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Abstract—The Internet is witnessing a rapid increase in video
traffic. Due to the scalability and the cost-savings offered by
cloud-computing, Internet video service providers are increas-
ingly delivering their content from multi-tenant cloud data
centers. One of the major challenges faced by such a video service
provider is the management of the Quality-of-Experience (QoE)
of the end-users in the presence of Variable Bit Rate (VBR) video
flows, time varying network conditions in the Internet, and the
bounded egress bandwidth provided by the data center. To this
end, we present InSite, a light-weight and easy-to-deploy solution
for managing the QoE of a set of video flows of a service provider,
which are served from a datacenter.

InSite is deployed at the egress of a data center, between
the video servers and the clients, and manages the video flows
that are transmitted over TCP. The solution uses a novel
generalized binary search technique to concurrently search for
the appropriate flow rates for a set of flows, with the goal of
maximizing the QoE-fairness across the flows, as opposed to TCP-
fairness. The search takes into account the total egress bandwidth
allocated for the set of video flows at the datacenter, the unknown
and possibly time-varying capacities of any remote bottleneck
links, and the playout buffer sizes of the video flows. The solution
is also designed to operate with minimal modifications to the
video servers and the clients. In our evaluations using extensive
ns-3 simulations and a testbed implementation for serving videos
over TCP, we observe that deploying InSite achieves several folds
reduction in playout stalls over a system without InSite.

I. INTRODUCTION

Motivation. A majority of traffic in Internet today is video

and this share is increasing at a rapid pace [1]. Due to the

associated steep rise in the bandwidth, computing and storage

requirements, the video service providers are increasingly

moving to cloud computing platforms for content delivery [2],

[3]. For instance, a popular Video-on-Demand (VoD) service

provider in North America has moved its streaming servers to

a cloud computing platform [4]. Such a transition helps the

service providers to avoid the cost of owning and managing

their private video server farms, and dynamically change the

amount of rented resources [5], [6]. Also, the cloud platforms

can serve the videos out of multiple geographically distributed

data centers, and hence, reduce latency to the end-users.

Despite the benefits of cloud-based delivery, the videos

delivered from a cloud datacenter are limited by the egress

bandwidth at the datacenter [6], [7], [8], and the time-varying

network conditions over the Internet. Cloud data centers are

frequently shared by multiple service providers (multi-tenant),

and the data center operator may bound the peak available

bandwidth (see Figure 1) for each service provider to provide

performance management and isolation [5], [9]. In addition,

video flows are typically Variable Bit Rate (VBR) and delay-

sensitive. Not surprisingly, it is challenging to manage the

Quality-of-Experience (QoE) of the end-users in the presence

of such dynamic video and network conditions. Since the

revenue of the video services, whether subscription-based

or advertisement-based, depends crucially on the end-users’

experience, managing QoE is essential for a widespread de-

ployment of cloud-based video delivery.

Fig. 1. A Data Center showing two tenants; each tenant reserves a certain
amount of egress bandwidth (b or b’) as a part of SLAs, and the data center
uses this reservation to ensure bandwidth isolation across tenants. One instance
of InSite is placed for each tenant to manage the QoE, given the “virtual”
egress link and the unknown in-network bottlenecks.

Our Solution. In this paper we present a solution, InSite,

for managing QoE of video delivery from cloud data centers.

InSite is positioned at the egress of a data center hosting the

video service, e.g., at a core router of the data center (see

Figure 1). It manages the set of video flows between the video

servers and the clients of a given video service provider. InSite

focuses on video flows over TCP, as a significant fraction of

Internet video is delivered over HTTP/TCP. Also, in terms

of deployment, a transport layer solution can work across

different video delivery applications.

InSite considers playout stalls as the primary QoE metric for

a video playout. A playout stall, also called a buffering event,

occurs when the playout buffer at the video client becomes

empty. A recent large-scale study [10] has observed that the

QoE of a video service is judged (by the end-user) primarily

based on the number of playout stalls, along with other metrics

such as ratio of buffering time to the total session time, and

the video resolution.

To manage the playout stalls, InSite controls the rate of

each flow based on the following three simple but crucial

observations: (1) at any point in a video playout, the key
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factor that determines its vulnerability to stalling is the current

playout buffer size at the client, (2) a video flow typically

requires variable bit rate and it may encounter unknown and

time-varying bottlenecks over the Internet, and hence, the

rate allocation must be dynamically adapted over time, and

(3) as TCP is oblivious to the video application characteristics

(e.g., its variable bit rate requirement), TCP’s sharing of the

egress bandwidth according to the network characteristics

(e.g., Round-Trip-Time (RTT)) might be far from the one that

ensures high QoE as well as a fair distribution of QoE.

InSite’s rate control is implemented using the well-known

technique of advertised receiver window based TCP rate

control [11], [12]. At the heart of InSite is a fast algorithm that

concurrently searches for the right TCP receiver window size

for each flow, over a network where bottleneck links for the

flows may have unknown capacities. InSite runs this algorithm

iteratively in an epoch-by-epoch manner so as to reduce the

number of playout stalls, and to fairly distribute the stalls

across clients. In particular, in each iteration of InSite, the

window sizes are set such that a given function of the playout

buffer sizes of all the clients is maximized. InSite also adapts

to dynamic bandwidth SLAs between the data center and its

tenants (i.e., dynamic changes in the egress bandwidth b), at

a fine granularity of epoch-boundaries.

Contributions. This paper makes two contributions. (1) In-

Site provides a fast and simple concurrent binary search mech-

anism to share bandwidth across video flows of a given service

provider at a datacenter, with the objective of maximizing

QoE fairness, as opposed to TCP fairness. To the best of

our knowledge, InSite is the first solution to focus on QoE

fairness (measured in terms of playout stalls) of a set of video

flows over TCP. (2) InSite is transparent to video servers,

clients, and applications. In particular, it does not require any

modification to the TCP/IP stack or the video application at

the servers and the clients, and it does not need any feedback

from the remote clients. Consequently, InSite requires minimal

disruption or modifications in a cloud data center serving

videos, and facilitates “offloading” QoE optimization as a

revenue-generating service for data center owners, thereby

significantly increasing the chance of its adoption.

Roadmap. The rest of the paper is organized as follows.

In Sec. II, we formulate the underlying network optimization

problem. Subsequently, Sec. III describes the core algorithm

of our solution, InSite. We evaluate the performance of InSite

subject to different network and video characteristics using

ns-3 simulations in Sec. IV. Sec. V, describes a prototype

implementation of InSite in our test-bed. In Sec. VI, we

compare InSite with related work on video delivery. We

conclude the paper with discussion on future work in Sec. VII.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section we formulate the main network optimization

problem that is handled by InSite. For ease of presentation,

in the rest of the paper we consider one given tenant (service

provider) in a multi-tenant datacenter (see Fig. 3). We assume

that the datacenter enforces network performance isolation

among different tenants, and provides each tenant a known

(virtual) egress bandwidth, and hence, a separate instance of

InSite can be deployed for each tenant. Also, we assume that,

apart from the egress link, the rest of the data center network

has enough capacity to support all the video flows.

A. Preliminaries

Video flows. Typically compressed videos play at constant

number of frames per second, but the frames may vary in

size. The playback curve of the video specifies the amount of

video data that the client needs by time t (from the start of

the playout) to have an uninterrupted playout. After requesting

the video, the client starts playing out the video after an initial

buffering delay. If at any point in the playout, the next video

frame to be played out has not yet been received by the client,

the playout stalls. Such a stall adversely impacts the QoE of

the video playout.

TCP rate control. We assume that the rates of the TCP

flows are changed using advertised receiver window modifi-

cation in the TCP header, which is a well-known TCP rate

control mechanism [11], [12]. The rate of a TCP flow is

controlled both by the congestion control and the flow control

algorithms, which in turn specify the congestion window size

and the receiver advertised window size, respectively. The

effective size of the TCP window is set to minimum of the

congestion and receiver windows, and therefore, instantaneous

rate of a TCP flow cannot exceed the product of the receiver

window size and the TCP segment size, divided by the Round

Trip Time (RTT) of the flow.

Network topology. We aim to manage video flows passing

through an egress link (also called a shared link) of a data-

center with a known capacity b allocated for the video flows

(see Fig. 3). To account for the dynamic nature of the Internet,

each video flow i is assumed to have a remote bottleneck link

(that is distinct from the shared link), whose spare capacity bi

is unknown and time-varying.1

B. Problem Formulation

Capacity constraints. Suppose there are n video flows

{1, 2, ..., n} in progress, and the (receiver advertised) window

size of the ith flow is xi. We know that the instantaneous

rate of a TCP flow can be expressed as
window in bytes

RTT in seconds
. Now,

the rate constraint due to egress link can be expressed as
∑n

i=1 aixi ≤ b, where ai is the inverse of round trip time

(RTT). This constraint says that the sum of the flow rates

over the shared egress link cannot exceed the link’s capacity.

Similarly, for the remote bottleneck of each flow i, we can

express a constraint of the form aixi ≤ bi (i = {1, ..., n}),

which states that the rate of a flow cannot exceed its remote

bottleneck spare capacity.

QoE-aware objective. We use the number and duration of

playout stalls as the primary metrics for measuring the QoE

of a video playout. Following [13], [14] we observe that the

playout buffer size of a flow strongly affects the chance of a

playout stall, and hence, we base our objective on the buffer

sizes. The buffer size of a client is defined as the amount

1Our algorithm can be extended for the general case where there are
subsets of flows that share a common bottleneck, apart from individual remote
bottlenecks, if any.
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of data that is received by the client but not yet played out.

In particular, the objective for the QoE optimization that we

consider in this paper is maximizing the weighted proportional

fairness [15] given by f(x) =
∑n

i=1 φilog(xi), where xi

is TCP (receiver advertised) window size for flow i. The

weight φi is computed as follows. At any time t, let Di

be the difference between the amount of bytes streamed and

the amount of bytes that needs to be sent by time t for

an uninterrupted playout of a video flow i, as given by the

playback curve.2 If there are n flows in progress, the inverse

of normalized buffer size for flow i is given by φi =
P

n
i=1

Di

Di
.

Note that, this choice of weights gives higher weights to the

flows that have a smaller buffer size.

Our goal is to find an optimal window vector x̄∗ which

maximizes the QoE-aware objective function with respect to

capacity constraints given in Fig. 2.

Window Size Variables: xi,∀i.
Capacity Constants: b, φi, ai,∀i (known). bi,∀i
(unknown).

QoE-aware Objective: max f(x), f(x) =
∑n

i=1 φilog(xi).
Egress (Shared) Link Constraint:

∑n
i=1 aixi ≤ b.

Remote Bottleneck Constraints: aixi ≤ bi, ∀i.

Fig. 2. Network Optimization Problem

InSite solution setting. The optimization problem presented

in Fig. 2 cannot be solved directly as a mathematical program

because the values of the bis are unknown. Thus our overall

approach to solve this problem is to start with a window

vector x̄, and through a series of window vector modifications

arrive at an optimal window vector x̄∗ where each element

of xi corresponds to the desired TCP receiver window size

for a flow. As described in Sec. II-A, InSite-router sits at the

egress link of a datacenter (between video servers and video

clients), and modifies the receiver advertised field in the TCP

acknowledgment headers to set to xi. This achieves the desired

rate for a flow, and maintains the required buffer size at each

video client.

We now briefly discuss following three questions that for-

mulate our solution setting, (1) how should we estimate the

buffer sizes at the video clients? (2) how frequently should we

estimate the buffer sizes? (3) what should be the granularity

of modifying the window vector?

In InSite, we divide the video session time in terms of

‘epoch(s)’ and an epoch is further divided into ‘sub-epoch(s)’.

To estimate the buffer sizes of video clients at InSite-router,

we measure the amount of data streamed to the user in

an epoch, and then, compare it with the playback curve of

the corresponding video. The difference between the two

quantities gives us an estimate of the buffer size at the video

client, and thus the weight φi for flow i in subsequent epoch.

The playback curves (of only few KB) of all flows can be

quickly downloaded at InSite-router from some server in the

datacenter incurring negligible communication and storage

overhead.

2If Di < 1, we set Di to a minimum value of 1.

Fig. 3. InSite system architecture for a given tenant

To answer the second question, we note that some past

studies (e.g. [10]) have indicated that 10 to 20 seconds is a

reasonable amount of time for which a users may wait until

the playout starts. We adopt this time granularity for the epoch

duration. For the third question, we observe that, it typically

takes a few (2 to 4) RTTs for a TCP flow to show the effect of

a window modification, and consequently, to converge to a rate

(assuming stable network conditions). Therefore, we modify

the window vector at the boundaries of sub-epochs (of order

of 1 to 2 seconds), whose durations are a small multiple of

average RTT of the flows.

Thus, within an epoch, we assume that network conditions

remain static (i.e., the values of RTT (1/ai) and remote (bi)

bottleneck bandwidths remain constant), and then over sub-

epochs, we modify window vector x̄ to solve optimization

problem in Fig. 2 . This is a reasonable assumption with

respect to work in [16] which observes that, for a period of 20

seconds within a connection, RTT remains fairly stable on the

Internet. Moreover, in our evaluation, we observe that InSite

can handle infrequent link capacity variations even within an

epoch of 10 seconds. We give further details in Sec. IV.

In the next section, we present our algorithm which takes

O(n+(2× log2m)) (m is maximum window size assumed to

be sufficiently large in practice) iterations to discover unknown

capacities bis and find the optimal point x̄∗.

III. INSITE: MANAGING QOE OF VIDEO FLOWS

In our algorithm for solving the optimization problem in

Fig. 2, we start with an optimal solution for a modified

problem which excludes the n unknown constraints (i.e., the

remote bottleneck constraints), and then use a variant of multi-

dimensional binary search to arrive at an optimal solution

to the original problem which considers the n unknown

constraints. The search step to discover the unknown values

of bis in our algorithm is based on membership queries which

checks if a given set of window values results in a flow rate

allocation that satisfies all, known and unknown bottleneck

constraints.

Before explaining our algorithm, we first describe window

vector based membership queries and how the system responds

to such a query, which forms the basic framework of our

solution. This framework to find unknown capacity is partially
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inspired by [17], [12]. Then we present few lemmas on

the properties of optimal solutions, which we use in the

description and analysis of our algorithm. Subsequently, we

present our algorithm in detail.

A. System Model

Membership queries. At an abstract level, the shared and

remote bottleneck link constraints in the problem formulation

are half-spaces in the n dimensional space, R
n, of window

vector values. Our goal is to find an optimal point, given

by a window vector x̄∗ = {x∗
1, x

∗
2, ..., x

∗
n} which (1) lies in

the polytope defined by these half-spaces and (2) maximizes

the objective. We know one of the half-spaces of the convex

polytope (since we know b). However, the remaining half-

spaces are unknown (since we do not know bis). To discover

the optimal point x̄∗ , our algorithm runs in iterations, and in

every iteration, we propose a window vector x̄. In response,

we receive a feedback x̄
sys from the system as to whether the

point is inside or outside the polytope.

Queries for single flow vs. multiple flows. If we consider

a single flow in progress, say flow 1, the problem is to find the

value of unknown remote bottleneck, b1, by setting the value

of the window size x1. The window size x1 in turn sets an

upper limit of a1x1 on the allowed TCP rate of flow 1. Each

time we set x1 and observe the data transmitted, it is equivalent

to learning whether a1x1 > b1. Once we set window size to

x1, we observe the amount of data that is transmitted in the

sub-epoch. The window size that corresponds to the actual

amount of data transmitted is selected as the system feedback

xsys
1 . If a1x1 > b1, i.e., if we allow higher flow rate than

the capacity of its remote bottleneck link, we get a system

feedback xsys
1 to be less than x1. Otherwise, we obtain xsys

1 =
x1. What does this mean in terms of the network flow? When

we send more data than what the bottleneck link can handle,

the data either experiences packet loss or substantial delay,

because of which the number of acknowledgments is lower

than expected. Greater the value of a1x1 compared to b1, the

lower is the value of xsys
1 returned by the system, because of

more packet losses or larger delays. On the other hand, if we

send less or equal amount of data to what the bottleneck link

can handle, we will receive acknowledgments for (almost) all

the sent packets. This signifies that xi can be increased further.

Next, suppose there are two flows 1 and 2 in progress. We

can simultaneously set the window size of flow 1 to x1 and

flow 2 to x2 to test whether a1x1 > b1 and whether a2x2 > b2,

only if the corresponding allowed flow rates do not exceed the

capacity of the shared link b (i.e., only if a1x1 + a2x2 ≤ b).

Otherwise, if a1x1 + a2x2 > b then system feedback might

be dominated by the shared link constraint.

Therefore, in our algorithm we never violate the shared

bottleneck constraint when we set a window vector to query

the window values for all flows. However, a proposed window

vector x̄ = {x1, x2, ..., xn} may still violate the constraints

imposed by the remote bottlenecks, in which case, we use

binary search algorithm to converge to an optimal window

vector.

B. Properties of an Optimal Solution

We now present some properties of an optimal solution that

are needed to describe our algorithm. Let N denote the set

{1, . . . , n} of all flows. We omit the proof of the first two

lemmas due to lack of space.

Lemma 1 below states that if the sum of remote bottleneck

spare capacities is at most the shared link capacity, one can set

the window vector to transmit data at the rate which consumes

spare capacities of all the remote bottlenecks to achieve an

optimal solution.

Lemma 1: If
∑

bi ≤ b, the point
(

xi = bi

ai

)

, ∀i, is an

optimal solution.

The next lemma states that if the sum of the spare capacities

of remote bottlenecks is greater than the capacity of the shared

link, then the objective can be maximized by a solution such

that the solution transmits the data at the rate which makes

the shared link full.

Lemma 2: If
∑

bi ≥ b, then there is an optimal solution

that satisfies
∑n

i=1 aixi = b.

The next two lemmas presents some more properties of the

optimal solution.

Lemma 3: An optimal solution to the problem with objec-

tive
∑n

i=1 φilog(xi) and a single constraint
∑n

i=1 aixi ≤ b,

is given by ( φi/ai
P

i
φi

) × b, ∀i. (Also, note that for the optimal

point,
∑n

i=1 aixi = b holds.)

Proof: Maximizing
∑n

i = 1 φilog(xi) is equivalent to min-

imizing
∑n

i = 1 −φilog(xi). This optimization problem is now

convex since the constraint is a linear inequality and the objec-

tive function is a sum of convex functions, and hence convex.

If f(x1, x2, ..., xn) =
∑n

i = 1 −φilog(xi) + λ(
∑n

i=1 aixi − b),
then by KKT conditions [18] for convex optimization prob-

lems, we have the following equations: ∂f
∂xi

= −φi

xi
+λai = 0,

∀i, and
∑n

i=1 aixi = b. Solving these equations, we have

a point ( (φi/ai)
P

i
φi

) ×b, ∀i, with λ =
P

i
φi

b . And by KKT

conditions, this point is the (global) optimal solution.

Lemma 4: An optimal solution for the problem in Figure 2

is given by x̄ such that there is a set S ⊆ N (S can possibly

be N or ∅), and the ith element of x̄ (the window for flow i)
is bi

ai
if i ∈ S, or is xshare

i , otherwise, where xshare
i values

are given by an optimal solution to the following problem:

maximize
∑

i/∈S φilog(xi) with respect to the constraint
∑

i/∈S
aixi ≤ (b −

∑

i∈S bi).
Proof: We will explain the proof in two parts.

Case 1:
∑n

i=1 bi ≤ b. In this case by Lemma 1, all xi

variables converge to bi

ai
, and hence S = N gives an optimal

solution.

Case 2:
∑n

i=1 bi > b.: The optimal point in this case

is either (sub-case 2.1) an optimal solution to the problem

maximize
∑

i∈N φi log(xi) subject to
∑

i∈N aixi ≤ b, 3 or

(sub-case 2.2) an optimal solution x̄ of the problem in Fig. 2

such that there is a set T 1 = {i|xi = bi

ai
} (T 1 ⊆ N ), and

∀i /∈ T 1, xi < bi

ai
.

If sub-case 2.1 is true then the lemma is true with S = ∅.

Now, suppose that sub-case 2.2 is true. Given x̄ and T 1,

3That is, a problem similar to our original problem but without the aixi <

bi remote bottleneck constraints.
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we can transform our problem to the following problem:

maximize
∑

i∈T 1 (φilog(bi/ai) +
∑

i/∈T 1 φilog(xi)) subject

to (
∑

i∈T 1 bi +
∑

i/∈T 1 aixi ≤ b), and aixi ≤ bi,∀i /∈ T 1.

This problem in turn can be transformed to the following

optimization problem: maximize
∑

i/∈T 1 φilog(xi) subject to
∑

i/∈T 1 aixi ≤ (b −
∑

i/∈T 1 bi), and aixi ≤ bi,∀i /∈ T 1. Let

b1 = (b −
∑

i/∈T 1 bi).
Since,

∑n
i=1 bi > b, we have

∑

i/∈T 1 bi > b1, and our new

transformed problem formulation is same as Case 2 above with

b replaced by b1, and N (set of all flows) replaced by N \T 1.

Now we iteratively continue applying the argument in Case

2, and in iteration j define set T j (similar to the definition of

set T 1 in the first iteration), until in some iteration p, either

sub-case 2.1 becomes true or sub-case 2.2 is true such that

∪j=p
j=1T

j = N . If sub-case 2.1 is true in iteration p then the

lemma is true lemma with S = ∪j=p−1
j=1 T j . Otherwise, if sub-

case 2.2 is true and ∪j=p
j=1T

j = N , then the optimal solution

is {b1/a1, . . . , bn/an}, and the lemma is true with S = N .

C. InSite Algorithm

We now give a description of the algorithm, which is

(re)executed in every epoch. In an epoch, InSite algorithm runs

in iterations, and it has two main tasks which constitute one

iteration (one iteration corresponds to one sub-epoch) of the

algorithm: (1) calculating window vector, (2) applying window

vector and tracking system feedback. This forms a membership

query, as described in Sec. III-A.

Step 1: First iteration (sub-epoch) of the epoch.

Apply window vector: Initially, all the remote bottleneck

capacities are unknown. Therefore, in the first iteration, we

solve the problem in Fig. 2 subject to only the shared link

constraint to calculate the window vector. For this initial step,

the algorithm uses Lemma 3 to find the optimal window

vector, x̄LOS which maximizes the objective. Subsequently,

as mentioned in III-A, we apply the window vector and track

the system feedback on the boundaries of sub-epochs in each

iteration.

Tracking system feedback: To compare window vector given

by x̄LOS
i with system feedback vector x̄sys, we record the

number of bytes sent, and calculate the achieved rate ARi at

the end of a sub-epoch as the total number of bytes sent in the

sub-epoch divided by the sub-epoch duration. The window size

xsys
i given by the system feedback is defined as the window

size that if applied to the flow would have ideally achieved the

rate ARi without any packet loss, i.e., xsys
i = ARi

ai
. (Recall

that ai = 1/RTTi.)

Binary search for window vector: If there exists a flow i
for which xsys

i ≤ xLOS
i , we put the flow i in set F . The

significance of set F is as follows. Based on the discussion in

Sec. III-A, if xsys
i ≤ xLOS

i for any flow i, it implies that set-

ting xi to xLOS
i results in reduced throughput. This reduction

in throughput will ideally occur when if aix
LOS
i > bi, i.e., we

have set the window size to a value that cannot be supported

by the unknown remote bottleneck link capacity bi for flow i.
Such a flow i is put in set F , and in subsequent iterations, the

algorithm searches for bi using a binary search routine over

the window size xi. It then takes at most log2m iterations of

main loop for all flows in F to converge to their respective bi

values The remaining flow are put a set H .

On the other hand, for all flows for which xsys
i = xLOS

i ,

the spare capacity bi of remote bottleneck link is at least

aix
LOS
i . (Note that xsys

i cannot exceed xLOS
i , since the

receiver window imposes an upper bound on the transmission

rate.) If for all flows, xsys
i = xLOS

i , then it follows that

aix
LOS
i ≤ bi for all i, and

∑n
i=1 bi ≥

∑n
i=1 aix

LOS
i = b. (The

last equality follows from Lemma 3.) Thus, from Lemma 2,

x̄LOS gives us an optimal solution.

Step 2: Main loop for subsequent iterations (sub-epochs).

Apply window vector: The window vector calculated for the

next iteration of the algorithm is denoted by xcurr. For flows

in F , xcurr is given by the binary search. Thus, we have

b′ = b−
∑

i∈f aixi remaining capacity for the shared link for

the flows not in F . Here, we use Lemma 2 and Lemma 3 to

compute xcurr to distribute the remaining capacity among the

flows that are not in F . The flows that are not in F are divided

into two sets, G and H , which we describe below.

Tracking system feedback: Once window vector xcurr is

applied to the system, we get a system feedback x̄sys. We

retrieve following information from the feedback. (1) We

decide the search-window of binary search for next xcurr
i

depending on the feedback, and (2) if for some flow j /∈ F ,

xcurr
j > xsys

j , we move flow j to set G. The significance of

set G is as follows. Before entering set G, for flow j, xcurr
j

was set to the value given by Lemma 3. However, from the

system feedback xcurr
j > xsys

j for flow j, we deduce that this

window allocation exceeds the unknown value
bj

aj
.

Binary search for window vector: Therefore, similar to flows

in set F , we also apply binary search for a flow in G in our

algorithm, so that the flow can converge to the window size
bj

aj
corresponding to its remote bottleneck capacity. We denote

this binary search vector of flows in set G by x̄temp. However,

we note that if the binary search value for a flow in G exceeds

its share xshare
j obtained from Lemma 3 using the remaining

capacity b′ in the shared link, the rates corresponding to the

window size allocation may violate the shared link constraint.

Hence for flows in set G, we set xcurr
j = min(xtemp

j , xshare
j )

for the next iteration.

The flows that are not in sets F and G at the end of the

iteration are included in set H . Now, because we allocate

min(xtemp
j , xshare

j ) as the window size for flows in G, and

if xtemp
j < xshare

j , there is further remaining capacity in the

shared link, which is given by
∑

j∈g(x
share
j − xtemp

j ). We

distribute this spare capacity in flows in H using Lemma 3.

We continue the step 3 of the algorithm until we reach an

allocation that is of the form given by Lemma 4, i.e., window

size of some flows j have converged to their
bj

aj
, and for the

other flows, the window sizes are given by an optimal solution

of a problem with only the shared link constraints (Lemma 3).

D. Algorithm Correctness and Efficiency

Theorem 1: The above algorithm terminates at an optimal

solution for the problem in Figure 2, and takes at most (n +
(2 × log2m)) iterations to converge.
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Proof: If solution in the step 1, x̄LOS , is accepted by

the system, then xsys = x̄LOS , aix
LOS
i ≤ bi for all i, and

therefore,
∑n

i=1 bi ≥
∑n

i=1 aix
LOS
i = b. Then by Lemma 2,

x̄LOS gives us an optimal solution.

In other case, suppose that the solution vector is x̄curr =
{x1, x2, xk, xk+1, ..., xn}. Consider the flows in set F . The

algorithm applies binary search on flows in set F , and each

flow i in F eventually converges to bi

ai
in at most log2m

iterations. Let b′ = b−
∑

i∈f bi. From the remaining flows, a

flow either moves to G or remains in H .

If b′ >
∑

j in {G, H } bj , all flows will eventually move to G

since in each iteration, at least one flow will have xshare
j >

bj

aj
.

If there are n flows, this will take n iterations in worst case.

As the flows move to G, the algorithm applies binary search

on flows in set G, and each flow j in F eventually converges

to bj in at most log2m iterations.

If b′ =
∑

j in {G, H } bj , a flow j either moves to set G or

remains in set H . In set G, the flow either converges to bj or is

set to xshare
j in log2m iterations, in the worst case. However,

by lemma 1, xshare
j =

bj

aj
. Thus we get { b1

a1

, b2
a2

, ..., bn

an
} which

maximizes the objective.

If b′ <
∑

j in {G, H } bj , then the flows in H will have

xj = xshare
j <

bj

aj
. Now, it takes at most n iterations for

a flow to move from set H to set G, and once a flow comes

to G, it takes log2m iterations, in worst case, to converge

converge to
bj

aj
or xshare

j (where xshare
j values are given by

an optimal solution of a problem with only the shared link

constraints (Lemma 3)). This results in a window vector of the

form required by Lemma 4 and hence, is an optimal solution.

Prior Work on Learning Unknown Polytope. In a related

work, [19] shows that an unknown upper convex k-gon can

be learnt exactly by asking at most O(k(nlog2n + log2m))
membership queries. For our problem, directly applying this

algorithm will take O(n(log2n + log2m)). In contrast, by

exploiting the simpler structure of the unknown polytope in

our problem, and by directly trying to converge on the optimal

point (instead of trying to discover the whole polytope), our

algorithm terminates in (n+2log2m) iterations. In [20], [21],

the authors discuss the expected cost of greedy active learning

algorithms, however they only provide upper bounds on the

learning cost.

IV. PERFORMANCE EVALUATION

In this section, we evaluate performance of InSite using ns-3

simulator.

Simulation parameters: In our evaluation, we use the

network topology shown in Fig. 4 with a set of video servers

along with a capacity on an egress link allocated to a tenant

in a datacenter. To simulate a number of video flows, we

use video traces of 14 unique video streams, from the ASU

video repository [22]. The average bit-rates of these videos

are shown in Tab. I.

We simulate 1000 flows using each of these traces multiple

times. We emulate the video servers and video clients using

TCP socket programs. The video server reads the trace file,

and sends the video fragment as specified in the trace. A video

Video No. 1 2 3 4 5 6 7

Avg. rate (kbps) 111 136 167 189 404 411 416

Video No. 8 9 10 11 12 13 14

Avg. rate (kbps) 558 570 638 715 769 840 1165

TABLE I
AVERAGE VIDEO RATES OF THE TRACES USED IN THE EVALUATION
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I
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Setting
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Core

Fig. 4. Simulation network topology

client timestamps each fragment when it is received, and re-

builds the trace at its end. In our simulation set-up, the capacity

of the links is set to 30% more of the aggregate expected

bandwidth. The 30% setting is based on the observation that a

TCP connection achieves about 75% of the available capacity.

This results in 620Mbps bandwidth allocation to a tenant. This

setup is similar to a datacenter configuration in [6] in terms

of number of flows, and egress bandwidth.

Comparison metrics: By post-processing a downloaded

video at the client, we calculate following metrics: (1) number

of playout stalls experienced by a video, (2) average buffer size

maintained by a video, and (3) the ratio of time for which

video is played to the time required to download the video

(referred henceforth as the p2d ratio).

Comparing InSite, TCP New Reno, E-WFQ: We compare

InSite with TCP New Reno and a variant of Weighted Fair

Queuing (WFQ) which we call epoch-by-epoch WFQ (E-

WFQ). Note that, InSite is built on the same TCP New reno.

WFQ is an effective and well-known queuing technique used

to impose desired rates on the network flows accordingly to the

weights of the flows. In E-WFQ, instead of static weights as in

WFQ, we dynamically calculate the weights at the boundary

of the epochs. The weight is same as the inverse of normalized

buffer size φi used in InSite (see Sec. II-A). Thus, in E-WFQ,

we have a queue for each video flow, and we calculate the flow

weight at the boundary of each epoch. However, note that,

in InSite, we modify the receiver windows at the sub-epoch

boundaries, and thus, InSite can adapt to varying network

characteristics within an epoch. Our objective to compare

InSite with E-WFQ, is to investigate this adaptiveness of InSite

and resulting efficiency.

For our evaluations, we use 1 second as the sub-epoch

duration and 10 seconds as the epoch duration. To have fair

comparison with E-WFQ, we varied epoch duration for E-

WFQ from 1 second to 20 seconds, and chose 5 seconds as

the epoch duration for E-WFQ for which it resulted in the

best QoE. For video processing, we assume an initial playout

buffer of 15 seconds. Although re-buffering strategy is player

dependent, we assume that, in case of a playout stall, the client

waits until buffer is full to play 5 seconds of video. We also

study the effect of client buffer size later in the evaluations.
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We run the simulations for 30 minutes. If a video completes

streaming within 30 minutes, we restart the video playback,

without disrupting the flow. We start flows uniformly randomly

within first 60 seconds of simulation.

A. Robustness of InSite to video and network characteristics

Experiment 1: We first examine the performance of InSite

when each flow experiences a different RTT. We assign propa-

gation delays to access links from the following set: {10 ms, 20

ms, 40 ms, 80 ms}. This introduces variations in the network

characteristics for different video flows. The unfairness of TCP

to connections with a large end-to-end delay is well-known,

and our objective, in setting different propagation delays, is to

investigate the fairness, and the effectiveness of rate control

by InSite.

Fig. 5 and 6 compare the playout stalls experienced by

each flow for TCP New Reno, E-WFQ, and InSite. To show

the results, we group the 14 video flows (in the order shown

in Tab. I) in 4 bins, where each bin corresponds to a given

propagation delay. Thus 14 video flows in Fig. 5 have prop-

agation delay of 10ms, and 14 video flows shown in Fig. 5

have propagation delay of 80ms. From Fig. 6, we observe

that both TCP New Reno and E-WFQ perform poorly (i.e.,

have a large number of stalls) when network characteristics are

unfavourable, i.e., when RTT of the flows are large. However,

we see that aggregate as well as per flow playout stalls are

drastically low in case of InSite, irrespective of RTTs of the

flows. In particular, flows with higher bit-rate requirements

suffer more in case of TCP New Reno and E-WFQ, whereas

InSite, due to its fair distribution of QoE, results in better

performance irrespective of the average video rates. Overall,

this result shows that InSite controls the rates of the flows as

per their playout requirements, while compensating the effects

of uneven RTTs and average bit-rate requirements.

Another key reason for better QoE of InSite is its adap-

tiveness to busty nature of the videos. In Fig. 8, we plot the

instantaneous rate required by video flow number 7, and the

instantaneous rates 4 achieved by InSite, TCP New Reno and

E-WFQ for the same flow. From the instantaneous rates in

Fig 8, we see the bursty nature of the video, and it also

shows that InSite reacts fast to the ups and downs in the

instantaneous rate of the video. This is because the increase or

decrease in the instantaneous rate reflects into corresponding

increase or decrease in the buffer size requirement, and using

the granularity of adaptive window search, InSite can quickly

adapt to the video playback rate. We observe that, E-WFQ

reacts slowly to cope with the busty nature of the video.

Algorithm convergence: From the start of the flow, it

takes InSite on an average 3 epochs to stabilize on a window

value. However, once receiver window becomes dominant, we

observe that 1 epoch (which has 10 search steps) is sufficient

to converge on the optimal window value.

B. Adaptiveness of InSite

We observed in experiment 1 that InSite adapts fast to im-

pose instantaneous video rates. In this experiment, to evaluate

4The instantaneous rate is calculating by dividing video into 2 second clips,
and computing the average rate required to stream a 2 second clip.

our choice of receiver-window based rate control, we take

a closer look at the speed with which InSite converges to

required additional bandwidth.

Experiment 2: To test the effectiveness of InSite in this

regard, we cap the bandwidth available on access links as

shown in Fig. 9 and plot the instantaneous rate achieved

by E-WFQ and InSite for two sample flows. As shown in

Fig. 9, InSite reacts fast to the change in bandwidth within

a few sub-epochs and reduces or increases the rate as per

the available network bandwidth. This is because, once the

receiver advertised window dominates the congestion window,

due to the self-clocking mechanism of TCP, the congestion

window is put in linear increase phase. Thus, while the actual

window size is dictated by the receiver window, the congestion

window rises to a high value. Now, even in case of a packet

loss, the value to which the congestion window drops is

almost always greater than the receiver window which InSite

intends to set. As a result, InSite is able to impose the desired

instantaneous rate on the video flows.

In comparison, E-WFQ reacts slowly to the available band-

width, and this is largely due to the sawtooth behavior, and

additive increase phase of the congestion control algorithm.

C. Buffer size requirement

Experiment 3: Until this point, we assumed playout buffer

size of 5 seconds. We now vary this period from 1 seconds

to 10 seconds, and plot the number of stalls for flow number

7 (one of the most bursty flows) in Fig. 7. In comparison to

TCP New Reno, the number of stalls are much lower and fall

rapidly in case of InSite, as we increase playout buffer value.

D. Effect of client buffering strategies

Experiment 4: We compare the playout stalls encountered

by InSite and E-WFQ for different video flows under different

buffering schemes. We use setting mentioned in experiment 1.

For this experiment, we consider three buffering strategies:

(1) waiting for a fixed amount of time (FT), (2) waiting for

a fixed amount of future playout bytes (FB), and (3) waiting

for a fixed number of future playout time (PT). Although, we

experiment with different values, for results in Fig. 10, we use

5 seconds for FT, 175 Kbytes for FB (considering mean frame

size of 1024 bytes, 33 frames per second, and frames worth of

5 seconds), and 5 seconds for PT. As shown in figure, InSite

encounters significantly lower playout stalls irrespective of the

client buffering strategy. This shows that InSite can work with

different video clients in current video eco-system.

V. PROTOTYPE

We implement a prototype of InSite as a user level module

running on a Linux router. We address several additional issues

that arise in a real setting, which we describe below.

Tackling congestion window mismatch. For the initial

period of a flow’s lifetime when the exponential increase phase

of the congestion window is active, the rate achieved by the

TCP flow may not be dominated by the receiver window.

To avoid such cases, and to increase the receiver window

according to the increase in congestion window, we add an

exploration phase in InSite, where InSite doubles the receiver
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Fig. 11. Evaluation Test-bed

window when it observes a steady increase in number of bytes

streamed for one or more sub-epochs.

Adaptive search. To make InSite agile when available

bandwidth is dynamically changing, we add an adaptive search

phase in InSite. When InSite observes a steady flow of bytes

for one or more sub-epochs, it increases the receiver window

by a multiplicative factor. In our experiments, we consider a

multiplicative factor of 2. This acts as bandwidth probing when

the available bandwidth increases over time. When available

bandwidth decreases, the binary search mechanism ensures

that InSite does not send more than the remote bottleneck.

Rewriting receiver advertised window. While rewriting

the receiver window, we check whether the window-scaling

option is enabled by tracking the SYN packet of each TCP

connection. If it is enabled, the window is appropriately ad-

justed. Further, after rewriting the receiver advertised window,

we adjust the TCP checksum as mentioned in [11].

Testbed and Analysis. We instantiate a testbed with three

Linux machines, each emulating the server, the client and

the router functionalities. The three machines have dual-core

2GHz processors running Linux 2.6.26 kernel, connected in

a LAN (see Fig. 11), with WAN conditions emulated using

DummyNet [23]. We impose static routes on client and server

machines so that the packets flow through the router machine

in both directions.

Figure 12 shows a screen shot of a demo video displaying

the effect of InSite compared to a system without InSite. The

Fig. 12. Screenshot of a demonstration.

graphs in the figure show the stalls perceived in real video

streaming. Without InSite, the number of stalls is higher.

Overhead-wise, InSite is light-weight in that it just requires

a reveiver window rewrite, and a checksum computation for

each packet. We believe that InSite is easy to instantiate

on multi-threaded wirespeed processors such as IBM’s Pow-

erEN [24], and hence will scale to multi-Gbps speeds easily.

VI. RELATED WORK

We classify related work into the following categories.

Video streaming over TCP: Dong et. al. [25] propose to

control the streaming rate close to the video playback rate,

and provides differential rates for different qualities of videos.

However, they do not consider the problem of unknown remote

bottleneck bandwidths and varying network conditions. In

comparison, InSite sends the video at the rate of the bottleneck

link, while taking into account the playback rate of the video.

The work in [26] concludes that TCP provides good streaming

performance when the achievable TCP throughput is roughly

twice the media bit-rate. With InSite, we show that it is
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possible to operate TCP at a rate marginally higher than the

media bit-rate, and still achieve good streaming performance.

The study in [27] analytically determines the proper receiver

buffer size to ensure a desired video quality for TCP streaming.

In comparison, our objective is to control TCP rate and main-

tain sufficient receiver buffer so as to make TCP streaming

tolerant to time-varying network and video characteristics.

Also, unlike our work, [27] does not capture the interactions

between different video flows. In another related work [28],

the authors develop a periodic broadcast protocol, that can be

optimized for a given population of clients with heterogeneous

reception bandwidths and quality-of-service requirements. Our

work differs by considering unicast connections, which is

mostly the case with current VoD systems.

Managing QoE: [14] proposes an on-line algorithm which

computes the percentage share of the bottleneck wireless

bandwidth based on the knowledge of the current buffered

data and the estimation of the future network conditions.

However, the algorithm is applicable to only a single flow

and the corresponding bottleneck link. [13] presents an epoch-

by-epoch framework to allocate wireless transmission slots to

streaming videos in a fair manner. Although [13] investigates

the fair allocation of bandwidth, it is not applicable to wide-

area TCP flows and unknown remote bottlenecks.

VII. DISCUSSION & CONCLUSION

In this work, we investigate the problem of managing the

QoE of Video-on-Demand (VoD) flows over TCP. We believe

that several interesting extensions are possible as future work.

For instance, primarily to maximize QoE, InSite currently

leads to short-term unfairness when some users access higher

bandwidth videos relative to others; InSite needs extensions

to incorporate a notion of long-term fairness. Since InSite’s

decisions are based on playout curves, InSite can get out of

sync with actual client-side playout when stalls happen, or

when a user performs rewind or fast-forward operation. For

stalls and rewind operations, InSite’s choices are conservative,

and hence do not hurt QoE. For fast-forward operations that

generate new content requests (e.g. HTTP Range requests)

from clients, InSite can use DPI and correct the mismatch.

Going forward, we plan to investigate InSite’s applicability

to adaptive streaming [29]; the primary idea of managing QoE

across TCP flows, by estimating the user’s buffer size, can

be easily extended to adaptive streaming. Secondly, a recent

study [30] shows that 40% of data transferred by Youtube

is unnecessary, since many users terminate videos early. This

is critical in cloud data centers, especially with pay-per-use

policies. Thus, it is important to study how to strike a balance

between QoE maintenance and bandwidth wastage. We believe

that InSite can be extended to achieve an appropriate balance

between these two goals.
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