

the item. Otherwise it increments its value, and achieves

orientation by identifying the node from Bob’s RPS view

whose user profile is closest to the item’s profile (line 27)

and forwards the item to it (line 34). The item profile allows

BEEP’s orientation mechanism to identify a target that is

reasonably close to someone who liked the item, even if its

topic falls outside Bob’s interests. The use of a fanout of

1, instead, accounts for unexpected interests and addresses

serendipity by giving news items the chance to visit portions

of the overlay where more interested nodes are present. At

the same time, it also prevents non-interesting items from

invading too many users.

Algorithm 2: BEEP: forwarding a news item.

23 function forward((< id
I , tI >, profile P I , dislike counter dI ))

24 if ¬ iLike(id
I
) then

25 if dI < TTL then

26 dI ← dI
+ 1

27 N ← selectMostSimilarNode(P I , RPS )

28 else

29 N ← ∅

30 else

31 N ← selectRandomSubsetOfSize(WUP, fLIKE )

32 if N �= ∅ then

33 for all n ∈ N

34 send < id
I , tI > with associated P I and dI to n

B. Forwarding a liked item

Consider now Alice (Figure 2), who instead finds item

I interesting. BEEP achieves orientation by selecting dis-

semination targets from her social network (WUP view).

Unlike the profiles in the RPS view, those in the WUP

view are relatively similar to each other. However, to avoid

forming too clustered a topology by selecting only the

closest neighbors, BEEP selects its targets randomly from

the WUP view (line 31 in Algorithm 2). Moreover, since

the targets’ interests are expected to be similar to those of

the node, BEEP amplifies I by selecting a relatively large

subset of fLIKE (like fanout) nodes instead of only one node,

thus giving I the ability to reach more interested nodes.

IV. EXPERIMENTAL SETUP

In this section, we provide the experimental setup of

WHATSUP’s evaluation: the workloads, the competitors we

compared against, WHATSUP’s parameters, and the evalua-

tion metrics we use to assess the performance of WHATSUP.

A. Datasets

We evaluate WHATSUP using several datasets: (i) a 3180-

user synthetic trace derived from Arxiv, (ii) a Digg dataset

crawled in late 2010, and (iii) a survey conducted in our lab

providing a real set of WHATSUP users. Table I summarizes

the figures of the workloads used in our evaluations.

Synthetic dataset: To validate WHATSUP without the

artifacts of real datasets, we identified distinct groups among

the 5242 users in the Arxiv dataset (covering scientific

collaborations between authors [6]) using a community-

detection algorithm [7]. This allows us to deal with clearly
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Name Number of users Number of news

Synthetic 3180 Arvix Users 2000

Digg 750 2500

WHATSUP Survey 480 1000

Table I: Summary of the workloads

defined communities of interest, thus enabling the evaluation

of WHATSUP’s performance in a clearly identified topology.

The resulting dataset contains 21 communities ranging in

size from 31 to 1036, for a total of 3703 users. For each

community, we use a random subset of nodes as sources to

disseminate 120 news items (for a total of about 2000).

Digg dataset: Digg is a centralized social-news website

designed to help users discover and share content. It dis-

seminates news items along the edges of an explicit social

network (i.e. cascading). Relying on explicitly declared

friends, as in Digg, is known to limit the content that

can be received [8] by substantially influencing decision

making [9]. Basically, users are only exposed to the content

forwarded by their friends, while other items may be of

interest to them. To remove this bias, we extracted for each

user, u, the categories of the news items she generates. We

then defined user u’s interests by including all the news

items associated with these categories. We collected traces

from Digg over 3 weeks in 2010. The resulting dataset

consists of 750 users and 2500 news from 40 categories.

Dataset from a WHATSUP user survey: We also con-

ducted a survey on 200 news items involving 120 colleagues

and relatives. We selected news randomly from a set of RSS

feeds illustrating various topics (culture, politics, people,

sports, ...). We exposed this list to our test users and gathered

their reactions (like/dislike) to each news item. This provided

us with a small but real dataset of WHATSUP users exposed

to exactly the same news items. To scale our system, we

generated 4 instances of each user and news item in the

experiments. Yet, the resulting bias affects both WHATSUP

and the state-of-the-art solutions we compare against.

B. WHATSUP Competitors

In order to demonstrate the effectiveness of WHATSUP,

we evaluate it against the following alternatives:

Explicit cascading: Cascading is a dissemination ap-

proach followed by several social applications, e.g., Twitter,

Digg. Whenever a node likes (tweets in Twitter and diggs

in Digg) a news item, it forwards it to all of its explicit

social neighbors. We compare WHATSUP against cascading

in the only dataset for which an explicit social network is

available, namely Digg.

Complete explicit pub/sub: WHATSUP can be seen as

an implicit publish/subscribe (pub/sub) system turning inter-

ests into implicit subscriptions. Typically, pub/sub systems

are explicit: users explicitly choose specific topics [10],

[11]. Here, we compare WHATSUP against C-Pub/Sub, a

centralized topic-based pub/sub system achieving complete

dissemination. C-Pub/Sub guarantees that all the nodes

subscribed to a topic receive all the associated items. C-

Pub/Sub is also ideal in terms of message complexity as it

disseminates news items along trees that span all and only

their subscribers. For the sake of our comparison, we extract

explicit topics from keywords associated with the RSS feeds

in our survey. Then we subscribe a user to a topic if she likes

at least one item associated with that topic.

Decentralized collaborative filtering: In a decentralized

CF scheme based on nearest-neighbor technique, when a

node receives a news item it likes, it forwards it to its k
closest neighbors according to some similarity metric. We

implemented two versions of this scheme: one relying on

the same metric as WHATSUP (CF-WUP) and one relying

on cosine similarity [3] (CF-Cos). While it is decentralized,

this scheme does not benefit from the orientation and ampli-

fication mechanisms provided by BEEP. More specifically,

it takes no action when a node does not like a news item.

Centralized version of WHATSUP: We also compare

WHATSUP with a centralized system (C-WHATSUP) gath-

ering the global knowledge of all the profiles of its users and

news items. C-WHATSUP leverages this global information

(vs a restricted sample of the network) to boost precision

using complete search. When a user likes a news item, the

server delivers it to the fLIKE closest users according to the

cosine similarity metric. In addition, it also provides the item

to the fLIKE users with the highest correlation with the item’s

profile. When a user does not like an item, the server presents

it to the fDISLIKE nodes whose profiles are most similar to the

item’s profile (up to TTL times).

C. Evaluation metrics

We consider two types of metrics in our evaluation. User

metrics measure the quality of WHATSUP’s dissemination

and its ability to filter content. They are important for

users to decide whether to adopt WHATSUP as a system.

In contrast, system metrics are transparent to users but are

crucial to assessing the effectiveness of our solution.

User metrics: We evaluated WHATSUP along the

traditional metrics used in information-retrieval systems:

recall (i.e. completeness) and precision (i.e. accuracy). Both

measures are in [0, 1]. For an item, a recall of 1 means that

all interested users have received the item. Yet, this measure

does not account for spam since a trivial way to ensure a

maximum recall is to send all news items to all users. This

is why precision is required. A precision of 1 means that

the news item has reached only the users that are interested

in it. An important challenge in information retrieval is to

provide a good trade-off between these two metrics. This is

expressed by the F1-Score, defined as the harmonic mean

of precision and recall [12].

Precision =
| {interested users} ∩ {reached users} |

| {reached users} |
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Recall =
| {interested users} ∩ {reached users} |

| {interested users} |

F1− Score = 2 ·
precision · recall

precision + recall

System metrics: To evaluate the behavior of WHATSUP

from a systems perspective, we first consider the network

traffic it generates. For simulations, we compute the total

number of sent messages. For our implementation, we in-

stead measure the average consumed bandwidth. Throughout

our evaluation, we examine results obtained over a wide

range of fanout values by plotting the F1-Score against the

fanout, and against the number of generated messages. The

F1-Score for corresponding fanout values makes it possible

to understand and compare the behavior of WHATSUP and

its competitors under similar conditions. The F1-Score for

corresponding numbers of messages, instead, gives a clearer

picture about the trade-offs between recommendation quality

and cost. Two different protocols operating at the same

fanout, in fact, do not necessarily generate the same amount

of traffic.

D. WHATSUP system parameters

The operation of WHATSUP is controlled by a number

of system parameters. The first two parameters we consider

are the WUP view size (WUPvs) and the BEEP-I-like fanout

(fLIKE). Clearly, the former must be at least as large as the

latter. As a node forwards a liked news item to random

neighbors among its WUP view, a WUPvs close to fLIKE

boosts precision while a large WUPvs compared to fLIKE

increases recall. We set the value of WUPvs to the double

of fLIKE as experiments provide the best trade-off between

precision and recall for these values.

The third important parameter is the RPS view size. It

directly impacts the potential of WUP to discover new nodes.

We set its value to 30 to strike a balance between the need

to discover information about nodes, the cost of gossiping,

and the need to retain some randomness in the selection of

WUP neighbors. Too large values would lead the WUP view

to converge too fast, hampering the ability to address non-

foreseeable interests (serendipity). Nonetheless, we verified

that our protocol provides good performance with values

between 20 and 40 in the considered traces.

The BEEP TTL controls WHATSUP’s serendipity, but it

should not be too large in order not to hamper precision. We

therefore set it to 4, and examine its impact in Section V-B.

Finally, the size of the profile window determines WHAT-

SUP’s ability to adapt to dynamic and emerging interests of

users. We set its value to 13 gossip cycles, corresponding

to 1/5 of the experiment duration, according to an analysis

of its influence on the F1-Score. A size between 1/5 and

2/5 of the whole period gives the best F1-Score, while

Parameter Description value

RPSvs Size of the random sample 30

RPSf Frequency of gossip in the RPS 1h

WUPvs Size of the social network 2fLIKE

Profile window News item TTL 13 cycles

BEEP TTL Dissemination TTL for dislike 4

Table II: WHATSUP parameters - on each node

smaller or larger values make WHATSUP either too dynamic

or not enough. For practical reasons, our simulations use

the duration of a gossip cycle as a time unit to represent

the length of the profile window. Yet, the actual duration

of a gossip cycle is important and determines the dynamic

response of our system. We discuss this parameter and its

impact when evaluating our deployment (Section V-F).

V. IMPLEMENTATION AND EVALUATION

WHATSUP is written in Java and available at http://www.

irisa.fr/asap/whatsup. It consists of a Web user interface and

a lightweight application server running on client nodes.

Users only require a browser to interact with WHATSUP.

The user interface is a fully dynamic Web widget that

can be integrated in both dashboards and Web pages. The

local application server continuously updates the widget

with a stream of news items received from other nodes.

To make this possible, it combines the implementations of

WUP and BEEP with a lightweight local database containing

user-profile information. The underlying network library,

designed for the management of gossip-based overlays [13],

also provides support for peers operating behind NATs.

We carried out an extensive evaluation of WHATSUP by

simulation and by deploying its implementation on Planet-

Lab and on a ModelNet-based [14] cluster. All parameters,

based on observations on a wide range of experiments on all

datasets, are summarized in Table II. We present the results

by highlighting each important feature of WHATSUP.

A. Similarity metric

We start by evaluating the effectiveness of the WUP

metric. Figures 3a-3f compare two CF approaches and two

versions of WHATSUP based, respectively, on cosine similar-

ity (CF-Cos and WHATSUP-Cos) and our WUP metric (CF-

WUP and WHATSUP). Our metric consistently outperforms

cosine similarity in all datasets. Table III conveys the fact

that it achieves this by improving recall over cosine similar-

ity (by 30% for CF approaches and 15% for WHATSUP in

the survey dataset with lower message cost in both cases).

Moreover the relatively high precision of cosine similarity

is partly an artifact of its low recall values resulting from

highly clustered topologies. As a result, approaches using

cosine similarity require a much larger fanout and message

cost to provide the same quality of recommendation. The

WUP metric generates instead topologies with a lower

clustering coefficient by avoiding node concentration around

hubs (an average clustering coefficient of 0.15 for WUP

metric compared to 0.40 for cosine similarity in the survey
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Figure 3: F1-Score depending on the fanout and message cost

Algorithm Precision Recall F1-Score Mess./User

Gossip (f = 4) 0.35 0.99 0.51 4.6k

CF-Cos (k = 29) 0.50 0.65 0.57 5.9k

CF-Wup (k = 19) 0.45 0.85 0.59 4.7k

WHATSUP-Cos (fLIKE = 24) 0.51 0.72 0.60 4.3k

WHATSUP (fLIKE = 10) 0.47 0.83 0.60 2.4k

Table III: Survey: best performance of each approach

dataset). In addition, the WUP metric avoids fragmenting the

topology into several disconnected parts. Figure 4 shows

the fraction of nodes that belong to the largest strongly

connected component (LSCC) with increasing fanout values.

Once all users are part of the same connected component,

news items can be spread through any user and are not

restricted to a subpart of the network. This corresponds to

the plateaus in the F1-Score values visible in Figure 3c. The

WUP metric reaches this state with fanout values around 10
both in CF-WUP and WHATSUP. This is a lot earlier than

cosine similarity, which only reaches a strongly connected

topology with fanout values above 15. Additional results, not

plotted for space reasons, also show that the fragmentation

induced by the WUP metric is consistently lower than that

associated with cosine similarity even for smaller fanout

values. With a fanout of 3, for instance, WHATSUP’s and

CF-WUP’s topologies contain respectively an average of 1.6
and 2.6 components, while WHATSUP-Cos’s and CF-Cos’s

contain respectively an average of 12.4 and 14.3.
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Figure 4: Survey: Size of the LSCC depending on the approach

B. Amplification and orientation

Comparing WHATSUP with CF schemes allows us to

evaluate the impact of amplification and orientation. The

results in Figures 3a-3f show that WHATSUP consistently

outperforms CF, reaching higher F1-Score values with lower

fanouts and message costs. Table III shows that it achieves

recall values much higher than those of CF, with less than

two thirds the message cost. This is a direct result of the

amplification and dislike features, which allow an item to

reach interested nodes even after hitting uninterested ones.

This observation is confirmed by comparing Figure 3c with

Figure 4. Even if approaches adopting the same metric

result in similar topologies as conveyed by Figure 4, the

performance of those that employ amplification and dislike

is consistently higher for corresponding fanout values.

Table IV further illustrates the impact of the dislike feature
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by showing, for each news item received by a node that likes

it, the number of times it was forwarded by nodes that did

not like it. For instance, we can see that 31% of the news

items liked by nodes were forwarded exactly once by nodes

that did not like them. This conveys the benefit of the dislike

feature and the importance of (negative) feedback from users

in giving items a chance to reach interested nodes across the

entire network.

Number of dislikes 0 1 2 3 4

Fraction of news 54% 31% 10% 3% 2%

Table IV: News received and liked via dislike

Figure 5 shows the impact of the TTL value on the per-

formances. Too low a TTL mostly impacts recall; yet values

of TTL over 4 do not improve the quality of dissemination.

Finally, Table III also includes the performance of a standard

homogeneous gossip protocol, which achieves the worst F1-

Score value of 0.51 with almost twice as many messages as

WHATSUP.
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Figure 5: Survey: Impact of the dislike feature of BEEP

Figure 6 shows hows nodes at increasing distances from

the source of a news item contribute to dissemination. We

observe from the bell-shaped curve that most dissemination

actions are carried out within a few hops of the source, with

an average around 5. This is highly beneficial because a

small number of hops leads to news items being dissemi-

nated faster.1 Finally, the plot also confirms the effectiveness

of the dislike mechanism with a non-negligible number of

infections being due to dislike operations.

C. Implicit nature of WHATSUP

Next, we evaluate WHATSUP’s reliance on implicit ac-

quaintances by comparing it with two forms of explicit

filtering: cascading over explicit social links, and the ideal

pub/sub system, C-Pub/Sub.

The first set of results in Table V shows that WHATSUP

achieves a higher F1-Score with respect to cascading. More

specifically, while both approaches provide almost the same

1A precise analysis of dissemination latency would require knowledge
of the response time of users. Such an analysis is outside the scope of this
paper and is subject of ongoing work.
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Figure 6: Survey (fLIKE = 5): Impact of amplification of BEEP

level of precision, WHATSUP outperforms (by more than six

times) cascading in terms of recall. The very low recall of

cascading highlights the fact that the explicit social network

does not necessarily connect all the nodes interested in a

given topic. The low number of messages of cascading is

a result of its small recall. The network traffic per infected

user generated by WHATSUP is, in fact, 50% less than that

of cascading (2.57K messages vs 5.27K).

Dataset Approach Precision Recall F1-Score Messages

Digg
Cascade 0.57 0.09 0.16 228k

WHATSUP 0.56 0.57 0.57 705k

Survey
C-Pub/Sub 0.40 1.0 0.58 470k

WHATSUP 0.47 0.83 0.60 1.1M

Table V: WHATSUP vs C-Pub/Sub and Cascading

The second set of results in the table compares WHATSUP

with C-Pub/Sub. As discussed in Section IV-B, C-Pub/Sub

disseminates news items to all subscribers with a minimal

number of messages. Its recall is therefore 1 while its

precision is only limited by the granularity of its topics.

In spite of this, WHATSUP improves C-Pub/Sub’s accuracy

by 12% in the survey dataset with a little more than three

times as many messages while conserving a good recall.

This results in a better trade-off between accuracy and

completeness as indicated by its higher F1-Score.

Another important advantage of WUP’s implicit approach

is its ability to cope with interest dynamics. To measure

this, we evaluate the time required by a new node joining

the network and a node changing of interests to converge to

a view matching its interests both in WHATSUP (Figure 7a)

and in WHATSUP-Cos (Figure 7b).

For the joining node, we select a reference node and intro-

duce a new joining node with an identical set of interests. We

then compute the average similarity between the reference

node and the members of its WUP view and compare it to

the same measure applied to the joining node. We repeated

the experiment by randomly choosing 100 joining nodes and

averaged the results. The WUP metric significantly reduces

the number of cycles required by the joining node to rebuild

a WUP view that is as good as that of the reference node

(20 cycles for WHATSUP vs over 100 for WHATSUP-Cos).
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Figure 7: Cold start and dynamics in WHATSUP

Yet, the node starts receiving news quickly as shown in

Figure 7c with the peak in the number of interesting news

received as soon as the node joins. This is a result of both

our cold start mechanism (Section II-D) and our metric’s

ability to favor nodes with small profiles. Once the node’s

profile gets larger, the number of received news per cycle

stabilizes to values comparable to those of the reference

node. Nonetheless, the joining node reaches 80% of the

reference node’s precision after only a few cycles.

For the changing node, we select a pair of random

nodes from the survey dataset and, at 100 cycles into the

simulation, we switch their interests and start measuring the

time it takes them to rebuild their WUP views. Figure 7

displays results obtained by averaging 100 experiments.

Again, the WUP metric causes the views to converge faster

than cosine similarity: 40 cycles as opposed to over 100.

Moreover, the values of recall and precision for the nodes

involved in the change of interests never decrease below 80%

of the reference node’s values. These results are clearly tied

to the length of the profile window, set to about 40 cycles in

these experiments. Shorter windows would in fact lead to an

even more responsive behavior. We are currently evaluating

this aspect on the current WHATSUP prototype. Moreover,

while it may seem surprising that switching interests takes

longer than joining a network from scratch, this experiment

is an unlikely situation that provides an upper bound on the

impact of more gradual interest changes.

Finally, the implicit nature of WHATSUP and the push

nature of BEEP also make WHATSUP resilient to basic forms

of content bombing. Unless a spammer node has enough

resources to contact directly a large number of nodes, it will

be unable to flood the network with fake news. The dislike

mechanism, with its small fanout and TTL values will, in

fact, limit the dissemination of clearly identified spam to a

small subset of the network.

D. Simulation and implementation

We also evaluate the performance obtained by our im-

plementation in two settings: (i) a 170 PlanetLab node

testbed with 245 users, and (ii) an emulated network of 245

nodes (machines and users) deployed on a 25-node cluster

equipped with the ModelNet network emulator. For practical

reasons we consider a shorter trace and very fast gossip

and news-generation cycles of 30sec, with 5 news items per

cycle. These gossip frequencies are higher than those we

use in our prototype, but they were chosen to be able to run

a large number of experiments in reasonable time. We also

use a profile window of 4min, compatible with the duration

of our experiments (1 to 2 hours each).
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Figure 8: Implementation: bandwidth and performance

Figure 8a shows the corresponding results obtained on

the survey and compares them to those obtained through

simulation on the same 245-user dataset with increasing

fanout values. ModelNet results confirm the accuracy of

our simulations. The corresponding curves closely match

each other except from some fluctuations with small fanout
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values. PlanetLab results, on the other hand, exhibit a clear

decrease in performance with small fanouts. To understand

this behavior, we can observe that in simulation and Mod-

elNet, recall reaches scores above 0.50 with fanout values

as small as 3. In PlanetLab, it only achieves a value of 0.18
with a fanout of 3, and goes above 0.50 only with fanouts of

at least 6. The difference in recall with small fanout values

can be easily explained if we observe the message-loss rates

in the PlanetLab setting. With a fanout of 3, we recorded

that nodes do not receive up to 30% of the news that are

correctly sent to them. This is due to network-level losses

and to the high load of some PlanetLab nodes, which causes

congestion of incoming message queues. The impact of these

losses becomes smaller when the fanout increases because

BEEP is able to produce enough redundancy to recover from

the missing messages.

E. Message loss

To understand the impact of lost messages, we experiment

in the ModelNet network emulator with increasing loss

rates affecting both BEEP and WUP messages and ranging

from 0 to a huge value of 50%. Table VI shows that

both protocols preserve the reliability properties of gossip-

based dissemination. With a fanout of 6, the performance in

terms of F1-Score is virtually unchanged with up to 20%
of message loss, while it drops only from 0.60 to 0.45
when half of the messages are lost by the network layer.

With a fanout of 3, the impact of message loss is clearly

more important due to the smaller amount of redundancy.

20% of message loss is sufficient to cause the F1-Score

to drop from 0.54 to 0.47. This explains the differences

between PlanetLab and ModelNet in Figure 8a. These drops

are almost uniquely determined by the corresponding recall.

With a fanout of 3 and a loss rate of 50%, recall drops to

0.07, causing an artificial increase in precision, and yielding

an F1-Score of 0.12, against the 0.45 with a fanout of 6.

Loss Rate 0% 5% 20% 50%

Fanout 3 6 3 6 3 6 3 6

Recall 0.63 0.82 0.61 0.82 0.46 0.80 0.07 0.45

Precision 0.47 0.48 0.47 0.47 0.47 0.46 0.55 0.44

Table VI: Survey: Performance versus message-loss rate

F. Bandwidth consumption

Increasing fanout has a cost, which is highlighted by

our bandwidth analysis in Figure 8. The number of times

each news item is forwarded increases linearly with fanout

values, causing an equally linear increase in the bandwidth

consumption of BEEP. The bandwidth used by WUP also

shows a slight increase with fanout due to the correspond-

ing increase in the sizes of the WUP social networks.

Nonetheless, the cost of the protocol is dominated by news.

This highlights the efficiency of our implicit social-network

maintenance. These experiments on a very fast trace with a
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Figure 10: Survey: recall vs popularity

gossip cycle every 30sec lead to a bandwidth consumption

of about 4Kbps for WUP’s view management. Our prototype

is characterized by significantly lower gossip frequencies, on

the order of 5min per gossip cycle. This results in a much

lower average bandwidth consumption of about 0.4Kbps.

G. Partial information

To understand the impact of decentralization, we compare

WHATSUP with a centralized variant, C-WHATSUP, that

exploits global knowledge to instantaneously update node

and item profiles. Figure 9 shows that WHATSUP provides

a very good approximation of this variant (a 5% decrease

of the F1-Score). More precisely, global knowledge yields

better precision (17%) but slightly lower recall (14%).

H. Sociability and popularity

An additional interesting aspect is the impact of the

popularity of items and the sociability of users. Figure 10

depicts the distribution of news-item popularity in the survey

dataset together with the corresponding recall for WHATSUP

and CF-WUP. WHATSUP performs better across most of

the spectrum. Nonetheless, its improvement is particularly

marked for unpopular items (0 to 0.5). This is highly

desirable as popular content is typically much easier to

manage than niche content. Recall values appear to converge

for very popular items. However, each point in the plot

represents an average over several items. An analysis of

the data distribution (not shown for space reasons), instead,

highlights how CF-WUP exhibits much higher variance leav-

ing some items almost completely out of the dissemination.
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Figure 11: Survey: F1-Score vs sociability

WHATSUP provides instead good recall values across all

items thanks to the effectiveness of its dislike feature.

Figure 11 instead examines how the F1-Score varies

according to the sociability of users in the survey dataset.

We define sociability as the ability of a node to exhibit

a profile that is close to others, and compute it as the

node’s average similarity with respect to the 15 nodes that

are most similar to it. Results confirm the expectations.

WHATSUP leverages the similarity of interests between

users and provides relevant results for users with alter-egos

in the system. The more sociable a node the more it is

exposed only to relevant content (improving both recall and

precision). This acts as an incentive: the more a user exhibits

a consistent behavior, the more she will benefit from the

system.

VI. RELATED WORK

Gossip: Epidemic protocols [2] are well known to be

simple, efficient, and robust means to disseminate informa-

tion in large-scale systems. So far, they have been mainly ho-

mogeneous with respect to fanout and target selection. While

some consider an adaptive fanout to control the infection

patterns in the network [15], [16], their goal is for messages

to reach all nodes, unlike in WHATSUP. Some approaches

leverage the explicit social structure of the network to

achieve selective dissemination. GoDisco [17] disseminates

information through gossip in an explicit social network

enriched with bridges between communities. Yet, it relies on

explicit interest classification and node categorization, both

requiring an upfront analysis of content. The Friendship-

Interests Propagation model [18] leverages explicit social

networks to filter messages. While this typically works well

for structural attributes (years, location, etc.) [19], it does not

in the dynamic context of news dissemination (as shown by

our cascading results).

Collaborative filtering: This is an appealing approach

to provide users with recommendations on items [1]. While

content-based recommenders use item descriptions to asso-

ciate items with users (e.g. PersoNews [20], [21] or [22]),

content-agnostic approaches are a better match for settings

where content characterization is not always possible. Deter-

mining the most similar users to every user is computation-

ally expensive and usually impossible in real-time for the

information stream is huge and changes quickly. Instead,

it is typical to cluster users rather than fully leverage the

user-centric personalization potential [23]. In this sense,

WHATSUP can be seen as a CF scheme producing user-

centric recommendations at a small cost through local (P2P)

computation and information exchange.

Similarity metrics: Several metrics have been used to

compute the similarity between user profiles e.g. Pearson

correlation coefficient, cosine similarity, Jaccard Index [3].

An evaluation of the performance of several metrics on

the Orkut social network concluded that cosine similarity

shows the best empirical results [24]. In the context of

news dissemination, we showed that WHATSUP’s metric

outperforms cosine similarity. In [25], a topic-diversification

approach highlights the importance of serendipity and shows

that user satisfaction does not always correlate with high

recommender accuracy. WHATSUP’s orientation mechanism

addresses this issue by balancing precision and recall.

Decentralized recommenders: Research on decentral-

ized recommender systems is still modest despite their

clear scalability advantage [26], [27], [11]. Most of these

approaches are applied to much less dynamic contexts than

instant news. While [28] proposes a Chord-based CF system

to decentralize the recommendation database on a P2P

infrastructure, it is unclear if it can cope with frequent profile

changes and huge continuous streams of items. On the data-

sharing front, the fear of the Big-Brother syndrome has also

led to decentralized initiatives [29]. However, none of them

exploits an implicit social network.

VII. CONCLUDING REMARKS

This paper contributes to convey the feasibility of a

fully decentralized collaborative filtering instant news sys-

tem providing an implicit publish-subscribe abstraction. We

did devise and implement such a system: WHATSUP. Our

exhaustive experiments show that WHATSUP, while relying

only on partial knowledge, achieves a good trade-off be-

tween the accuracy and completeness of dissemination. We

had to make several design choices to preserve the simplicity

of the system and enable its easy deployment, leaving aside

complex or heavyweight alternatives. Yet, leveraging the

keywords within news items or ranking them according

to users’ interest profiles may help refining the filtering.

Another observation from our results is the very fact that

WHATSUP performs best when user communities are dis-

joint. While real datasets do not exhibit such communities,

an interesting avenue of research would be to investigate

solutions that somehow separate communities, potentially

allowing nodes to be part of several ones in the form of

virtual instances. This is particularly challenging when no

explicit classification is available or desirable.

While privacy concerns were out of the scope of this

paper, they might be an issue for users who do not want
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to disclose their profiles to other users. Integrating a mech-

anism to protect user profiles from curious users while

conserving efficient online personalized dissemination is ar-

duous. Yet, we did actually explore obfuscation mechanisms

to hide the exact tastes of users as well as a proxy-based

solution inspired by Onion routing [30] to anonymize both

the exchange of user profiles and news dissemination. In

short, while obfuscation provides a trade-off between the

accuracy of recommendation and the disclosure of per-

sonal data, the proxy-based solution provides unchanged

recommendation quality at the cost of increased bandwidth

consumption. Clearly, the design of lightweight solutions

capable of providing strong privacy guarantees constitutes

an interesting research direction.
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