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Abstract—This paper presents a framework for Robust
Infrastructure over Shared Computing resource (RISC), which
can offer Organizations with Small-scale Computing infras-
tructures (OSCs) a way to share their unused resources in
an ad-hoc manner for suitable monetary incentives. Such a
framework provides dual benefits to an OSC: it enables sharing
of unused resource during periods of low computing load while
allowing execution of any long-term computation on public
or anonymized data at a very low cost during periods of
high load. The ad-hoc and heterogeneous nature of the shared
infrastructure make the resource management problem in
RISC non-trivial—a resource manager needs to: (i) maximize
profit while determining incentives for resource owners and
prices for resource users in an integrated manner; and (ii)
emulate large-scale cloud-like robustness and capabilities out
of unreliable, small-scale and intermittently available resources
at a low cost. This leads to a constrained market situation where
offered prices and incentives should lead to a desired level of
SLA and reliability for the consumers.

Existing approaches of incentive based scheduling for
market-like grids assume an open market, based only on
demand response; and thus are inapplicable for the constrained
market situation in shared resources infrastructure. Specifi-
cally, RISC framework has two main components: (i) a first-
of-a-kind Dynamic Pricing and Incentivization (DPI) strategy
that computes the incentives and the prices while maximizing
profit for RISC, using an epoch-by-epoch pricing feedback
loop; and (ii) a DPI dependent Reliability, Cost and SLA-
aware (RCS) scheduler that takes the resource reservation
requests as input and assigns replicas of these requests to
one or more shared resources for guaranteeing performance
SLAs and reliability, while minimizing the cost of resource
reservations. Moreover, to handle the communication overhead
of computing over geographically distributed resources, the
scheduler strives to reduce the network cost of resource alloca-
tion. Results from extensive trace-driven experimentation show
that our approach can indeed provide appropriate incentives
for resource providers, and robust cost-efficient infrastructure
solution for resource users.
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I. INTRODUCTION
Shared resource management has been an active area of

research over the years in grid and volunteer computing.
Organizations with Small-scale Computing infrastructure
(OSCs), e.g., Small and Medium Businesses (SMBs), can
benefit from a marketplace of shared resources by getting
access to a low-price large-scale infrastructure. They can
further share unused/surplus resources in the marketplace in
return of monetary incentives (thus, additionally offsetting
the prices).

Figure 1. Vision of shared resource infrastructure

Typically, in a shared resource infrastructure (Fig. 1),
a consumer/requester would want access to certain com-
putation power to execute their application—usually these
applications are computations on public or anonymized data,
thus not requiring privacy guarantees. The infrastructure
operates as a resource market that offers certain prices for the
requests (similar to infrastructure-as-a-service offerings over
public cloud) while guaranteeing SLAs and reliability for
the requests. However, unlike in public cloud environments,
the underlying infrastructure hosting the requests are com-
posed of shared unreliable resources. Further, as opposed
to dedicated cloud infrastructures, the cost of hosting the
requests depend on the incentives offered to the resource
owners/providers—leading to a dynamic marketplace of
resources and requests. Enabling such a shared resources
infrastructure needs to address the following challenges:
• Constrained Marketplace. It is imperative to of-

fer prices to consumers/requesters and incentives to
providers/owners based on dynamic supply and demand
in a way that maximizes profit as well as caters to
constraints on: (i) offered prices, which should be
less than any comparable cloud offerings; and (ii)
robustness, which should address inherent unreliability
of resources while minimizing cost. Existing incentive
based scheduling for market-like grids [3], [4] assumes
an open market, based only on demand response; and
thus are inapplicable for shared resources infrastructure.

• Unreliable Ad-hoc Resources. The resources can be
shared periodically with temporal constraints, e.g. every



night (10 pm–midnight). The periodicity may vary for
different OSCs (e.g., based on geographical distribution
and time-zones), or even within an OSC for different
resources. Further, the resources shared for a particular
duration can be retracted by the respective owners.
Finally, the accessibility of the resources can be highly
unpredictable because of intermittent connection as
well as system failures. Awareness of such unreliable
and ad-hoc behaviour while determining prices and
incentives in a controlled marketplace is unexplored in
the literature to the best of our knowledge.

• Trade-off between monetary and network cost. The
resource cost can be monetary (through incentivization)
as well as networking (e.g., bandwidth and latency).
There is an underlying trade-off between these costs.
Allocating a request to geographically distributed re-
sources with the lowest monetary cost (or incentive),
so that the offered prices to the resource users can
be lowered, may select geographically distant resources
causing significant networking overhead, which in turn
can degrade the performance of any job over that
allocation.

Our Contributions. This paper proposes RISC, a frame-
work for resource management for Robust Infrastructure
over Shared Computing resources, to address all these issues
together. In this regard, a Dynamic Pricing and Incentivizing
(DPI) algorithm is introduced that determines the incentives
of the resources and prices for the requests in an integrated
manner while maximizing profit. DPI employs an epoch-
by-epoch strategy, where, in every epoch, the prices and
incentives are fine tuned based on outcomes of previous
epoch. Further, in each epoch, based on the monetary cost
(i.e. incentives offered) of resources, a Reliability, Cost,
and SLA-aware (RCS) scheduler efficiently assigns resource
reservation requests (also referred as tasks) on unreliable
resources with time-varying capacity, while addressing the
trade-off between monetary and network cost of such an
assignment through joint optimization. The core of the
scheduler is a subtask scheduling algorithm, which provides
provably near-optimal performance guarantee for the subtask
scheduling problem.

DPI and RSC are both inter-dependent with each other.
DPI determines the prices and incentives based on the overall
demand/usage of resources as per the allocations of requests
by RCS. On the other hand, RCS determines the allocation
based on the monetary costs (incentives) determined by
DPI. This inherent inter-dependency is addressed by DPI
as follows. In each epoch, DPI performs optimizations on
the prices and incentives by calling the RCS scheduler and
checking the impact of prices and incentives on the overall
profit. Accordingly, in the subsequent epoch the prices and
incentives are updated. DPI further chooses the prices and
incentives from a finite range to ensure the dynamics remain
within the market constraints. For example, the maximum
price is assumed to be less than the public cloud prices of

comparable requests (e.g., small or large instances in Ama-
zon EC2). This ensures that the prices offered to requesters,
albeit dynamic based on demand and supply, are always less
than the market alternatives for OSCs.

We perform a detailed trace-driven evaluation under a
highly dynamic task arrival and resource availability. Results
show that DPI leads to profit maximization under different
supply-demand combinations. Interestingly, because of the
constrained market scenario of shared resources infras-
tructure, the profit is higher for low demand and large
supply compared to high demand and low supply. In our
experiments, DPI further ensures that for specific supply
and demands, the optimum prices and incentives can be
decided in at most two epochs—a significantly fast con-
vergence considering the aforementioned interdependencies.
RCS further provides a good balance between the monetary
and network cost of resource allocation, and leads to high
profit for RISC while meeting the task’s SLA and reliability
requirement. To summarize, RISC enables a large-scale
robust infrastructure over unreliable shared resources in a
way that both consumers and providers are interested in the
shared resource infrastructure.

The rest of the paper is organized as follows. Section
II presents the related work followed by the system model
in Section III. Sections IV and V describe the DPI and
RCS algorithms, respectively. The experimental evaluation
is presented in Section VI. Finally, Section VII concludes.

II. RELATED WORK

Dynamic Pricing and Incentivization. In online mar-
ketplace such as Ebay, pricing and payments decided by
sellers/buyers and not by the owner of the marketplace. This
however is not focused on profit maximization as required in
a shared resource infrastructure model. Dynamic pricing in a
cloud recommendation and marketplace have been explored
in [7], [8]. The dynamism is on the prices but the costs
(or incentives) are static since the back end infrastructure
is dedicated and static. Literature in this area in general
focuses on dynamic demands and assumes some static cost
model of the elements [9]. In shared resource infrastructure,
the cost can be dynamic since it is important to provide
appropriate incentives for sharing resources. Literature in
crowdsourcing and crowdsensing [10], [11], on the other
extreme, focuses on dynamic supplies to determine dynamic
incentives assuming some static budget. We focus on both
dynamic demand as well as supply at the same time to
determine dynamic prices and costs in an integrated manner.

Volunteer Computing, Grid Computing, and Reliable
Scheduling. Volunteer and grid computing paradigms focus
on resource sharing [12], [13]. End users sharing network
bandwidth and network data plans have been considered in
CrowdMAC [14]. Scheduling tasks over unreliable resources
have also been considered in Map-reduce framework [15].
[16] has studied fault tolerant scheduling for shared re-
sources, and [17] proposes scheduling of computing tasks on
resources based on an estimation of network transfer time



of the task to the resource. Benjamin et. al. [18] propose
proactive handling of resource failures in computing grid
using replication without considering monetary cost of the
same. A controlled market-oriented grid computing resource
management that guarantee QoS has been addressed in [1].
However, resource management based on incentives and task
prices in an integrated manner while maximizing profit and
ensuring task reliability is unexplored.

Pricing and/or Incentive based Scheduling. [2]–[4] fo-
cuses on incentive based scheduling in a decentralized peer-
to-peer computing grid. However, as mentioned previously,
these approaches do not apply to the shared resources infras-
tructure vision because of the constrained market scenario.
Monetary cost of scheduling task over distributed computing
resources have been further considered in [19]. Pricing
based scheduling that addresses demand response has been
addressed for smart grids in general [5], [6]. However,
combined decision making on the pricing and incentives at
the same time for controlled shared resource infrastructure
has not been addressed.

This paper focuses on a first-of-a-kind resource manage-
ment framework that determines both dynamic incentives
and prices in an integrated manner for constrained market
environment to enable a large-scale robust infrastructure
(guaranteeing SLAs and reliability to consumers) over un-
reliable and dynamically shared resources. The framework
focuses on maximizing the profit while keeping both con-
sumers and providers interested in the infrastructure.

III. SYSTEM MODEL

Figure 2. High-level architecture of RISC

In this section we give an overview and system model of
the RISC framework. Fig. 2 shows a high-level architecture
of RISC. Primarily, RISC takes reservation requests (which
we also call tasks) as inputs and manages the dynamically
shared ad-hoc resources (e.g., by the OSCs in return of
some incentives) to host parts or whole of one or more
requests. The reservation requests consist of the resource
configuration required, when it is required, and for how
long. The reservation requests are analogous to requesting
a certain VM instance in modern day public clouds, e.g.
Amazon, Azure, etc. RISC: (i) allocates the tasks over
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Figure 3. Example of a task and its resource allocation

heterogeneous resources, in presence of time-varying task ar-
rival rate and resource capacity, and (ii) determines the prices
and incentives offered for the requests and shared resources,
respectively, in an integrated manner. We assume that time
is divided into epochs of fixed duration, and the epochs are
further subdivided into T time slots of fixed duration. At the
beginning of each epoch, the Dynamic Pricing & Incentives
module in RISC determines the prices and the incentives
together based on the supply and the demand of resources.
To determine the demand, the scheduler is invoked such
that the cost is minimized. The pricing and incentivization
ensures that the profit is maximized.
A. Tasks

Task or reservation request for computation resources,
has a certain resource requirement for a certain duration. In
particular, a task tkj has four requirements: (i) the required
resource capacity (or size), denoted by a size vector size(j)
that specifies requirement for compute, memory, and storage,
(ii) the reservation length or duration l(j), in terms of
the number of slots, (iii) the deadline d(j), which is the
number of slots (from the arrival time slot) within which the
reserved slots for the task should appear, and (iv) a desired
(minimum) success probability dsp(j) of the reservation in
presence of resource failures or departures. A task tkj from
a user maybe composed of one or more smaller reservation
request which can be allocated on different resources (see
Fig. 3). We call these smaller reservation requests, subtasks,
and denote them by tkj,k. For a subtask tkj,k, its weight
w(j, k) is defined as the product of its computation require-
ment and its duration. Depending on the total weight of
each task, i.e. the sum of the weights of a task’s subtasks,
there are k distinct types of task requests tt1, . . . , ttk. The
demand for a task type tti is denoted as |tti|. All tasks of
the same type can be offered the same price in a given time
slot. The price vector pertaining to the distinct request types
is denoted as ~p = {p1, . . . , pk}. For a time slot t, this is
referred as ~p(t).
B. Resource

The system is composed of R computing resources or
machines r1, . . . , rR, whose capacity (a vector of compute,
storage and memory capacities) may vary with time. A



Table I
SYMBOL TABLE

symbol definition

T number of time slots with fixed duration
R total number of computing resources shared
n total number of shared resource types
ri i-th resource, 1 ≤ i ≤ R
rti resource type i, 1 ≤ i ≤ n
λi mean of lifespan of ri
pf penalty factor, i.e. severity on incentive

tkj j-th task (reservation request)
k total number of request types
tti task type i, 1 ≤ i ≤ k
size(j) required capacity vector <cpu, mem, disk> of tkj
l(j) reservation length of tkj in terms of no. of time slots
dsp(j) desired success probability of task tkj

pi price of request type i
cj incentive for resource type j
~p price vector {pi}i∈{1,...,k}
~c incentive vector {cj}i∈{1,...,n}
Di(~p|~r) 0–1 indicator variable denoting acceptance of ith

request type for prices in ~p
Dij(~p,~c|~r) demand for jth resource type for ith request type

when prices in ~p and incentives in ~c are offered

tsj,k k-th subtask of task tkj
RS(j, k) set of resources where replicas of tsj,k are placed
FR(j, k) set of resources where replica allocation of tsj,k is

feasible
asp(j, k) allocation success probability of tsj,k over RS(j, k)
dsp(j, k) desired success probability of tsj,k
idfp(j, k) inverse desired failure probability of tsj,k , i.e.

idfp(j, k, i) = 1
1−dsp(j,k)

MC(j, k, i) monetary cost for executing tsj,k on ri
NC(j, k, i) network cost for executing tsj,k on ri
ρ(j, k, i) efficiency of allocation of tsj,k on ri
ra(j, k, i) earliest feasible allocation of a replica of tsj,k on ri
p(j, k, i) probability that ra(j, k, i) is successfully completed
iafp(j, k, i) inverse allocation failure probability of an allocation

ra(j, k, i), i.e. iafp(j, k, i) = 1
1−p(j,k,i)

x(j, k, i) 0–1 indicator variable denoting whether allocation of
tsj,k over ri is selected

resource can be unavailable in a given time slot, which is
modelled by setting the resource capacity to < 0, 0, 0 > in
the corresponding slot. A resource can also fail or depart
the system either permanently or for an extended period of
time. Following the experimental results in [20], we assume
that the lifespan of a resource ri is exponentially distributed
with a mean λi, i.e., the probability p(j, k, i) that a task
allocation ra(j, k, i) is successfully completed is e

−d(j,k)
λi .

Depending on the distinct capacity vectors, the resources
are categorized into n types: rt1, . . . , rtn. In a given time
slot, same incentives needs to be offered to all the resources
of same type. The cost vector pertaining to the distinct
resource types is denoted as ~c = {c1, . . . , cn} and for a time
slot t, this is referred as ~c(t). MC(j, k, i) is the monetary
cost for executing subtask tkj,k on resource ri, per unit
computation per unit time. There is also a network (transfer)
cost NC(j, k, i) for transferring a subtask from the origin of
the task tkj to the resources ri executing the task, per unit

Figure 4. Process to determine dynamic prices offered for requests and
incentives for shared resources

of computation and per time slot. NC(j, k, i) may depend
on the distance, number of network hops, or the bandwidth,
between the origin of the task and the resource.

IV. PRICING AND INCENTIVIZATION IN RISC

This section describes the Dynamic Pricing and Incen-
tivization (DPI) strategy. Figure 4 shows the process em-
ployed by DPI. The DPI problem is formulated based on
price and incentive vectors from the last epoch along with
the probability distributions of acceptance of prices for re-
quests (determined by Di). As shown in Figure 4, the actual
demands of resources, captured by Dij , can be determined
through the scheduler that determines the task allocations.
For RISC, the task allocation should try to minimize the cost
to ensure the profit maximization. Dij can also be weighted
by a probability distribution of acceptance of incentives by
the resource owners. The distributions can be learned online
depending on the acceptance of prices as well as sharing of
resources. The DPI problem can be formulated as follows:

Max~p,~c
∑

ri∈FR(j,k)

piDi(~p|~r)−
∑
j

cj
∑
i

Dij(~p,~c|~r) (1)

where: pi ∈ {li, li + δ, li + 2δ, . . . , hi} and cj ∈ {lj , lj +

δ, lj + 2δ, . . . , hj}. If M = max(maxi
hi−li
δ ,maxj

hj−lj
δ ),

then a brute force algorithm that checks all possibilities of
~p,~c will have running time O(Mnk).

We propose a sequential optimization algorithm for DPI.
First, the requests types are re-ordered according to decreas-
ing demand, i.e., |tt1(t)| ≥ |tt2(t)| ≥ . . . ≥ |ttk(t)|. Also,
the resources are considered in the order in which we have
their supply, i.e., type 1 resource is most abundant resource
and type n is in lowest supply. After this ordering, each pi
and cj is optimized sequentially. During the optimization of
pi, the prices px (∀x 6= i) of all other types of requests as
well as the incentives of all types of resources are assumed
to be constant. For the first request type, the price p1 is
optimized assuming the prices of the other resources types
from the previous epoch. For any request type tti, the prices
till tti−1 have already been optimized but for the prices for



1: At the beginning of each epoch
2: fix prices as p2 ← p2(t), . . . , pk ← pk(t)
3: fix incentives as ~c← {c1(t), . . . , cn(t)}
4: p1(t+1)← arg maxp1

∑
i
piDi(~p|~r)−

∑
j
cj
∑

i
Dij(~p,~c|~r)

5: for 2 ≤ i ≤ k do {over all request type}
6: p1 ← p1(t+ 1), . . . , pi−1 ← pi−1(t+ 1)
7: pi+1 ← pi+1(t), . . . , pk ← pk(t)
8: pi(t + 1) ← arg maxpi

∑
i
piDi(~p|~r) −∑

j
cj
∑

i
Dij(~p,~c|~r)

9: fix prices as p2 ← p2(t+ 1), . . . , pk ← pk(t+ 1)
10: c1(t+1)← arg maxc1

∑
i
piDi(~p|~r)−

∑
j
cj
∑

i
Dij(~p,~c|~r)

11: for 2 ≤ j ≤ n do {over all resource type}
12: c1 ← c1(t+ 1), . . . , cj−1 ← cj−1(t+ 1)
13: cj+1 ← cj+1(t), . . . , cn ← cn(t)
14: call scheduler to determine Dij(~p,~c|~r)
15: cj(t + 1) ← arg maxcj

∑
i
piDi(~p|~r) −∑

j
cj
∑

i
Dij(~p,~c|~r)

Figure 5. The DPI algorithm

request types tti+1 onwards are assumed from the previous
epoch. The process continues iteratively until the prices for
all the request types are optimized. The incentives for price
optimization for all the request types are assumed to be from
the previous epoch.

After the price optimizations are completed the incentive
optimization is performed for all the resource types in a
similar way. Figure 5 presents the algorithm. Since the
resource and request types are ordered in decreasing supply
and demand, respectively, the most wanted request types are
optimized first in terms of price. From a cost perspective,
the most available resource types are optimized. Intuitively,
if the prices and incentives in the previous epoch were
near optimal, and there are small perturbations in supply
and demand from last epoch, then this sequential approach
will lead to near optimal solution for the current epoch.
The running time of the algorithm is O(kM + nM ∗
run time of scheduler). It should be noted that with every
change in the cost variables, the scheduler may have to be
invoked to determine the actual demand Dij .

V. SCHEDULING IN RISC

The objective of RISC scheduler is to minimize both the
monetary cost (MC) and network cost (NC) of executing
each task while meeting the task’s performance require-
ments. In particular, for a given task minimize α.MC +
(1 − α).NC, where cost parameter α is provided by the
system operator. (We later discuss about how to choose α.)

Consider a task tkj and one of its subtask tkj,k. A task
is successful if all its subtasks are successful. Therefore,
for ensuring a desired success probability for the task, its
subtasks are replicated over multiple resources. For a subtask
tsj,k, let dsp(j, k) be its desired success probability. Let
a replica allocation ra(j, k, i) for a replica of the subtask
tsj,k be a reservation of size(j, k, i) over a resource ri
from a starting time slot st(j, k, i) to a finishing time slot
st(j, k, i) + l(j, k) − 1. Here, size(j, k, i) is a capacity or
size vector of compute, memory and storage of the task,

and l(j, k) is the duration of the subtask. At a given point
in the execution of the scheduling algorithm, an allocation
ra(j, k, i) for subtask tkj,k is feasible provided that: (1) be-
fore the allocation is made, the residual capacity of resource
ri is greater than or equal to the size size(j, k) for the
subtask (for each component, compute, memory and storage)
from the starting to the finishing time slot of the allocation,
and (2) the finishing time slot of the allocation is same or
lower than the deadline slot of the parent subtask. For ease
of presentation, we denote by ra(j, k, i), the earliest feasible
allocation of tkj,k on resource ri.

A subtask succeeds if any of its replicas succeed. Assume
that the replicas of a subtask tkj,k are placed on different re-
sources with uncorrelated lifespan, where RS(j, k) denotes
the set of resources on which the replicas are placed. Then
the allocated success probability asp(j, k) of the subtask, is
1−Πi∈RS(j,k)(1− p(j, k, i)).

To maintain the success probability requirement of the
subtask, the scheduler needs to ensure that the allocated
success probability of the subtask is greater than or equal
to the desired success probability of the subtask, i.e.,
asp(j, k) ≥ dsp(j, k). Considering the reciprocal of the
corresponding failure probabilities in the constraint, and then
taking logarithm on both sides we have the transformed
constraint:

∑
i∈RS(j,k) log

(
iafp(j, k, i)

)
≥ log

(
idfp(j, k)

)
,

where iafp(j, k, i) = 1
1−p(j,k,i) and idfp(j, k) = 1

1−dsp(j,k) .
We now formally describe the core problem at the heart

of RISC. Let FR(j, k) be the set of resource over which
replica allocation for subtask tsj,k is feasible. (Note that
some resources may not have feasible allocations.) The
problem for a subtask is to select a subset of FR(j, k) so
as to minimize the following cost objective (where the 0−1
indicator variable x(j, k, i) denotes whether the allocation
over resource ri is selected):

Min
∑

ri∈FR(j,k)

(
α.MC(j, k, i)+(1− α).NC(j, k, i)

)
.w(j, k).x(j, k, i)

(2)

such that the following constraint holds:∑
ri∈FR(j,k)

log
(
iafp(j, k, i)

)
.x(j, k, i) ≥ log

(
idfp(j, k)

)
(3)

A. Subtask Scheduling
Before describing our scheduling algorithm over all tasks,

we discuss the algorithm for a single subtask scheduling
problem, as described in equations 2 and 3. We note that
even the problem of scheduling a subtask is NP-Hard (which
can be showed by a reduction from the knapsack problem,
but we omit the proof due to lack of space). In RISC, the
number of entities (resources, tasks, and subtasks) that are
considered by the scheduling algorithm can be quite large.
Therefore, we need a fast algorithm in practice, for which
we propose a greedy algorithm next.

When a resource ri is selected for subtask tkj,k, we pay
a cost of

(
α.MC(j, k, i) + (1 − α).NC(j, k, i)

)
.w(j, k) in



1: At the beginning of each epoch
2: while task queue is not empty do
3: tkj ← a task dequeued from the task queue
4: stj ← list of subtasks of tkj in decreasing order of their weight
5: for 1 ≤ k ≤ length(stj ) do {over all subtask of tkj}
6: FR(j, k) ← list of all resources over which allocation of

subtask tkj,k is feasible
7: sort resources ri in list FR(j, k) in decreasing order

log

(
iafp(j,k,i)

)(
α.MC(j,k,i)+(1−α).NC(j,k,i)

)
.w(j,k)

8: SR(j, k)← ∅; h← 1

9: while
∑

ri∈SR(j,k)
log
(
iafp(j, k, i)

)
< log

(
idfp(j, k)

)
and h ≤ |SR(j, k)| do

10: add hth element rh of FR(j, k) to SR(j, k)
11: reserve capacity for replica of tkj,k over resource rh
12: h← h+ 1;
13: if

∑
ri∈SR(j,k)

log
(
iafp(j, k, i)

)
≥ log

(
idfp(j, k)

)
then accept subtask tkj,k else reject subtask tkj,k

14: if all subtasks of tkj are accepted then accept task tkj else
reject task tkj and free all associated reservations

Figure 6. The task scheduling algorithm

the problem objective in equation 2, and get a profit (or
benefit) of log

(
iafp(j, k, i)

)
in terms of the progress made

towards satisfying the constraint in equation 3. Thus, for the
subtask, we select the resources for replica allocation from
FR(j, k) in the decreasing order of the their ratio of profit to
cost, until the constraint in equation 3 is satisfied. We show
in the appendix that this greedy algorithm provides provable
performance guarantee, namely, its solution is within a small
additive factor of the optimal.

B. RCS Scheduler

We now describe our scheduling algorithm over all tasks,
which we call Reliability, Cost, and SLA-aware scheduler
(RCS-scheduler). A pseudocode of the algorithm is given
in Figure 6. All tasks or reservation requests in the system
are enqueued in a task priority queue in the order of their
deadlines. At the beginning of an epoch, the scheduling al-
gorithm dequeues tasks one at a time, and allocates resources
for each task. For each task tkj , the scheduling method
replicates every subtask tkj,k over one or more resources
to achieve the desired success probability for the task. The
subtasks of a task are considered in the decreasing order of
the subtask weight (i.e., product of the compute requirement
and duration). At the end of considering all subtask of a
task, the task is accepted if all subtasks are allocated with
the desired success probability. Next we describe how the
replica allocation is selected for each subtask.

Consider a subtask tkj,k. To allocate resources for sub-
task, we need to compute the desired success probability
dsp(j, k) of the subtask from the corresponding success
probability dsp(j) of the parent task. Note that, a task is
successful if all its subtasks are successful. Assuming the
success of the subtasks are independent events, we have
dsp(j, k) =

(
dsp(j)

) 1
K , where K is the number of subtasks

of the current task.

Next, for the given subtask, we consider each resource
ri for feasible replica allocation, i.e., we check if the
resource has enough residual capacity to execute a replica
of the subtask within the task deadline. If an allocation is
feasible, the algorithm finds the earliest such feasible replica
allocation on the resource, and adds the corresponding ri
to the set FR(j, k). Next, the resources in FR(j, k) are
selected in the decreasing order of:

log
(
iafp(j, k, i)

)(
α.MC(j, k, i) + (1− α).NC(j, k, i)

)
.w(j, k)

(4)

until sum of log
(
iafp(j, k, i)

)
over the selected resources

is greater than or equal to log
(
idfp(j, k)

)
or all resources

in FR(j, k) have been considered. Let the set of selected
resources be SR(j, k). When adding a resource to SR(j, k),
the algorithm reserves capacity for a replica of subtask tkj,k
as per the earliest feasible allocation over the resource. The
subtask is accepted at the end of the allocation if the desired
success probability is achieved, and is rejected, otherwise.

C. Resource Management using RCS scheduler

We now present some important aspects regarding usage
and complexity of RCS scheduler in managing resources as
part of the RISC framework.

Choice of α. The behavior of the scheduling algorithm is
heavily dependent on the choice of α. A high value of α
(i.e., closer to 1) gives more importance to monetary cost,
and a low value gives more importance to network cost.
The choice of α may be based on the overall condition of
the system. For instance, α > 0.5 should be chosen if the
task monetary costs are considered to be too high. On the
other hand, if network congestion or latency is a dominant
problem, then α < 0.5 should be chosen. If neither of the
above (or both of the above) is a pressing concern for the
system operator, α may be set to 0.5. For this paper, we
choose RCSα=0.5 as the proposed scheduler.

Time-complexity. It is easy to see that , if the maximum
duration and maximum deadline of a subtask is D1 and
D2, respectively, the feasibility of a single resource can be
checked in O(D1.D2) in the worst-case. Thus scheduling
of a single subtask can be done in O(R.D1.D2), where R
is the total number of resources. Assuming that the number
of subtasks per task is bounded by a constant, the time-
complexity of scheduling a task is also O(R.D1.D2).

VI. EXPERIMENTAL STUDY

We perform trace-driven simulation to study the efficacy
of RISC. For the dynamic pricing and incentive component
of RISC, we use the proposed DPI algorithm, which is a
first-of-a-kind method to determine prices and incentives at
the same time. For the scheduler component of RISC, we
consider RCS algorithm having an α of 0.5 (RCSα=0.5), i.e.
giving equal importance to network and monetary costs. The
efficacy of the algorithm is shown by comparing with the
following 4 scheduling algorithms: (ii) RCSα=1: resources
are selected based only on MC (i.e., greedily minimize



(a) Task arrival (b) CDF of task Size
Figure 7. Task distribution

Figure 8. Availability of resources of different types

monetary cost); (ii) RCSα=0: resources are selected based
only on NC (i.e., greedily minimize network cost); (iii) Ear-
liest Completion-time First (ECF): resources are selected
in the decreasing order of finishing time of the subtask
(i.e., choose the resource according to the time when the
earliest feasible allocation on the machine finishes); and
(iv) Highest Residual-capacity First (HRF): resources are
load-balanced and chosen in the decreasing order of the
average residual capacity on the machine over the subtask
allocation duration.

A. Experimental Setup

We now describe the experimental set-up outlining the
reservation (task) and resource (machine) traces.

1) Task Traces: We consider Google cluster usage
trace [21] for 10000 consecutive tasks as the reservation
requests to our system. In particular, we use the task inter-
arrival time, task duration and task compute requirements
from the Google trace. Each task has upto 3 subtasks, gen-
erated by either splitting the task across duration, compute
requirement or both. The arrival pattern for a day of the tasks
(Fig. 7(a)) and the cumulative distribution function (CDF)
of the task sizes (Fig. 7(b)) show that the demand pattern
pertaining to the task requests is extremely dynamic with
most of the tasks are small is size, typical of any shared
resource framework for OSCs. Depending on the task sizes,
the tasks are classified into 15 different categories.

2) Resource Traces: We gathered CPU utilization traces
for 24 hours of dozens of machines in a large organization
over multiple locations in India, Europe and USA. We
consider a machine available if the CPU usage is below
5%. Based on this, we create 8 distinct commonly occurring
time-varying availability patterns. Additionally, for a larger
set of machines from the same organization, we considered
the machine configuration (CPU, memory and storage) and

Figure 9. CDF of total number of
available machines

Figure 10. Convergence of offered
prices

Table II
RELIABILITY LEVELS

Reliability
Level

Task success
probability

low 0.999–0.9999

moderate 0.9999–
0.99995

high 0.99995–
0.99999

very high 0.99999–
0.999999

Table III
DEMAND-SUPPLY LEVELS

Demand
Level

Definitions

low no. of resources re-
quired (x) ≥ no. of re-
sources available (y)

moderate 0.5 < x
y
< 1

high x
y
≤ 0.5

network hop distances between them. We select 5 distinct
network hop distances (namely, 1, 2, 6, 7, and 13) that we
observed, for the simulation. We also extract a set of 23 dis-
tinct resource configurations. Thus, there were 8*23 = 184
combinations or resource types in terms of configurations
and availability. In our simulation, we consider a system
with around 1500 machines, uniformly distributed across
the 184 resource types. Resources having high capacity is
less available compared to resources with low capacity (Fig.
8). Also, a minimum of 500 resources are available at any
time as shown in the CDF in Fig. 9. This indicates a highly
dynamic environment resource availability with a reasonable
number of resource always available—as envisioned for the
shared resource infrastructure being addressed by RISC.

3) Experiments performed: In the simulation, depending
on the individual experiment, the task success probability is
varied from 0.999 (three nines) to 0.999999 (six nines). In
particular, we study four cases as shown in Table II. Further,
the task deadline is varied as percentage of duration from
300% to 1700%.

Each machine is further allocated uniformly at random
one of the five mean lifespan: 1, 5, 10, 30, or 60 days (which
is used to compute the success probability of an allocation
on the machine)1. Finally, for each machine, the prices per
GHz per hour is chosen from the range of $0.05 to $0.52.
The acceptability of the prices by the task requesters depend
on whether the prices are less than the corresponding prices
in public cloud instances. Thus assuming the aforementioned
price range within which prices are offered, the acceptance

1In [20], the authors have observed that the mean lifespan of resources
in a particular volunteer computing project is of the order of few months.

2This range is in the order of modern IaaS cloud offerings



Figure 11. CDF of
incentive offered and
average price paid for
a resource

Figure 12. CDF of incentive offered and
average price paid for a resource

probability of the prices would be 1. For experiments per-
taining to the impact of supply and demand on the prices
and incentives, we segregated the 24 hours time into three
different types of zones with supply-demand characteristics
shown in Table III.
B. Results

1) Efficacy of DPI: Fig. 10 shows the convergence of the
prices for different categories of task requests. It is observed
that within two epochs the convergence is achieved (for
categories 2, 3, and 4) assuming there is no change in the
supply and demand within these epochs. For category 1,
the prices converge at the first epoch. This is typically the
case for the rest of the 11 task categories (and thus is not
shown in the figure for clarity). The results indicate a fast
convergence of DPI.

Fig. 11 shows the CDFs of the incentives for a particular
resource type as well as the prices paid for the resources. It
should be noted that there are mainly three steps in the prices
and incentives, referring to three different supply-demand
characteristics in the shared resource infrastructure. Also, the
incentives are lower compared to the prices paid, reflecting
the profits for hosting the shared resource in RISC.

Fig. 12 shows the profit achieved by DPI for RISC.
Interestingly, for low demand the total profit for a day
is significantly high. This is counter-intuitive from a open
marketplace perspective where high demand leads to higher
profits. This deviation from open market standard is caused
by the constrained market setting in a shared resource
infrastructure. Since the price is bounded by (i.e. less than)
the prices of the cloud instances, even at high demand, the
price can not be increased in order to ensure that the task
requesters accept the offered prices. However, the incentives
go high for the resources leading to low profit for high
demand. Furthermore, there are high number of tasks with
low demand causing a different multiplicative scale while
computing the total profit.

It is also notable that for different scheduling algorithm
the profit changes. This is attributed to the monetary cost
minimization by the scheduling algorithms as described in
the following sections and shown in Figs. 13(a) and 14(a).

2) Task success probability and task scaling: Figure 13
presents the average monetary cost and network cost over
all tasks, and total number of replicas over all accepted
tasks, for the different requirements on success probability.
Not surprisingly, as the success probability requirement
is increased, monetary cost, network cost and number of
replicas increase. However, we notice that our algorithm
(RCSα=0.5) consistently performs second best both in terms
of monetary and network cost, and its costs are close to the
best performing algorithm (RCSα=1 for MC and RCSα=1

for NC). Thus, our algorithm provides a good balance
between the two cost metrics. We also note that, for all
algorithms other than ECF, the task rejection rate is 0 for
the lower 3 success probability ranges, and is around 3% for
the highest range3. ECF suffers from a much higher rejection
rate and thus, requires a lower total number of replicas.

To observe the performance of the algorithms with in-
crease in system workload, we also conduct experiments by
varying task compute requirement and varying task duration.
We observe similar trends as the task success probability
experiment: our algorithm performs second best (and is close
to the best algorithm) in both monetary and network cost
metrics, and thus provides a good trade-off between the two.

3) Task deadline: Figure 14(a) and 14(b) presents the
average monetary and network costs with increase in dead-
line. We see that initially the monetary cost increases for all
algorithms until the deadline increases to 700%. For subse-
quent increase in deadline, for two algorithms (RCSα=0.5

and RCSα=1) there is a decrease in monetary cost, but
it remains almost the same for other algorithms. Similar
trend is observed for network cost, where two algorithms
(RCSα=0.5 and RCSα=0) perform significantly better than
other 3 algorithms for higher values of deadline. This shows
a clear benefit of using our algorithm, its cost is not only
second-best (and close) to the cost of best algorithm for both
the monetary and network cost, but also shows a decreasing
trend as the deadlines are relaxed.

To explain the trend in the monetary cost, we divide the
deadline variation range into two regions: when deadlines
are strict (below 900%) and when deadlines are large (above
900%). In the former region, many large tasks (duration
higher than 500 seconds) are rejected, and the number of
accepted large tasks increases as the deadline is increased
(as shown in Figure 15). Consequently, since the larger
tasks have larger costs, the cost increases with increase in
deadline in this region. In the second region, due to larger
deadlines, all tasks are accepted (as shown in Figure 14(c)),
and therefore, algorithms that consider monetary cost while
resource selection (RCSα=0.5 and RCSα=1) improve their
monetary cost by exploiting relaxation of deadline. However,
other 3 algorithms that do not consider monetary cost
while choosing resources, are unable to reduce the monetary
cost as deadlines are relaxed. Similar explanation holds for
network cost, where algorithm that consider network cost

3The rejection rate plot is not shown due to lack of space.
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Figure 13. Varying task success probability.
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Figure 15. Varying task deadline: acceptance of large tasks for RCSα=0.5

(RCSα=0.5 and RCSα=0), exploit the relaxation of deadline
to reduce the network cost in second region.

VII. CONCLUSIONS

This paper introduced RISC, a novel framework for com-
posing a robust computing infrastructure out of heteroge-
neous and unreliable resources that are dynamically shared
in an ad-hoc manner by the owners in return of incentives.
RISC addresses constrained resource marketplace situation,
where: (i) requests and resources are dynamically priced and
incentivized, respectively, based on supply demand while
maximizing profit; and (ii) the prices offered are below
than any alternatives (e.g. cloud offerings) for infrastructure
consumers and prices & incentives are such that a required
reliability guarantees can be ensured by the infrastructure. To
this effect, RISC incorporates the DPI strategy for dynamic
price and incentive determinations and a DPI dependent RCS
scheduler that ensures the reliability and cost minimization
from both monetary and network perspective while allo-
cating requests to the shared resources. Results based on

experiments over real request and resource traces show that
DPI indeed leads to profit maximization. Interestingly, the
profit reduces with increased demand because of the con-
strained market situation. Further, RCS can ensure reliability
while balancing monetary and network cost towards the
aforementioned profit maximization. Future work includes
incorporation of online learning techniques for price and
incentive acceptance in RISC.

REFERENCES

[1] R. Buyya and K. Bubendorfer, Market-Oriented Grid and
Utility Computing. Wiley, 2010.

[2] Y. Zhu, L. Xiao, L. Ni, and Z. Xu, “Incentive-based p2p
scheduling in grid computing,” ser. Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, 2004.

[3] L. Xiao, Y. Zhu, L. Ni, and Z. Xu, “Incentive-based schedul-
ing for market-like computational grids,” IEEE Transactions
on Parallel and Distributed Systems, 2008.

[4] L. Xiao, Y. Zhu, L. M. Ni, and Z. Xu, “Gridis: An incentive-
based grid scheduling,” in IEEE IPDPS05, 2005.

[5] J. Yang, G. Zhang, and K. Ma, “Real-time pricing-based
scheduling strategy in smart grids: A hierarchical game ap-
proach,” Journal of Applied Mathematics, 2014.

[6] D. Li, S. K. Jayaweera, O. Lavrova, and R. Jordan, “Load
management for price-based demand response scheduling—
a block scheduling model,” in International Conference on
Renewable Energy and Power Quality (ICREPQ), 2011.

[7] T. Mukherjee, K. Dasgupta, S. Gujar, G. Jung, and H. Lee,
“An economic model for green cloud,” in ACM MGC, 2012.

[8] G. Jung, T. Mukherjee, S. Kunde, H. Kim, N. Sharma,
and F. Goetz, “Cloudadvisor: A recommendation-as-a-service
platform for cloud configuration and pricing,” in IEEE SER-
VICES, 2013.



[9] S. Lehmann and P. Buxmann, “Pricing strategies of software
vendors,” Journal of Business & Information Systems Engi-
neering, 2009.

[10] D. Zhao, X.-Y. Li, and H. Ma, “How to crowdsource tasks
truthfully without sacrificing utility: Online incentive mecha-
nisms with budget constraint,” in IEEE INFOCOM, 2014.

[11] I. Koutsopoulos, “Optimal incentive-driven design of partici-
patory sensing systems,” in IEEE INFOCOM, 2013.

[12] J. Zhang and C. Phillips, “Job-scheduling via resource avail-
ability prediction for volunteer computational grids,” Int. J.
Grid Util. Comput., vol. 2, no. 1, pp. 25–32, May 2011.

[13] D. Anderson and K. Reed, “Celebrating diversity in volunteer
computing,” in HICSS, 2009.

[14] N. Do, C.-H. Hsu, and N. Venkatasubramanian, “Crowd-
mac: A crowdsourcing system for mobile access,” in
ACM/Usenix/IFIP Middleware, 2012.

[15] H. Lin, X. Ma, J. Archuleta, W.-c. Feng, M. Gardner, and
Z. Zhang, “MOON: MapReduce On Opportunistic eNviron-
ments,” in ACM HPDC, 2010, pp. 95–106.

[16] S. Choi, M. Baik, C. Hwang, J. Gil, and H. Yu, “Volunteer
availability based fault tolerant scheduling mechanism in
desktop grid computing environment,” in IEEE NCA, 2004.

[17] J. Jurkiewicz, K. Nowinski, and P. Baa, “Prediction of the
jobs execution on the community grid with added network
latency,” in Distributed and Parallel Systems. Springer, 2008.

[18] B. B. Khoo and B. Veeravalli, “Pro-active failure handling
mechanisms for scheduling in grid computing environments,”
Journal of Parallel and Distributed Computing, 2010.

[19] J. Broberg, S. Venugopal, and R. Buyya, “Market-oriented
grids and utility computing: The state-of-the-art and future
directions,” Journal of Grid Computing, 2008.

[20] E. M. Heien, D. P. Anderson, and K. Hagihara, “Computing
low latency batches with unreliable workers in volunteer
computing environments,” J. Grid Comput., 2009.

[21] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-
usage traces: format + schema,” Google Inc., Tech. Rep.,
2011, revised 2012.03.20. Posted at URL http://code.google.
com/p/googleclusterdata/wiki/TraceVersion2.

[22] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack problems.
Springer, 2004.

APPENDIX

We show that the greedy subtask scheduling algorithm
presented in Section V is within an additive factor of the
optimal solution for the subtask. First, we note that the
subtask scheduling problem can be modeled as Minimization
Knapsack (MinKP) problem [22]: Min

∑n
i=1 wixi subject

to
∑n
i=1 pixi ≥ B and xi ∈ {0, 1}.

Consider any subtask tsj,k. The subtask problem de-
fined in equations 2 and 3 is the MinKP problem with
wi =

(
α.MC(j, k, s) + (1− α).NC(j, k, s)

)
.w(j, k), pi =

log
(
iafp(j, k, i)

)
, B = log

(
idfp(j, k)

)
, and n as the

number of resources in FR(j, k). Since the task size and
reliability values can be chosen to result in arbitrary positive
integral values of wi, pi, and B, the subtask scheduling
problem is as hard as MinKP, and therfore NP-Hard.

Next, for ease of presentation, assume that p1
w1

> p2
w2

>
. . . > pn

wn
. Let,

∑m
i=1 pi = Pm and

∑m
i=1 wi = Wm. Let s

be an index such that Ps−1 < B ≤ Ps. Item s is called
the split-item of the MinKP problem instance. Note that

our greedy algorithm outputs the solution containing items
{1, . . . , s}.

For a parameter Y > 0, let MinKP(Y ) denote the MinKP
where B replaced by Y . For a problem P, let P∗ denote the
value of an optimal solution (if it exist) to that problem.

Let MinFracKP(Y ) be same as the MinKP except that the
integrality constrain on xi is replaced by 0 ≤ xi ≤ 1. Let
FracKP(Y ) be the standard fractional (maximization) knap-
sack problem as: Max

∑n
i=1 wixi subject to

∑n
i=1 pixi ≤ Y

and 0 ≤ xi ≤ 1.
Now we show that the solution returned by the greedy

algorithm is within an additive factor of optimal.

Lemma 1: Ws−1 = MinFracKP∗(Ps−1) = MinKP∗(Ps−1)
≤ MinKP∗(B) ≤ MinKP∗(Ps) = MinFracKP∗(Ps−1) = Ws.

Proof: (Sketch.) We start with two straightforward ob-
servations. First, note that, as the value of Y increases,
the optimal value of MinKP(Y ) is non-decreasing. There-
fore, from the definition of s, we have MinKP∗(Ps−1) ≤
MinKP∗(B) ≤ MinKP∗(Ps). Second, it is easy to see that,
(y1, . . . , yn) is an optimal solution for MinFracKP(Y ) if
and only if (1 − y1, . . . , 1 − yn) is an optimal solution for
FracKP(Pn − Y ).

Using the greedy choice property of FracKP (from The-
orem 2.2.1 of [22]), we know that (x1 = 0, . . . , xs−1 =
0, xs = 1, . . . , xn = 1) is an optimal solution of
FracKP(Pn − Ps−1), i.e., greedily choosing items (either in
full or in fraction) in the ascending order of pi

wi
until the sum

of pi remains less than or equal to Pn − Ps−1 =
∑n
i=s pi,

gives an optimal solution to FracKP(Pn − Ps−1). Then,
(x1 = 1, . . . , xs−1 = 1, xs = 0, . . . , xn = 0) is an optimal
solution for MinFracKP(Ps−1).

Note that, the values of xi in the above optimal solution
of MinFracKP(Ps−1) are all integral. Therefore, it is also
an optimal solution for MinKP(Ps−1). Therefore, Ws−1 =
MinFracKP∗(Ps−1) = MinKP∗(Ps−1).

We can similarly show, MinKP∗(Ps) =
MinFracKP∗(Ps−1) = Ws. This observation completes
the proof.

Lemma 2: Consider any subtask tsj,k. The subtask
scheduling algorithm proposed in this paper is within
an additive factor of ws =

(
α.MC(j, k, s) + (1 −

α).NC(j, k, s)
)
.w(j, k) of the optimal, where s is the split-

item of the subtask scheduling problem instance.
Proof: Follows immediately from two simple observa-

tions: (i) in Lemma 1, Ws−1 = Ws − ws ≤ MinKP∗(B)
≤ Ws, and (ii) our greedy algorithm outputs a solution
containing items {1, . . . , s} which has the objective value
of Ws.


