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Abstract—IEEE 802.11 WiFi equipment based wireless mesh
networks have recently been proposed as an inexpensive approach
to connect far-flung rural areas. Such networks are built using
high-gain directional antennas that can establish long-distance
wireless point-to-point links. Some nodes in the network (called
gateway nodes) are directly connected to the wired internet, and
the remaining nodes connect to the gateway(s) using one or more
hops.

The dominant cost of constructing such a mesh network is
the cost of constructing antenna towers at nodes. The cost of
a tower depends on its height, which in turn depends on the
length of its links and the physical obstructions along those links.
We investigate the problem of selecting which links should be
established such that all nodes are connected, while the cost
of constructing the antenna towers required to establish the
selected links is minimized. We show that this problem is NP-
hard and that a better than O(log n) approximation cannot be
expected, where n is the number of vertices in the graph. We
then present the first algorithm in the literature, for this problem,
with provable performance bounds. More precisely, we present
a greedy algorithm that is an O(log n) approximation algorithm
for this problem. Finally, through simulations, we compare our
approximation algorithm with both the optimal solution, and a
naive heuristic.

I. INTRODUCTION

Rural areas (especially in developing regions) have popula-
tions with very low paying capacities. Hence, a major factor
in network deployment is the cost of the infrastructure and the
network equipment. In this context, we investigate efficient al-
gorithms for the minimum cost topology construction problem
in rural wireless mesh networks.

The cost of laying wire to rural areas is prohibitively ex-
pensive. Also, traditional wireless technologies such as cellular
data networks (e.g., EV-DO) and upcoming technologies like
IEEE 802.16 WiMAX have prohibitively expensive equipment
costs. As a result, there has been considerable recent inter-
est [2], [8], [16], [17] in the design of rural mesh networks
using IEEE 802.11 (WiFi) equipment. The cost of an 802.11
radio (∼$50/PCMCIA card) is orders of magnitude less than
that of cellular/WiMAX base stations. Thus, this approach is
an attractive option for building low cost networks.

Rural mesh networks have two key characteristics, 1) a fixed
topology (a node in this network is a village), and 2) long-
distance links between the nodes (about 7-8 kms). As depicted
in Fig. 1, a typical IEEE 802.11 based rural mesh network
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Fig. 1. A rural wireless mesh network.

consists of a cluster of villages connected with each other
through point-to-point wireless links. Some special nodes in
this mesh, called the gateway nodes, are connected to the wired
internet. Other mesh nodes connect to the gateway nodes (and
thus, to the rest of the internet) through one or more hops in
the mesh.

An essential requirement to establish long-distance links is
that line-of-sight is maintained between the radio antennas
at the end-points. To ensure line-of-sight across such long
distances (over obstacles such as trees, buildings and the
terrain), would require the antennas to be mounted on tall
towers. The required height of the towers depends both on the
length of the link, and the height of the obstructions along
the link. The cost of the tower depends on its height and
the type of material used. For relatively short heights (10-
20 meters) antenna masts are sufficient. For greater heights,
sturdier and much more expensive antenna towers are required.
Fig. 2 (taken from [4]) lists the cost of building towers and
masts for various heights.

To cover a distance of 7-8 kms requires the tower height of
at least one end-point to be around 30-45 meters [3]. The cost
of building such a tower ($4000 - $5000) is orders of magni-
tude greater than the cost of the communication equipment at
a node. Given this considerable difference between the cost of
towers and other equipment, the principal problem in building
rural mesh networks is to construct a topology with the lowest
total cost of antenna towers.

A basic requirement of any topology is that it should
connect all villages to the gateway node, i.e., we would like to
construct a minimum cost spanning subgraph. The cost of the
subgraph is the sum of the cost of antenna towers required to
establish all the links in the subgraph. In this work, we describe
the first algorithms for this topology construction problem with
provable performance bounds.

To state the problem more formally, consider a graph
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G = (V, E), where V is the set of vertices and E is the
set of edges. Let n = |V |. A height (assignment) function
h gives an assignment of tower height to every node of G.
(We only consider integer height assignments.) We say that
an edge (u, v) is covered by a height function if tower heights
h(u) at u and h(v) at v are sufficient to establish (or cover)
the edge between u and v. (In Section III, we will describe
the requirements on the tower heights to establish a link.) Let
COV ER(h) denote the set of edges that are covered by the
height function h.

Given a tower height, a cost function, denoted by c, gives
the cost of building a tower of that height. The total cost
of a height function h is

∑
v∈V c(h(v)). Among all height

functions h such that COV ER(h) is a connected spanning
subgraph, our goal is to find the height function with the
minimum total cost.

This is computationally a very expensive problem. It in-
volves searching over all possible connected spanning sub-
graphs, and over all possible heights of the towers on each
node. A naive (brute force search) approach would have a
complexity of O(hn

max), where hmax is the maximum possible
height of a tower. Clearly, for any real network (with around
50 nodes) computing the optimal solution is not possible -
even if it has to be done only once. We have also modeled the
problem as an ILP and, as expected, found that the LP solver
could return an optimal solution only for small-sized graphs
(at most 11 nodes).

In this paper, we make several important contributions
towards developing efficient algorithms to solve this problem.
First, we describe the requirements to establish a point-to-point
802.11 link between two nodes of a given network graph. We
then give the formal definition of the Topology Construction
problem (denote by TC). We prove the problem to be NP-
hard by a reduction from the set-cover problem. We also show
that the reduction is gap-preserving, and hence, one cannot
realistically expect a better than O(log n) approximation. We
then describe a greedy algorithm that achieves this O(log n)
lower bound up to a constant factor. Finally, through extensive
simulations, we compare our approximation algorithm with
both the optimal solution, and a naive heuristic. In our sim-
ulations, our algorithm provides improvements of upto 225%
over the naive approach.
Organization. The paper is organized as follows. In section II,
we discuss related work on topology construction in wireless
networks. In section III, we describe how to model antenna
heights and costs and give a formal description of the Topology

Construction problem. (We also show in the appendix that the
TC problem is NP-Hard and has a logarithmic hardness of
approximation.) We then present our approximation algorithm
for solving this problem in section IV. In section V, we
present results from numerical simulations that compare our
approximation algorithm with the optimal solution and a naive
heuristic. Finally, we conclude with some directions for future
work in section VI.

II. RELATED WORK

The Digital Gangetic Plains (DGP) project [6] in and around
Kanpur, India, is an operational example of the type of rural
mesh network that motivates this work. Nodes communicate
in DGP using long-distance point-to-point links that are estab-
lished using directional antennas.

Cellular networks require efficient schemes to place towers
to cover large areas while minimizing costs. However the prob-
lem in cellular network deployment is to place the minimum
number of towers to cover the maximum possible area. In
our problem the location of the towers is fixed (villages), and
the goal is instead to select a set of links and tower height
assignments that will cover the links with minimum costs.

We now discuss some related work around topology con-
struction in a setting similar to ours - wireless mesh networks.

Topology Construction Problem. There has been some recent
work on constructing low-cost wireless mesh networks [19],
[8]. The authors in [19] discuss solutions to the topology
construction problem in the same context as ours−rural mesh
networks where the costs are dominated by the height of
antenna towers. They describe a two-pass heuristic for this
problem. In the first pass, a spanning tree is determined
based on criteria such as a bound on the maximum degree,
depth of the tree etc. In the second pass, the optimal height
assignment to cover all the edges in the selected spanning tree
is determined by solving a linear program.

We improve on [19] in three ways. Firstly, no performance
bounds are presented for the heuristic in [19] while our
algorithm gives a worst-case logarithmic bound. Secondly,
the heuristic considers only a single obstruction between two
nodes, while our approach can handle any number of obstruc-
tions. Finally, while the heuristic is restricted to using a piece-
wise linear cost function for the antenna towers, our algorithms
can handle a much more general cost function (satisfying some
simple properties discussed in the next section).

The authors in [8] also discuss a geometric version of our
problem but do not provide any algorithm for solving it. So,
to the best of our knowledge, we present the first algorithms
for solving the topology construction problem with provable
guarantees on the approximation factor.

Power Optimization in Wireless Multi-Hop Networks.
A related problem addressed in the literature is that of
power optimal topology construction in wireless multi-hop
networks [5], [7], [9], [10], [12], [14], [15]. In this class
of problems, the transmit power on a node is determined by
the longest link incident on the node. In general, the aim is
to construct topologies which minimize the maximum power
consumption of radio transmitters on network nodes, while
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Fig. 3. An example of MST being Ω(n)-factor worse than the optimal

ensuring a desired level of connectivity/fault-tolerance. Similar
to our problem, the cost incurred at the node can be amortized
over all the links incident on it.

This problem is also NP-hard, but admits constant factor
approximation algorithms for selecting k-connected networks,
for small values of k. For k = 1, [12] and [7] give ap-
proximation algorithms with an approximation factor of 2
and 1.69 respectively. For arbitrary k, the authors in [9]
give O(k)-approximation algorithms for both vertex and edge
connectivity. These approximation factors were improved to
O(log4 n) and O(

√
n) for the vertex and edge connected cases

respectively in [10]. The main observation on which these
algorithms are based is that the minimum-weight spanning
tree (MST), or an approximation to a minimum-weight k-
connected subgraph (when k > 1), gives a good approximation
to the power-optimal solution. Unfortunately, fixing an MST
as the underlying topology does not work for our problem, as
we show in the following example.

Consider the network graph G in Fig. 3, and assume that
the cost function is the identity function. Suppose that in
the middle of every edge e in G there is an obstruction of
height h(e). Then to cover the edge e, the tower heights at its
endpoints should be sufficient to clear the obstruction in the
middle. As we will explain in the next section, this requires
that the sum of the tower heights at the two endpoints of e
should be at least 2h(e). Thus, a natural candidate for the
weight w(e) is 2h(e). Suppose these edge weights for G are
the ones depicted in Fig. 3.

Now with the above edge weights, the path formed by all
the edges with weight 1 is an MST of G. The minimum cost
of constructing towers to cover all the edges of this MST is
roughly n/2, e.g., by constructing a tower of height 1 on every
other node on this path. However, it is easy to see that a tower
of height 2 at node 1 is sufficient to cover another spanning
tree−the star graph centered at node 1−which is not an MST.
Thus in this case, selecting an MST as the set of edges to
be covered leads to a cost that is Ω(n) times worse than the
optimal cost. In contrast, in the worst case our algorithm is
only O(log n) worse than the optimal.

Another variant of the power-optimal network construc-
tion problem seeks to minimize power consumption while
ensuring the desired directed connectivity in the network.
The 1-connected version of this problem has a logarithmic
hardness [15] (while, as we pointed out earlier, the undirected
version admits a constant factor approximation algorithm).
However, the techniques in [15] are not immediately appli-
cable to our problem for the following two reasons. Firstly,
in [15] the input to the problem specifies a weight for each
edge. In our problem we may be given multiple obstructions
for each edge, which cannot be abstracted by a single fixed
edge weight (unlike the simple MST example above, which
has just 1 obstruction per edge). Secondly, in [15] a directed
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Fig. 4. Computing the height of towers at the end-points of a link

edge is covered only if the power at the source node of the
edge is more than the weight of the edge. However in our
problem, whether an undirected edge is covered depends on
the obstacles on that edge, and the endpoints of the edge
can “cooperatively” set their tower heights to cover the edge.
For instance, as in the MST example above, if there is an
obstruction of height h(e) in the middle of an edge e, then to
cover the edge we need that the sum of the heights at the two
endpoints is at least 2h(e).

Greedy Algorithms. Our topology construction algorithm
is a greedy algorithm. Greedy algorithms have been devel-
oped for some network construction problems−most notably
by [13] for the node-weighted Steiner tree problem. Their
algorithms proceed by greedily adding subgraph structures
called spiders to the set of selected edges. However, while
node weights are fixed in their case, we need to also find the
correct tower heights (which correspond to weights) at the
nodes.

III. NETWORK MODEL AND PROBLEM STATEMENT

In this section we will describe the requirements on the
height of the towers at the end-points to establish a link
between any two nodes in the network graph. We also discuss
the cost function that we use in this paper. We then give a
formal problem statement for this work and show that the
problem is NP-Hard.

A. Computing tower heights at the end-points of a link
Consider two nodes, u and v that are separated by a distance

luv . The edge (u, v) is considered to be covered if an 802.11
based point-to-point communication link can be established
between u and v. Assume that the transmit powers and the
gains of the antennas at both ends are sufficient to overcome
the free-space path loss between the two points. The first
basic requirement to cover the edge between u and v is that
there be a clear visual line-of-sight between the antennas at
the end-points (as shown in Fig. 4a). In other words, the line
joining the antennas mounted on the towers should clear any
obstructions along the path. Secondly, it is also required that
RF line-of-sight is maintained between the two points. This is
determined by an elliptical area between u and v termed the
first Fresnel zone. To establish RF line-of-sight, a significant
area of the Fresnel zone (> 60% of the radius of the Fresnel
zone at the location of the obstruction [1]) should also clear
all obstructions between u and v. However, this can be simply



4

modeled by extending the height of the obstruction to include
the radius of the Fresnel zone that has to be in the clear.1

In reality, there can be multiple obstructions between u
and v. As in Figure 4b, consider multiple obstructions,
O1, O2, . . . , Ok between u and v. Now, let h(u) and h(v)
represent the tower heights at the nodes of u and v. Covering
edge (u, v) requires a visual and RF line-of-sight connection
between the towers at its two terminal nodes. This would imply
that the straight line fuv joining the top of the two towers (of
heights h(u) at u and h(v) at v) should clear every obstruction
in (u, v).

Hence, we also note that given a particular pair of tower
heights at u and v, deciding whether these heights covers edge
(u, v) can be done in time linear in the number of obstructions
on that edge.2

B. Modeling tower costs
An important component in this problem is the nature of the

cost function that maps tower heights to the cost of building
the tower. As shown in Fig. 2, in our setting, there are two
types of antenna towers that are used. For heights less than 20
meters, one can use the cheaper masts. For greater heights, one
has to use the more expensive steel towers. Further, there is an
order of magnitude difference between the cost of the cheaper
masts and that of the steel towers. Thus, roughly speaking, the
cost function is constant as long as the cheaper masts can be
used and becomes linear in height once the steel towers are
needed, with a jump in cost when we switch from masts to
steel towers. Let us denote the height at which the material
of the tower has to be switched as hmin. Further, there is
a physical restriction on the maximum possible height of a
tower, denoted by hmax. Thus, the cost function c can be
formally defined as

c(h) =
{

K if 0 ≤ h ≤ hmin

Ah + B if hmin < h ≤ hmax

where A, B and K are constants and Ahmin + B >> K.
Although, in practice, the cost function can be modeled

as discussed above, our algorithm works with a much more
general cost functions. Specifically, we only require the cost
function c to satisfy the following two natural properties C1
and C2.

C1 Given the tower costs at two neighboring nodes u and
v, it can be determined (in polynomial time) whether the
corresponding tower heights cover the edge (u, v). This
simply requires that the corresponding tower height can
be computed (in polynomial time) given the tower cost.3

1Consider an obstruction O of height ho at a distance d1 from u and d2
from v. The radius of the first Fresnel zone at this point is defined as rf =√

λd1d2
(d1+d2)

, where λ is the wavelength of an 802.11b signal. To establish RF
line-of-sight, it is required that at least 60% of rf be clear of any obstacles
at O [1]. In other words, the line joining the antennas at u and v should be
at a height > ho + 0.6rf at point O.

2In practice, links are likely to have a large number of obstructions, which
would make this task time-consuming. To overcome this problem, one would
only consider those obstructions which are above some threshold height with
the assumption that clearing these obstructions would ensure that all other
obstructions are also cleared.

3If the tower cost remains constant over a range of heights, then we use
the maximum height in that range.

As mentioned earlier, determining whether the height of
the towers is sufficient to cover an edge can be done in
polynomial time.

C2 The cost function is monotonically increasing with height,
i.e., h1 ≥ h2 ⇒ c(h1) ≥ c(h2) for any values of h1 and
h2.

It is easy to verify that the cost function c defined earlier in this
section satisfies both of the above properties. In the remainder
of this paper, when the height function h is unambiguous, we
will often denote the cost of the tower at a node v as c(v)
rather than c(h(v)).

C. Problem statement and Hardness

Before we formally define the Topology Construction (TC)
problem, we need a few more definitions. A height function
h is said to be valid if h(v) ≤ hmax, for each vertex v. Now,
for any height function h, let COV ER(h) be the set of edges
that are covered by h.

Input. An undirected graph G = (V, E), with obstruction
locations and heights on each edge e ∈ E and a cost function
c : R+ → R+ which satisfies the properties C1 and C2
mentioned above.

Output. A valid height function h such that the subgraph
induced by edges in COV ER(h) is a connected, span-
ning subgraph4 of G such that the total cost of the towers∑

v∈V c(v) is minimized.
We prove the following theorem in the appendix that shows

that the TC problem is NP-hard, and coupled with results in
[18], it also implies that it is NP-hard to approximate the
TC problem to a factor which is asymptotically better than
O(log n).

Theorem 1: There is a gap-preserving reduction from the
minimum set cover problem to the TC problem.

IV. APPROXIMATION ALGORITHM

We give a greedy algorithm TC-ALGO for the TC prob-
lem and show that it achieves an approximation ratio of
4(1 + log n). Since achieving an approximation ratio that is
better than O(log n) is NP-hard, our algorithm is optimal
(subject to constant factors). In the next two subsections, we
first describe the algorithm, and then give an analysis for
bounding the approximation factor.

We need a few more definitions before describing our
algorithm. Given a set of edges E′ ⊆ E, we define the number
of components of E′ as the number of components in the graph
(V, E′).5 For any height function h, COMP (h) denotes the
number of components of COV ER(h).

A. Description

TC-ALGO is presented in Algorithm 1. It uses a subroutine
STAR-TC-ALGO which is presented in Algorithm 2. In TC-
ALGO, the height function is initialized to 0 at all nodes. Thus
at the beginning, COV ER(h) = ∅ and COMP (h) = n. Our
goal is to obtain a least cost valid height function h such that

4S = (VS , ES) is a spanning subgraph of G = (V, E) if (1) VS = V
and (2) ES ⊆ E. A graph is said to be connected if any pair of nodes have
a path connecting them.

5A component of a graph is a maximal connected subgraph.
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COMP (h) = 1, i.e., h covers a connected spanning subgraph
of G.

TC-ALGO proceeds in phases. In each phase, we select a
height increment incrbest for all nodes6 which is then added to
the current height function. This is repeated until we obtain a
height function h which covers a connected spanning subgraph
(i.e., COMP (h) = 1).

We now describe how incrbest is selected in a phase. Every
height increment has a cost associated with it, namely, the
increase in the total cost of towers because of applying the
increment. Roughly speaking, in a phase, we would like to
select a height increment that requires minimum increase in
cost for the maximum reduction in the number of components.
We call this metric, the cost-to-benefit ratio. However, finding
the best such height increment over the whole graph is a
difficult problem. We therefore impose the following two
constraints:

1. Increments are local. Any height increment incr done in
a phase is such that, there is a node v such that incr only
increases heights at v and its neighbors. Node v is called
the central node of incr. This restriction on height increment
helps us to localize the search for the best height increment.

2. Only edges incident on the central node add to benefit.
Let h be the height function at the beginning of a phase. In
any height increment incr, say with central node v, some new
edges are covered, say set Ev . Let E′

v be the subset of Ev that
contains only the edges that are incident on v.7 Then the benefit
of incr in this phase is the difference between the number
of components of COV ER(h) and COV ER(h)

⋃
E′

v . This
definition of benefit helps us to simplify the analysis of the
approximation guarantee. (In the rest of this section, all height
increments are local and benefit is always calculated as defined
above.)

Now in each phase, we want to select the height increment
incrbest with the best cost-to-benefit ratio. To this end, in TC-
ALGO we search over all nodes (line 6) to find a possible
central node for the best height increment. Furthermore, for
each candidate v for the central node, we do a doubling search
over possible cost increments corresponding to the height
increments at v. The values of resulting heights at v that are
considered are the following: (1) the current height at v, h(v),
for which the cost increment is 0, (2) the maximum possible
height, hmax, for which the cost increment is maximum, and
(3) heights that are less than hmax and correspond to cost
increments {1, 2, 4, 8, . . .}. (This set of heights are denoted
by H(v) in line 7.)

But, even though we search over every candidate central
node v and its possible height increments, we still need to
search over the possible height increments at neighbors of v.
Thus, we are left with a subproblem, that we call STAR-TC:
given the current height function h, a central node v and its
height increment δ, find a height increment at neighbors of v
that has the lowest cost-to-benefit ratio.

Algorithm 2 gives our algorithm STAR-TC-ALGO for the
STAR-TC problem. We first note that increasing the height at

6Depending on the context, a height increment refers to the increase in
tower height at a node, or at a set of nodes.

7Ev may contain an edge that is not incident on v but is incident on a
neighbor u of v−this edge gets covered when the height at u is increased.

nodes that are in the same component as v does not reduce the
number of components. Thus, we restrict the height increments
only to those neighbors of v that are in a component different
from v in COV ER(h). We call this set of nodes nbr. Now
for every node u in nbr we find the smallest height increment
h+(u) at u such that the edge (u, v) is covered. (This can be
done using a binary search over the possible height increments
at u, and using property C1 from Section III-B.) Note that as
the cost function is monotonic, height increment h+(u) also
gives the lowest tower cost increment c+(u) at u to cover
the edge (u, v). Now, we list the nodes in nbr in increasing
order of their c+ values. We call this list L. Next we observe
that, once an edge from v to a node in some component
is covered, covering an edge from v to another node in the
same component does not reduce the number of components.
Thus, for nodes in the same component, we keep the lowest
incremental cost (c+) node in L, and remove all other nodes
from L.

We now consider the following |L| height increments. Each
increment increases heights only at v and the nodes that form a
prefix of L. More precisely, the ith height increment increases
the height of v by δ, heights of the first i nodes in L by
their respective h+(), and all other nodes by 0. Note that the
benefit of such an increment is exactly k. Then, among all
these height increments, we return the one that has the lowest
cost-to-benefit ratio.

Algorithm 1 TC-ALGO(G, c)
1: Input: graph G = (V, E), cost function c
2: Output: height function h

3: for each v ∈ V do h(v) := 0;
4: while COMP (h) > 1 do
5: rbest := ∞;
6: for each v ∈ V do
7: H(v) := {h(v), hmax} ∪

{c−1(c(h(v)) + 2i) : c(h(v)) + 2i < c(hmax) and i =
0, 1, 2, 3, . . .}

8: for α ∈ H(v) do
9: (rtmp, incrtmp) :=

STAR-TC-ALGO(G, h, v, α− h(v));
10: if rtmp < rbest then
11: rbest := rtmp; incrbest := incrtmp;
12: for each v ∈ V do h(v) := h(v) + incrbest(v);
13: return h;

B. Analysis

In this section we will prove that TC-ALGO has an approx-
imation factor of 4(1 + log n). We start with the analysis of
STAR-TC-ALGO which we show to be an optimal algorithm
for the STAR-TC problem. Then we show that a phase of TC-
ALGO chooses a height increment such that the corresponding
cost increment is within twice of the best height increment
at that phase. Finally, we use these two results to show the
approximation factor of the entire TC-ALGO.

1) STAR-TC-ALGO: We now show that STAR-TC-
ALGO finds an optimal solution for the STAR-TC problem.
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Algorithm 2 STAR-TC-ALGO(G, h, v, δ)
1: Input: graph G = (V, E), height function h, node v, height

increment δ at v
2: Output: cost-to-benefit ratio r′best, height increment function

incr

3: c+(v) := c(h(v) + δ)− c(h(v));
4: nbr := set of neighbors of v that are not in the same component

as v in COV ER(h);
5: for each node u ∈ nbr do
6: h+(u) := smallest β s.t. heights (h(v)+δ) at v and (h(u)+β)

at u cover edge (u, v);
7: c+(u) := c(h(u) + h+(u))− c(h(u));
8: L := list of nodes in nbr in ascending order of c+;
9: for each component D in COV ER(h) do

10: remove from L all nodes u ∈ D except the one with lowest
c+;

11: r′best := ∞; kbest := 0;
12: for 1 ≤ k ≤ |L| do
13: r′tmp := (c+(v) +

∑
1≤i≤k c+(L[i]))/k;

14: if r′tmp < r′best then
15: kbest := k; r′best := r′tmp;
16: for each u ∈ V do incr(u) := 0;
17: for each u ∈ L[1 . . . kbest] do incr(u) := h+(u);
18: incr(v) := δ;
19: return (r′best, incr);

Lemma 2: STAR-TC-ALGO returns an optimal solution to
the STAR-TC problem.

Proof: Consider the optimal height increment incropt for
an instance of the STAR-TC problem (G,h, v, δ). We will do
two transformations to incropt to obtain a height increment
incralgo that is considered by STAR-TC-ALGO. During both
transformations, the benefit remains the same and the cost
increment either remains the same or decreases.

Since all allowed height increments are local, incropt in-
creases the height of v and some of its neighbors. We modify
incropt to obtain another height increment incr′opt, as follows
(all components are components of COV ER(h)):

• For every node (except v) in the component containing v,
change the height increment to 0. Node v retains its height
increment δ.

• Consider each component D which becomes connected to
the component containing v, due to the height increment
incropt. Among nodes in D, select a node u such that
(u, v) can be covered with the lowest increase in cost at
u. Accordingly, set the height increment at u. For all other
nodes in D set the height increment to 0. Let J be the set
of selected nodes.

• Consider each component D which does not become con-
nected to the component connecting v, due to the height
increment incropt. Set the height increment at all nodes in
D to 0.

Note that incropt and incr′opt both have the same benefit, |J |.
It is also easy to see that the cost of incr′opt is at most that
of incropt. Therefore, as incropt is optimal, incr′opt is also
optimal.

It follows from STAR-TC-ALGO that J is a subset of the

list L at the beginning of the for loop in line 12.8 Also, for
any node u ∈ J , incr′opt(u) is equal to the h+(u) selected
in the algorithm. Now consider a height increment incralgo

where the first |J | elements of L have height increment given
by h+, v has increment δ, and all other nodes have increment
0. Since L is arranged in ascending order of additional cost,
and J is a subset of L, cost of incr′opt is greater than or equal
to the cost of incralgo. Clearly, the benefit of incralgo is |J |.
Thus incralgo also has the optimal cost-to-benefit ratio. As
incralgo is one of the height increments considered by the
algorithm while selecting the prefix of L with the lowest cost-
to-benefit ratio (line 13), the height increment returned by the
algorithm is optimal.

2) A phase of TC-ALGO: The lemma below shows that
given a height function, a single phase of TC-ALGO finds
a 2-approximation of the optimal height increment. Roughly
speaking, the 2-approximation in a phase results from the
doubling search over the cost of height increments at a node.

Lemma 3: Let h be the height function at the beginning
of a phase in TC-ALGO. Then the cost-to-benefit ratio of the
height increment chosen in that phase of TC-ALGO is at most
twice the cost-to-benefit ratio of any height increment from h.

Proof: Let h+
opt be a height increment that has the lowest

cost-to-benefit ratio starting from h. Suppose h+
opt is centered

at node v, and let c+
opt be the corresponding cost increment.

Consider the set of all cost increments corresponding to
heights of v in H(v), namely {0, c(hmax) − c(h(v))} ∪
{1, 2, 4, . . .}. Since 0 ≤ c+

opt(v) ≤ c(hmax) − c(h(v)), there
is one cost increment γ in this cost increment set such that
c+
opt(v) ≤ γ ≤ 2c+

opt(v).
Now consider a height increment h+

tmp such that the height
increment at all nodes u 6= v is given by h+

opt, and at node v
is c−1(c(h(v))+γ)−h(v). Clearly, as γ ≤ 2c+

opt(v), total cost
increment due to h+

tmp is at most twice that of h+
opt. Notice

that, c(h(v)) + γ ≥ c(h(v)) + c+
opt(v) = c(h(v) + h+

opt(v)).
Therefore, as the cost function is monotonically increasing,
h+

tmp(v) ≥ h+
opt(v). Thus at all nodes h+

tmp ≥ h+
opt, and hence,

the benefit of h+
tmp is greater than or equal to h+

opt. It follows
that the cost-to-benefit ratio of h+

tmp is at most twice that of
the optimal.

By construction, the height increment at v due to h+
tmp (the

height increment corresponding to the cost increment γ) is
one of the height increments at v considered in TC-ALGO.
Since STAR-TC-ALGO is an optimal algorithm for the STAR-
TC problem, the cost-to-benefit ratio of the height increment
selected by TC-ALGO in this phase is less than or equal to
that of h+

tmp, which is within twice of the optimal.

3) TC-ALGO: Suppose the input graph G = (V,E) for the
TC problem has n nodes and m edges. Let OPT be the total
cost of the optimal height function. We now show that TC-
ALGO has an approximation factor of 4(1 + log n).

8Here we are assuming that any tie between two nodes in the same
component, for the node with the lowest cost increment in that component, is
resolved in the same way in STAR-TC-ALGO and incr′opt, e.g., by choosing
the node with the smallest identifier.
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Lemma 4: Consider an intermediate phase in an execution
of TC-ALGO. Suppose the height function at the beginning of
this phase is hβ , and let x be COMP (hβ) − 1. Then, the
height increment selected by this phase has a cost-to-benefit
ratio of at most 4OPT/x.

Proof: Let us denote the optimal height function as hopt.
Then, COV ER(hopt) is the set of edges in E which are
covered by the optimal height function and COMP (hopt) =
1. Now, let Gβ = (V, COV ER(hβ)) be the graph formed
by the edges covered by hβ . Since COMP (hβ) = x + 1,
Gβ has x + 1 components, which we denote by Dβ =
{D1

β , D2
β , . . . , Dx+1

β }. Now, let Eopt
β be the set of edges

in COV ER(hopt) which connect different components in
Dβ . Formally, Eopt

β = {(u, v) ∈ COV ER(hopt) | u ∈
Di

β , v ∈ Dj
β , i 6= j}. Since COV ER(hopt) has only a

single component, Eopt
β connects all components in Dβ . Let

T opt
β be an acyclic subset of Eopt

β which connects all the
components in Dβ . Clearly, COV ER(hβ)∪T opt

β connects all
the vertices in V . (COV ER(hβ) connects vertices internally
in each component of Dβ and T opt

β connects all components
of Dβ .) For an example, refer to Figure 5(a).
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Fig. 5. (a) In this example, dotted edges are in COV ER(hopt) and
solid edges in COV ER(hβ), D1

β = {1, 2, 5}, D2
β = {3}, D3

β = {4},
Eopt

β = {(2, 3), (3, 4), (4, 5)} and T opt
β is any one of {(2, 3), (3, 4)},

{(3, 4), (4, 5)} and {(4, 5), (2, 3)}. (b) In this example, dotted edges are
in T opt

β and solid edges in COV ER(hβ), Dr
β = {1, 2}, h+

1 increases the
heights of 1 and 6, h+

2 of 2, 3 and 4, h+
3 of 3 alone and so on.

Now consider the tree T formed by the edges in T opt
β on

the vertex sets in Dβ . We set an arbitrary vertex set Dr
β as

the root of the tree T . For each node v, let d(v) denote the
depth in tree T , of the vertex set Dj

β that contains v.
For each node vi ∈ V , consider a height increment h+

i
centered at vi, applied to hβ . (Note that each of these n
increments are directly applied to hβ . They are not applied
one after the other.) The height increment h+

i : (1) increases the
height of vi to max(hopt(vi), hβ(vi)), (2) for every neighbor
vj of vi such that d(vj) = d(vi)+1, increases the height of vj

to max(hopt(vj), hβ(vj)), and (3) does not increase the height
of any other node. For an example, refer to Figure 5(b).

Let the benefit of height increment h+
i be denoted by bi.

Also, let the cost of h+
i be denoted by ci. We now prove the

following two lemmas about these above n height increments,

Lemma 5: The sum of benefits
∑n

i=1 bi ≥ x.
Proof: Consider any edge e ∈ T opt

β . Let e = (vi, vj).
Without loss of generality, we assume that d(vj) = d(vi) + 1.

Since T opt
β ⊆ COV ER(hopt), e ∈ COV ER(hopt); therefore,

height of hopt(vi) at vi and height of hopt(vj) at vj , cover e.
Since the height increment h+

i increases heights of vi and vj

to at least their optimal values, the height increment h+
i covers

edge e. Thus, each edge in T opt
β is covered by some height

increment in {h+
1 , . . . , h+

n }. Thus, the sum of the benefits of all
these height increments is greater than or equal to the number
of edges in T opt

β . Now T opt
β is a tree on x+1 vertices (where

each vertex corresponds to a component of COV ER(hβ)),
and therefore has x edges. Thus,

∑n
i=1 bi ≥ x.

Lemma 6: The sum of the costs
∑n

i=1 ci ≤ 2 OPT , where
OPT is the total cost of the optimal solution.

Proof: To prove this lemma, we calculate the number of
different height increments in {h+

1 , . . . , h+
n }, where the height

of a particular node vj changes. There are possibly two height
increments where the height of a node vj changes: (1) the
height increment h+

j where vj is the central node, and (2) if
there is a node vi such that the edge (vi, vj) ∈ T opt

β and
d(vj) = d(vi) + 1, then in the height increment h+

i . It is
important to note that, since the component containing vj can
have at most one parent in the tree T opt

β , there is at most one
node which satisfies criterion (2) for vj . Thus, each vertex
undergoes a change in height in at most two of the height
increments {h+

1 , . . . , h+
n }.

Now observe that in any of the n height increments that
we consider, the cost increment corresponding to the height
increment at node vj is either 0 (when its height remains
hβ(j)) or c(hopt(vj))− c(hβ(vj)) (when, hopt(vj) > hβ(vj),
and the height at vj is changed to hopt(vj)). Thus the cost
increment at a node due to a single height increment is at
most c(hopt(vj)). Since, each vertex undergoes a change in
height in at most two of the height increments, the sum
of the cost of all n height increments

∑n
i=1 ci is at most

2
∑n

i=1 c(hopt(vj)) = 2OPT .

We now need the following property. (The proof is omitted
due to space constraints.)

Lemma 7: If p1, p2, . . . , pk and q1, q2, . . . , qk are two se-
quences of k positive real numbers, then mini

(
pi

qi

)
≤

∑k
i=1 pi∑k
i=1 qi

.

Proof of Lemma 4 (continued). Using the above lemma, we
see that mini

(
ci

bi

)
≤

∑n
i=1 ci∑n
i=1 bi

. Now, since
∑n

i=1 ci ≤ 2 OPT

and
∑n

i=1 bi ≥ x, mini

(
ci

bi

)
≤ 2 OPT

x . In other words, the
minimum cost-to-benefit ratio among the n height increments
is at most 2 OPT/x. Now, note that each of these n incre-
ments is a possible height increment for this phase of TC-
ALGO. Thus, from Lemma 3, the minimum cost-to-benefit
ratio for height increment selected by TC-ALGO in this phase
is at most 4 OPT/x.

As an easy consequence of Lemma 4, we can prove the
bound on approximation factor of TC-ALGO.
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Theorem 8: The total cost of the height function returned
by the greedy algorithm is within a factor of 4(1 + log n) of
the total cost (OPT ) of the optimal height function.

Proof: Consider a phase where the number of components
in the set of covered edges decrease from x + 1 to x − b +
1. The cost-to-benefit ratio for this phase is ≤ 4 OPT/x,
from Lemma 4. From our definition of benefit, the benefit
of the height increment chosen in this phase is at most b.
Thus the cost increment in this phase is ≤ b × 4 OPT/x ≤∑b−1

i=0 4 OPT/(x− i). Summing over all the phases, the total
cost of the solution that is returned by the greedy algorithm
is ≤ ∑n

i=1 4 OPT/i ≤ 4(1 + log n)OPT .

V. NUMERICAL SIMULATIONS

In this section, we carry out extensive numerical simulations
to evaluate our approximation algorithm with the optimal
solution and also a naive heuristic. For our simulations, we
generate synthetic topologies that aim to match the geo-
graphical structure of village clusters. We now describe our
simulation setup in more detail.
Generating synthetic graph topologies. We consider a circu-
lar plane with a radius of 25Kms. We place nodes at random
locations on this plane. We consider a link (u, v) between any
two nodes, u and v, and for these simulations, assume just one
obstacle, ouv , located on the middle of this link. The height
of the obstruction (ho) is selected randomly with a maximum
value of 20 meters - the typical height of trees and small
houses in a rural setting. We then assign a weight wuv , to
the link equal to twice the effective height of the obstruction
on this link.9 As described earlier, the effective height of an
obstruction, is the sum of the physical height (ho) and 60% of
rf , the radius of the fresnel zone (computed using the formula
from Section III).
Naive heuristic. In order to compare with our approximation
algorithms, we describe a naive heuristic for selecting con-
nected subgraphs and assigning heights to the nodes. As a
first step, to select a connected subgraph of an input graph G,
the heuristic computes the minimum spanning tree (MST), T
of G (using the link weights computed as described above).
Next, the heuristic has to assign heights to the nodes in G,
so as to cover all the edges in T while minimizing the total
cost. Given a set of links to be covered, we then formulate the
height assignment problem as a simple LP, and compute the
heights required on every node.
Comparing with the naive heuristic. We now compare
the naive heuristic described above with our approximation
algorithm. We consider graphs with number of nodes n =
10, 15, 20, ..., 50. For each value of n we generate 50 graph
instances. For each graph, we compute Cnaive the cost of
the solution produced by the naive heuristic, and Capprox,
cost of the approximation algorithm. In Fig. 6 we plot the
mean and standard deviation over all graphs of Rnaive =
Cnaive−Capprox

Capprox
, for different values of n. We observe the

approximation algorithm performs substantially better than the
naive heuristic. On average, the solutions returned by the naive

9While we assign weights to links between every pair of nodes (complete
graph), we put a cap on the maximum height assigned to the tower at any
node (hmax = 50meters). Therefore, if the tower height required to cover a
link exceeds hmax, the link will not be selected by any of the algorithms.
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Fig. 6. Approximation algorithm vs. naive heuristic.

n Mean (std. dev.)
of Ropt

8 0.45 (0.30)
9 0.44 (0.25)
10 0.42 (0.23)
11 0.40 (0.25)

Fig. 7. Approximation algorithm vs. optimal solution.

heuristic range from 60% (for n = 10) to as much as 225%
more expensive (for n = 50) compared to the solution returned
by the naive algorithm.
Comparing with the optimal solution. We compute the
optimal solution by solving an ILP that models the topology
construction problem. We use the CPLEX LP-solver [11] to
solve this ILP. This approach is, however, computationally
very expensive, and the LP-solver could return solutions for
graphs with at most 11 nodes. We compare the solution
returned by our approximation algorithm with the optimal
solution for graphs with number of nodes n = 8, 9, 10, 11.
For each value of n we generate 50 graphs. For each graph
we compute Capprox, the cost of the solution returned by our
approximation algorithm, and Copt, the cost of the optimal
solution. We then compute the mean and standard deviation
of Ropt = Capprox−Copt

Copt
, over all graphs for different values

of n.
The results presented in Figure 7 show that our approx-

imation algorithm gives solutions that are 40 − 45% more
expensive than the optimal solution (for small values of n).
Thus, our approximation algorithm performs much better than
the worst case guarantee of O(log n) on the approximation
factor. While this gap between our approximation algorithm
and the optimal solution is not small, we wish to reiterate that
computing the optimal solution (even if it has to be done only
once) is practically infeasible for real-life networks. Moreover,
our algorithm performs substantially better in practice than the
naive heuristic.

To summarize, our numerical experiments demonstrate that
our approximation algorithm performs well within its worst
case performance bounds, and outperforms the naive heuristic
by a substantial margin.

VI. CONCLUSIONS AND FUTURE WORK

In this work we have presented efficient approximation
algorithms for the topology construction problem in rural mesh
networks.
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Our work introduces a number of open research problems.
One immediate problem is to consider the case of k ≥ 2 vertex
or edge connectivity, similar to the power optimal network
construction for k-connectivity [9], [10]. Another important
research direction is the geometric version of this problem.
In practice, all nodes within a certain distance of each other
can establish a link. It is not clear whether the Topology
Construction problem is NP-hard for this class of graphs
(called disk graphs).

In this paper, we assumed that the location of the towers
is fixed (within a village). A variant of the problem would
make the location of the tower to be a variable (and maybe
lower the cost of constructing a connected topology). We did
not study this version of the problem because we find that,
in practice, the inter-village distance dominates intra-village
distance. Hence, this added flexibility in design would not
result in any substantial difference in the cost, compared to
our proposed algorithms for the existing model.

As a next step, we would also like to evaluate our algorithms
over a deployed rural mesh network and evaluate the benefits
over existing design approaches.
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Fig. 8. The graph G in the NP-hardness reduction where the ground set
S = {s1, s2, s3, s4} and C= {C1, C2, C3, C4} with C1 = {s1, s2, s3},
C2 = {s2}, C3 = {s3, s4} and C4 = {s3}.

APPENDIX

In this section, we will give a sketch of the NP-hardness
reduction. The decision version of this problem asks the
following question - given an input setting as described in
section III and a bound B, does there exist a height function
h such that the total cost of the towers is bounded by B and
COV ER(h) is a connected spanning subgraph of the input
graph?

Theorem 9: The decision version of the Topology Con-
struction problem is NP-hard.

Proof: (Sketch.) To show that the TC problem is NP-
hard, we give a reduction from any instance of the set cover
problem [20] to an instance of the TC problem.

Given a collection C of subsets of a ground set S and
a positive integer b, the minimum set cover problem is to
determine if there exists a collection of subsets C′ ⊆ C such
that C′ is a cover for S and |C′| ≤ b.

The instance of the TC problem that we construct from
this instance of the set cover problem has the following
characteristics:

(1) The undirected graph G = (V, E) is the incidence graph
of C with some augmentation (see Figure 8). In particular, it
contains set of nodes V = S ∪ C∪{u, v}, where u and v are
auxiliary nodes, and set of edges E comprising edges from u
to each node C ∈ C, edges between an element s ∈ S and
a subset C ∈ C if and only if s ∈ C, and an edge between
u and v. (2) On any edge e = (u, v) ∈ E, there is a single
obstruction of height H equidistant from u and v. (3) hmax =
2H . (4) Cost function c is defined as c(h) = h, ∀h. (5) Bound
B = 2H(b+1), where b is the bound on the number of subsets
selected in the set cover problem.

We now state the following lemma (whose proof is omitted
due to space constraints) which establishes the equivalence of
the two problems and completes the proof.

Lemma 10: There exists a set cover of size at most b if
and only if the corresponding instance of the TC problem has
a solution h of total cost at most B.

We can also show that this reduction is “gap-preserving”,10

thus proving Theorem 1. Since it is NP-hard to approximate
the minimum set cover problem to a factor of o(log n) [18],
it is also NP-hard to obtain an o(log n) approximation to the
TC problem. So, the best that we can realistically hope for is
an O(log n) approximation algorithm. As shown in the paper,
we meet this bound.

10A gap preserving reduction of problem A to problem B is one where the
hardness of approximation results for problem A are retained by problem B.
For a formal definition and details, refer to [20].


