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Abstract: In this work, we consider the goal of scheduling

the maximum number of voice calls in a TDMA-based multi-

radio, multi-channel mesh network. One of main challenges

to achieve this goal is the difficulty in providing strict (packet-

level) delay guarantees for voice traffic in capacity limited

multi-hop wireless networks.

In this respect, we propose DelayCheck, an online cen-

tralized scheduling and call-admission-control (CAC) algo-

rithm which effectively schedules constant-bit-rate voice traf-

fic in TDMA-based mesh networks. DelayCheck solves the

joint routing, channel assignment and link scheduling prob-

lem along with delay constraint. We formulate a relaxed

version of this scheduling problem as an Integer Linear Pro-

gram (ILP), the LP version of which gives us an optimality

upper bound. We compare the output of DelayCheck with

the LP-based upper bound as well as with two state-of-the-art

prior scheduling algorithms. DelayCheck performs remark-

ably well, accepting about 93% of voice calls as compared to

LP-based upper bound. As compared to state-of-the-art algo-

rithms, DelayCheck improves scheduler efficiency by more

than 34% and reduces call rejections by 2 fold. We also

demonstrate that DelayCheck efficiently exploits the number

of channels available for scheduling. With implementation

optimizations, we show that DelayCheck has lowmemory and

CPU requirements, thus making it practical.

1 Introduction

Wireless mesh networks have become a popular choice

for providing data, voice and video applications in the con-

text of enterprise networking [5], community or metro-scale

networking [6] and public emergency-control systems [1].

Infrastructure-based wireless mesh networks consist of a net-

work of statically positioned mesh routers. Such back-haul

network architecture is reliable, scalable, cost-effective, and

easy to deploy [8]. However, due to broadcasting in multi-

hop wireless architecture, capacity limitation is one of the

fundamental issues in wireless mesh networks [8]. In this

context, it is well known that CSMA-based multi-hop MAC

gives poor throughput [19] and results in high delay and jitter,

which is unsuitable for real-time applications. Hence there

is significant literature which has considered a TDMA-based

approach for a multi-hop wireless mesh network, including

TDMA-based WiMAX mesh [3].

The problem of scheduling transmissions in TDMA-based

mesh networks is an active and stimulating area of research

(see [17], [23] and references thereof). In this regard, several

problems, like finding minimum length transmission sched-

ule or channel assignment using minimum number of chan-

nels are proven NP-hard problems [14]. Consequently, there

is a large body of literature which proposes heuristic-based

channel assignment algorithms and/or transmission schedul-

ing algorithms based on a fixed set of inputs. However, the

problem of scheduling while considering strict (packet-level)

delay constraint in multi-radio, multi-channel mesh network

has not been studied extensively. In particular, we are not

aware of any online, practical and effective scheduling algo-

rithm which schedules a dynamic set of voice calls in multi-

radio, multi-channel wireless mesh networks. It is this gap

that our work fills in.

We consider constant-bit-rate (CBR) traffic to support

voice calls in standalone multi-radio, multi-channel TDMA-

based wireless mesh networks. Our goal is to support the max-

imum number of voice calls in a given period of time (e.g.

over a day). The first and most important challenge to achieve

this goal is the difficulty to provide strict (packet-level) de-

lay guarantee for voice traffic in capacity limited multi-hop

wireless networks. The voice delay constraint especially be-

comes challenging to handle in low data rate mesh networks,

like a mesh network envisioned in [15] using IEEE 802.15.4

technology.

Secondly, scheduling transmissions in multi-hop wireless

networks is a highly complex problem with numerous inter-

related-sub-problems like finding path of communication (op-

timal routing problem), efficient utilization of available chan-

nels (optimal channel assignment) and interference-free link

activation (optimal link scheduling). Also the delay-constraint

has to be tightly integrated with these sub-problems. Thus, in-

tegrating solutions to these sub-problems for an efficient and

effective scheduling algorithm is another challenge. Thirdly,

for practical utility, the algorithm must be able to handle dy-

namic demand of traffic flows on-the-fly, while being memory

and CPU-efficient.

In this regard, we propose DelayCheck, an online cen-

tralized scheduling and call-admission-control (CAC) algo-

rithm which effectively schedules constant-rate voice traffic

in TDMA-based mesh networks. With respect to above men-

tioned challenges, our work makes following contributions.

• DelayCheck is an online, polynomial time algorithm

for delay-constrained centralized scheduling in a multi-radio,

multi-channel, TDMA based mesh network (§5).
• DelayCheck works by jointly finding a routing path and

allocating [slot, channel] resource tuples to the links on the
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path while taking into account the strict delay-constraint (§5).

• We also give the implementation details of DelayCheck.

DelayCheck has low memory and CPU requirements, yet be-

ing effective (§6).

• We formulate a relaxed version of the delay-constrained

scheduling as an Integer Linear Program (ILP) for multi-

radio, multi-channel TDMA-based mesh networks. The LP

relaxation of this problem gives us an upper bound on the op-

timal solution (§7).

• We simulate DelayCheck on a 125-node 802.15.4-based

mesh network for different traffic loads by varying the mean

inter-call duration (§8). DelayCheck performs remarkably

well accepting 93% of the calls with respect to the LP-based

upper bound. This evaluation for 802.15.4 setting, which has

impoverished data rate of 250Kbps, acts as a stringent test

case for the performance of the scheduling algorithm.

• We further demonstrate that DelayCheck efficiently ex-

ploits the available number of channels in the network (§8).

• We compare the performance of DelayCheck with two

state-of-the-art scheduling algorithms. DelayCheck performs

about 34% better in terms of accepting the number of voice

calls, even under strict delay constraint (§8).

To our knowledge, DelayCheck is the first scheduling al-

gorithm which jointly considers packet-level delay constraint

with a multi-radio, multi-channel TDMA-based mesh setting

to support a dynamic set of voice calls. The rest of the pa-

per is organized as follows. Next section (Sec. 2) motivates

the need for delay-constrained scheduling. Sec. 3 compares

prior work with DelayCheck for delay-constrained scheduling

in TDMA-based mesh networks. Sec. 4 describes the network

model and formulates the scheduling problem. In Sec. 5, we

present DelayCheck algorithm along with a sample run on an

input network topology. In Sec. 6, we briefly describe im-

plementation details of the algorithm. Next, Sec. 7 describes

the linear programming formulation to find the upper bound

on optimal solution. In Sec. 8, we present simulation based

evaluation and comparison of DelayCheck. We conclude the

paper in Sec. 9.

2 Motivation

Our interest in delay-constrained scheduling stems from

the goal of supporting a number of simultaneous voice calls,

each of which has strict (packet-level) delay constraints, in

TDMA-based mesh networks like 802.11 mesh (Fractel [10]),

802.16 mesh ([3]) and 802.15.4 mesh (Lo3 [20], [15]). In

this work, we assume that certain percentage of capacity is

reserved to support the voice traffic in the network. The data

and video applications can then be served in the rest of the

available capacity; the scheduling of non-voice traffic itself is

orthogonal to our work.

The scheduling algorithms designed so far (e.g. [14], [27],

[18]) assume availability of high data rate backbone links; link

speeds of order of few tens of Mbps. This implies that pack-

ets take much less time (order of few µs) to travel over a link

and this results in the assumption that the end-to-end delay

requirement for a voice call is not a concern of the scheduler.

However, as the load of voice calls increases, although some

voice calls may get accepted, they may fail to meet the end-

to-end delay requirement. To justify this claim, we present a

preview from our simulations of DelayCheck and two state-

of-the-art scheduling algorithms, described in Sec. 8. The

first algorithm, interference-aware CAC [26], schedules the

links in interference-free manner in multi-channel networks.

The second algorithm, even-odd scheduling [18], schedules

pairs of nodes alternatively in multi-channel networks. Here,

the scheduler gives a theoretical bound on packet-level delay,

however does not admit or reject calls based on per-flow de-

lay constraint. We apply these scheduler schemes to a WiFi

TDMA mesh setting [12]; the parameter details are explained

in Sec. 8. We increase the load on the scheduler by increasing

the number of simultaneous calls active in the network. We

assume 250ms ([24], [4]) as the tolerable value of delay for a

voice packet.

Fig. 1 shows the behaviour of these scheduling schemes

in terms of worst case end-to-end delay of an accepted voice

call. For the case where the entire capacity of the network is

used to support voice calls, and as the number of calls exceed

42, the prior algorithms accept the voice calls but fail to sat-

isfy the packet-level delay constraint. Similar behavior can be

observed when only 40% of the capacity is used to schedule

the voice in the network. For both the cases, DelayCheck al-

gorithm accepts the voice calls and at the same time, follows

the strict delay constraint. Also when capacity is limited to

40%, the graph for DelayCheck shows that DelayCheck re-

jects the calls if the delay constraint is not satisfied. How

DelayCheck meets such a strict delay constraint is part of the

algorithm, explained in Sec. 5. Thus, although designed for

interference-free multi-channel scheduling, prior algorithms

do not guarantee packet-level delay constraints.
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Figure 1. Prior work: voice calls fail to meet deadline

In Lo3 [20], authors envision an 802.15.4-based multi-hop,

multi-channel TDMA mesh network to support voice-based

applications like two-way interactive voice using low-cost,

low-power platforms. Here, the delay constraint becomes im-

portant because 802.15.4 radio has impoverished data rate of

250kbps. This entails a larger slot size (order of ms) to ac-

commodate a voice packet and hence scheduling with larger

frame size (order of few tens of ms). This implies that, now,

meeting the voice packet deadline (of 250ms) over a multi-

hop network becomes even more challenging.

2



As can be observed from Fig. 1, the end-to-end delay be-

comes critical even in 802.11 or 802.16 networks under heavy

load of voice traffic and/or when the capacity reserved for

voice is limited.

3 Related Work

There is large body of literature which has considered

scheduling for multi-hop wireless networks. We describe the

main related work here and explain how our algorithm differes

from these.

The work in [21] proposes and evaluates a Load-Aware

Channel Assignment (LCA) algorithm in a network built us-

ing standard 802.11 hardware. However, it is unclear how ad-

mission control can be implemented in such a CSMA-based

multi-hop setting. Also in the proposed scheme, the channel

assignment to radios is fixed. As opposed to CSMA-based

channel access, [25] proposes a dynamic channel assignment

and link scheduling mechanism for multi-radio, multi-channel

TDMA-based wireless mesh networks. However, the sub-

problems of slot scheduling and channel assignment are not

solved jointly which results in suboptimal solution (approxi-

mation ratio = log|total flows|).

The main distinction of DelayCheck from above algo-

rithms is its consideration of delay-constrained scheduling.

Also DelayCheck differs from these algorithms in its consid-

eration of joint routing, channel assignment and scheduling

in a TDMA-based multi-radio, multi-channel wireless mesh

network. The work in [9] too, formulates the joint channel as-

signment and routing problem taking into account the interfer-

ence constraints. It develops an algorithm that optimizes the

overall network throughput subject to fairness constraints. But

the assumption in [9] that traffic between a node and the gate-

way nodes is routed on multiple paths may not suit real-time

traffic due to possible out of order packet delivery. Also im-

portantly, unlike [9], DelayCheck considers strict delay con-

straints.

Other prior work has considered path delay aspect in

scheduling. For instance, considering delay-sensitive traffic,

[14] attempts to find the minimum length TDMA schedule

that also minimizes end-to-end scheduling delay. It rightly

identifies that scheduling delay depends on the order in which

consecutive links are scheduled, as we do in DelayCheck too.

However, the proposed algorithm does not consider strict de-

lay guarantee and it is for the single channel case; model-

ing the scheduling delay in the multi-channel case is not dis-

cussed. Exploiting multiple channels in WiMAX mesh, [27]

formulates the problem of packet transmission scheduling for

real-time CBR (constant-bit-rate) traffic as a binary linear pro-

gramming problem, and solves it using a heuristic based solu-

tion. However, this formulation does not consider out of order

transmission on the adjacent links as in [14] and DelayCheck.

It also restricts the scheduling of links to a single frame (un-

like in [14] and DelayCheck).

Taking the approach of integrated routing, channel assign-

ment and slot scheduling, [18] proposes a generalized link ac-

tivation framework for scheduling packets over wireless back-

haul (TDMA based WiMAX or WiFi). However, due to even-

odd labeling, there may not be a feasible route in this scheme

even if two nodes are able to communicate with each other.

Also, each link is scheduled only half of the time and the

bandwidth requirement of each link is constrained not to ex-

ceed half of the total capacity of the link.

As compared to these attempts (e.g. [14], [18] where de-

lay is minimized but not strictly constrained), DelayCheck ac-

tively considers delay as constraint to schedule voice calls.

Our goal is to schedule maximum number of voice calls. To

achieve this goal, we jointly solve the routing, multi-radio,

channel assignment and delay-constrained link scheduling

problem. Our scheduling is not restricted to a single TDMA

frame. DelayCheck also has a CAC module which rejects the

calls if the delay-constraint is not met.

The work in [22] also considers packet-level delay guaran-

tees, like DelayCheck; it proposes a routing and CAC (Call

Admission Control) heuristic such that every packet of ad-

mitted flows strictly meets its delay and jitter requirements.

This is especially useful for voice and video applications. One

main difference in DelayCheck, compared to [22] is that De-

layCheck is online. That is, it does not disturb ongoing flows

while scheduling new flows. Also, [22] considers only a sin-

gle channel and a single radio network, while DelayCheck

considers a multi-radio, multi-channel setting.

4 Problem Formulation

We now describe the network model and explain the set of

inputs, the set of constraints and the optimization goal of our

delay-constrained scheduling problem.

Network Model: We represent wireless mesh network as

a graph G(V,E) having |V| nodes and |E| links. We assume

that one of the nodes acts as the central controller and sched-

ules all the calls. We refer to this node as the root node. Our

algorithm takes as input a network connectivity graph and an

interference graph. The interference graph indicates whether

two links in the connectivity graph are intefering or not1. Both

these graphs can be arbitrary graphs and our algorithm is not

resticted in any way (e.g. to a unit disk graph [11]). We as-

sume that all the links in the network have the same PHY

layer data rate and that the channel conditions do not change

for the period of scheduling. Each node is equipped with one

or more radios and each radio has a fixed set of orthogonal

channels (or frequencies). We assume a fixed size frame Tf

as the part of TDMA MAC protocol. The frame has a fixed

number of slots S, of fixed size Ts (Tf = S ∗ Ts). For ex-

ample, WiMAX networks could have Tf = 10ms with Ts =
150µs [7]. Considering low overhead of channel-switching

time in practical implementations (40µ for 802.11a [13], 330µ
for 802.15.4 [20]), we assume slot-level channel-switching for

multi-channel allocation.

Input: Fig. 2 shows the set of inputs for the centralized

scheduler.

• A scheduling interval in number of slots (the time period

after which the schedule repeats itself): typically this interval

1Each node in the interference graph corresponds to a link in the con-

nectivity graph, and two nodes are adjacent iff the corresponding links are

interfering.
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Figure 2. DelayCheck scheduler inputs

is either the frame size or an integer multiple of frame size.

• The number of radios at each node, and the number of

channels per radio.

• A network connectivity graph and an interference graph.

Note that, we assume connectivity between two nodes using

bi-directional links.

• A source and destination pair of a voice call and a pre-

determined tolerable end-to-end (packet-level) delay value i.e.

deadline (in number of slots).

• In addition, the online scheduler has to maintain the state

(allocation of [slot, channel] tuple to the links) of already es-

tablished calls.

Constraints: We now state the constraints of the problem.

• Flow-schedulability and routing path: There should be a
path in the connectivity graph between source and destination

if the flow is to be scheduled.

• Primary interference: For a node, no two of its radios

should operate on the same channel in the same time slot.

• Secondary interference: A radio can only transmit or

only receive at a time. For collision-free scheduling, trans-

mission on a link in a slot and in a channel should not inter-

fere with other interfering receptions (as per the interference

graph).

• Delay Constraint: The total end-to-end time required to

deliver each packet from source to destination should be less

than the tolerable delay limit.

Optimization goal: Our goal is to maximize the number

of voice calls successfully scheduled over a period of time

(e.g. over a day).

Output: The scheduling algorithm assigns time slots and

channels to the links of the network so that all of the above

mentioned constraints are satisfied and the goal of maximiz-

ing the number of voice calls is met.

5 DelayCheck

In general, the delay-constrained scheduling in multi-hop

networks with a set of flows as input is an NP-hard prob-

lem [16]. In this section, we describe DelayCheck, an on-

line, heuristic-based, polynomial time CAC-algorithm which

jointly finds a route, allocates the channels, schedules the links

(and the radios) of an input flow in delay constrained manner.

The algorithm works in three phases. In the first phase

of construction, for a new call request between a source and

a destination, the algorithm constructs an auxiliary graph G′

from network connectivity graph G considering the state of

already established calls. Every path between source and des-

tination on such an auxiliary graph gives a feasible schedule.

To find such a schedule, in allocation phase, DelayCheck uses

Dijkstra’s shortest path subroutine to find the shortest path in

auxiliary graph. This shortest path not only gives a feasible

routing path in original input network graph but also finds a

feasible schedule in delay-constrained manner.

The first two phases of the algorithm only consider a lim-

ited interference model (up to 2-hops). To incorporate an ar-

bitrary interference graph, we have a third phase, the post-

processing phase, where the path goes through a filtering

phase to ensure that the schedule is conflict-free for the given

interference graph. The final schedule thus assigns [slot,

channel] tuple to each link on the path such that the flow-

schedulability and routing constraint, interference constraint

and the delay-constraint are satisfied.

Figure 3. Out of order scheduling of links

We now describe each phase of the algorithm. We use the

following notation. Let V = {1, . . . , V } be the vertices in

network graph, S = {1, . . . , S} be the slots in the scheduling

interval, C = {1, . . . , C} be the channels available at a radio

and D be the deadline (integer value, in terms of number of

slots). Now, the delay involved in a path depends on the time-

slots assigned for the links in the path. If links l1, ..., lm on

a path are assigned slots n1, ... nm, then the total delay is∑
i((ni+1−ni) mod S) where (ni+1−ni) mod S is ni+1−ni

if ni+1 > ni and is S − ni + ni+1 otherwise, as shown in

Fig. 3.

5.1 Phase I: Constructing the auxiliary graph

As the part of the algorithm, to schedule every new flow,

we construct an auxiliary graph G′ on-the-fly. A vertex in this

graph is a tuple (v,s,c,d). That is for each vertex v (∈ V) in

original network connectivity graph, for each slot s (∈ S),

for each channel c (∈ C) and for each integer delay value d
(≤ D), we have a vertex in the auxiliary graph. We now de-

fine 4 rules, as shown in Fig. 4, to add a directional edge in the

auxiliary graph from vertex (v, s, c, d) to vertex (v′, s′, c′, d′).
These rules construct the requisite edges and complete the

construction of the auxiliary graph.

Now, what does a link in G′ mean? The rules in Fig. 4 are

intended to signify the following meaning. Let us represent

tuple (v, s, c, d) by vertex w and (v′, s′, c′, d′) by vertex w′.

If edge (w, w′) in G′ is selected in phase II, this signifies that

the edge between (v,v′) is scheduled in slot s′, in channel c′

and the delay of the path so far (i.e. from the source to v′)
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Rule 1: In the original network connectivity graph G, v and

v′ must be connected to each other.

Rule 2: If there is only one radio available at node v, then s
should not be equal to s′.
Rule 3: In slot s′, there are some channels which are disal-

lowed at node v (if node v transmits on any of these chan-

nels, it may disrupt the already admitted calls) and there

are some channels which are disallowed at node v′ (if node

v′ receives on any of these channels, it may result in col-

lision due to already admitted calls). We term the set of

channels allowed at a node v as AllowChann(v). Now, if

s is equal to s′, c should not be equal to c′. Moreover,

c′ ∈ AllowChann(v) and c′ ∈ AllowChann(v′) and there
should be at least one radio available at each node.

Rule 4: d′ = d + (s′ − s) mod S

Figure 4. Rules for constructing auxiliary graph

is d′. Note that the attachment of the above significance to a

link (w,w′) ignores s & c (s & c have meaning for any link

of the form (∗, w)). This effectively means that, if the source

vertex is v′′, all nodes of the form (v′′, s, c, d) can be con-

densed into a single vertex v′′ in G′. With this modification to

G′ (not mentioned in Fig. 4 for clarity), we are ready to move

on to the next phase, where the above-mentioned rules of G′

construction find significance.

5.2 Phase II: Allocating resources

Given the above meaning for a link in G′, we can now give

the interpretation of any path in the auxiliary graph with re-

spect to rules in Fig. 4. If we map any path in G′ to G (using

the first element of the 4-tuple), then because of rule 1, it gives

a routing path in G between source and destination. Due to

rule 2, we avoid primary interference where a node does not

transmit and receive at the same time. Now, rule 3 is intended

to capture secondary interference. However, in phase I and II,

only a restricted form of interference is accounted for, leav-

ing generic interference handling to phase III. In Fig. 4, we in

fact capture only 1-hop interference: this is for ease of expo-

sition; Sec. 5.4 elaborates how we can extend this to account

for 2-hop interference.

Rule 3 in Fig. 4 ensures that the channels allocated to the

links of the new flow avoid 1-hop (secondary) interference

with the already admitted flows as well as with itself. And

finally because of rule 4, among the possible paths between

source and destination, only those paths which follow the

strict delay deadline get selected.

Now in G′, every path from source to a node of the form

(destination, *, *, *) has following properties:

• Property 1: All the links on the path have an

interference-free slot and channel assignment (ensured by

rules 1, 2 and 3).

• Property 2: A packet originated from the source reaches

the destination within delay constraint (ensured by rule 4).

We now run the dynamic programming based Dijkstra’s

shortest path algorithm to find the shortest path from source

to any (destination,*,*,*) in G′. Among all the feasible paths

with respect to above mentioned properties, the algorithm

finds a shortest path from source to (destination, *, *, *) and

Figure 5. Constructing Auxiliary graph: example topology

outputs the sequence of nodes on the path. These nodes are ac-

tually the tuples of the form (v, s, c, d). Thus the sequence of
nodes output by the algorithm, gives the joint routing, chan-

nel assignment and link scheduling of the new call request,

meeting the delay-constraint in the process.

We justify the choice of shortest path in this phase as fol-

lows. Considering future call requests, a new call should be

admitted in such a way so that the minimum amount of re-

sources are blocked. The amount of resources in this case

are the links in the path. This then transforms to a goal of

scheduling the new flow on a shortest hop path which satis-

fies the problem constraints. Note that, this way, DelayCheck

need not be optimal but schedules the flows on shortest path

from available paths, to heuristically maximize the number of

calls admitted in a given period.

Complexity of Algorithm: For e the number of edges and

n the number of vertices in the graph, the running time of Di-

jkstra’s shortest path algorithm is O(n2) with adjacency ma-

trix representation and is O(e(logn)) with a partially ordered

tree data structure. For DelayCheck, n is equal to the size

of (v, s, c, d) tuple which is O(|V||S||C||D|) while e can be

O((|V||S||C||D|)2) at most.

Example: We now explain phase I and phase II using a

simple 5 node network topology as shown in Fig. 5. Suppose

we have to schedule a call from node X to node Y. Assume that

the TDMA frame has only 3 slots and there is only 1 channel

available for scheduling. Further assume that, the deadline

for the call is 3 slots. Fig. 5 also shows the auxiliary graph

constructed for this set of assumptions and for the given input

network graph. The path selected at the end of phase II is

also shown in the figure. The schedule for call from X to Y

in this case is as follows: Link X-A is scheduled in slot 2 (of

frame 1), using channel 1 and delay at A is 1 slot. Similarly,

link A-B is scheduled in slot 3 (of frame 1), in channel 1 and

delay at B is 2 slots. Finally, link B-Y is scheduled in slot

1 (of frame 2), in channel 1 and delay at Y is 3 slots. Note

that, in auxiliary graph, the slot, channel and delay variables

are absent from the tuple for the source vertex X. Also, for the

simplicity of the diagram, the nodes which have no incoming

edges are not shown in example auxiliary graph.
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Figure 6. Constrainedfuel problem is NPHard

However complexity of phase II is exponential if D is given

as input as it requires logD bits to represent D. And we expect

that for any delay-constrained algorithm, like DelayCheck, D

would be given as input. Hence, we defer the explanation

of phase III and first explain our modification of the above

algorithm to make it polynomial.

5.3 Running Phase II in polynomial time

We now explain how we cut down the complexity of phase

II to polynomial by solving an analogous but simple real-life

problem. Consider a graph of roads (corresponding to links

in G′) where each road has two labels: toll (corresponding to

hops) and amount of fuel required (corresponding to delay) .

Now we are given a source and destination and a fixed amount

of fuel to start with. The goal is to choose a path which can

take the car from source to destination with the given quantity

of fuel (within a delay limit) which minimizes the amount of

toll required to pay (number of hops). We call this problem

(which is very analogous to delay-constrained scheduling) the

constrained-fuel problem.

We first show that, constrained-fuel problem is NP-hard by

reducing Knapsack problem to it. Then, we show that if the

toll for each road is restricted to 1 unit, the problem is no-more

NP-hard and can be solved in polynomial time. Since the toll

corresponds to hop in auxiliary graph G′, this is exactly what

we require to make phase II run in polynomial time.

The reduction works as follows. Consider an instance of

Knapsack problem where object i out of 1, . . . N has weight

wi and profit pi; and the capacity of the knapsack is W .

We construct the corresponding instance of constrained-fuel

problem as follows. The graph has N + 1 vertices 0, . . . , N
where the source is 0 and the destination is N . For each i ∈
{1, . . . , N} there are two paths from vertex i−1 to vertex i, as
shown in figure 6. The “upper” path consumes toll pi and no

fuel, while the “lower” path consumes fuelwi and no toll. The

total amount of fuel available is W . Now suppose the optimal

path for this instance of constrained-fuel problem has been

found out. We construct the solution to the given instance of

Knapsack problem as follows. The optimal path must pass

through vertices 1, . . . , N in that order. For every object i, we
put the object in the knapsack if and only if the optimal path

takes the lower edge from vertex i − 1 to vertex i. Due to

this construction, there is a bijection between the paths from

vertex 0 to vertex N , and the subsets of the objects. The time

taken to traverse a path P is related with the profit achieved

by the corresponding set of objects as follows. Let S =
{i ∈ {1, . . . , N | P uses the lower edge to go from vertex i−
1 to vertex i}}. Hence S is the set of objects put into the

knapsack. The toll to be paid on the path P is
∑

i/∈S pi =∑
i pi −

∑
i∈S pi. Since

∑
i pi is independent of P (and S),

the feasible path which minimizes the time taken corresponds

to the feasible set of objects which maximizes the profit.

However, in Knapsack problem, if every object has profit

of 1 unit, the problem is not NP-hard. Similarly, if we con-

strain the toll for a road such that each road requires exactly

1 unit to pay, then the problem is no more NP-hard. We now

discuss a polynomial time algorithm to this constrained prob-

lem. As shown in Fig. 7, we reduce this optimization problem

in polynomial time to a decision problem and further to a sim-

pler optimization problem. For the first reduction, in the de-

cision version, we ask the question as to whether we can find

a path which consumes at most W fuel and at most T toll.

The value of T is iterated from 1 to |V | (number of vertices).

For the second reduction, once we select a value for T , we

can find a path which consumes minimum amount of fuel. To

reduce back to original optimization problem, if we can find

a path which takes at most T toll and consumes W ′ fuel, we

can compare W ′ to W . If W ′ ≤ W , we are done, otherwise

we increase T and find new value of W ′. If W ′ ≤ W , we get

the solution to initial optimization problem with T being the

minimum toll and W ′ being the fuel consumed.

Now to solve the reduced optimization problem, we con-

struct a graph G1 (as shown in Fig. 8) as follows. We create T
levels in G1, denoted as G1, G2, . . . , GT . Each Gi contains

all the vertices as per the original graph G. For each edge

(u, v) in G, we will have an edge between u and v where u is

inGi and v is inGi+1. The weight on these edges corresponds

to the amount of fuel required to cover the corresponding road

in the original graph. We now apply Dijkstra’s algorithm to

this graph G1. This finds a minimum weight path, with path

length = i, i varying from 1 to T, from source s to target t.

That is, for a given path length, we find a path which con-

sumes least amount of fuel. This solves the reduced problem

in polynomial time and since each reduction takes polynomial

time, the original problem is also solved in polynomial time.

Modification to phase I: Now, from above discussion, to

make DelayCheck polynomial, we change the tuple (v, s, c,d)
to (v, s, c,m) and have weights on the edges of the auxiliary

graph. The first 3 rules to form an edge between (v, s, c,m)
and (v′, s′, c′,m′) remain the same. We redefine the rule 4

as follows. We will have an edge between (v, s, c,m) and

(v′, s′, c′,m + 1) with weight = (s′ − s) mod S. With the

changed rule, as in phase II, we apply Dijkstra’s algorithm on

the auxiliary graph to find the shortest hop path (among fea-

sible paths) which satisfies the delay constraint D. But, the

complexity of the phase II is now O(V 2S2C2V 2) (assuming

adjacency matrix representation). Since V (number of ver-

tices), S (number of slots), C (number of channels) are fixed

and number of hops can be at most V , this results in a poly-

nomial time algorithm for delay-constrained scheduling.

5.4 Extension of phase I to practical 2-hop interference

Rule 3 of the construction phase works under the assump-

tion of 1-hop interference model. To incorporate a 2-hop

Figure 7. Reductions in constrainedfuel problem
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Figure 8. Solving the reduced constrainedfuel problem

interference model into the phase I, we now use 6-tuples

in G′, [v, s, c, s1, c1,m]. This increases the complexity to

O(V 2S4C4V 2). With this 6-tuple, we redefine rule 3 as fol-

lows. While constructing the edges, if s is equal to s’, c should

not be equal to c’ (1-hop), moreover c should not be equal to

c1 (2-hop)2. This way 2-hop interference can be eliminated

by spatially reusing the channel only beyond 2 hops.

5.5 Phase III: Post processing

This is the phase which incoporates any arbitrary interfer-

ence graph. We now explain phase 3 of the algorithm: post

processing. To understand the need for post processing con-

sider a hypothetical situation of a weird circular pond in a

real-life deployment. Pond is just one case of arbitrary in-

terference map. Assume that there are few nodes deployed

which surround this pond. The distance between two nodes at

the diametrically opposite side of the pond is just more than

the transmission range. Hence the call has to go through the

nodes surrounding the pond over a circular arc. This may po-

tentially lead to an interference situation as the links on the

opposite side of the pond may interfere 3 but could be actu-

ally separated by more than two hops.

Thus the algorithm requires a post-processing step where

the path output by algorithm is scanned for possible interfer-

ing edges ‘along the path’. Then the edges are either sched-

uled on different channels or on different slots. However, our

evaluation on random topologies showed that such cases oc-

cured very rarely. Hence, in the current version of the algo-

rithm, we simply reject the call if we find that the admitted

path has interfering links beyond two hops. We give follow-

ing reasoning for this rejection. If edges on the path are in-

teferring beyond 2-hops, this means that the selected path is

really bad, it is unnecessarily consuming more resources than

required, and this is contradictory to our original reasoning

that the path should consume minimum resources.

5.6 Optimization

For Dijkstra’s algorithm, the value of shortest path metric

is unique but there could be many shortest paths in the graph

having same metric value. Dijkstra’s algorithm can be easily

tweaked to find out all possible shortest paths without increas-

ing the complexity. Now, if the allocation on one shortest path

2In the earlier construction, s & c were used to “remember” the slot &

channel allocation in the previous link; we now need to “remember” slot &

channel allocation across two links.
3becasue of absence of any node in between in the the pond, otherwise the

shortest path would have gone through this node.

fails in phase III, we can select another shortest path to allo-

cate the resources.

6 DelayCheck: Implementing In Practice

To evaluate performance of DelayCheck, we implemented

DelayCheck in a custom-built discrete event simulator with

two implementation tricks.

Because of the four variables (v, s, c, m) in a tuple (which

corresponds to a node in auxiliary graph), the first and fore-

most concern is about the storage require for the implementa-

tion. For example, for 25 nodes, 100 slots, 10 channels and 10

hops, the number of nodes in graph is 25 ∗ 104. If the graph

is to be stored as cost adjacency matrix, the storage required

is huge, of order of 1010. The first trick that we use to get rid

of this huge storage is that, we don’t store the graph at all. In

Dijkstra’s algorithm, all we need to check is whether two ver-

tices are connected or not (and if connected, what is the cost

of the edge), and this we check on-the-fly based the 4 rules

defined earlier. Note that such a checking takes O(1) time.

With n as the number of vertices for a graph, the only storage

we require is the O(n) cost matrix for Dijkstra’s algorithm.

The cost matrix has two columns of O(n) rows, first column

is the vertex number whereas second column is the cost of the

shortest path.

The second concern is the time required to search the state

space over the auxiliary graph to find the shortest path. On

2.2GHz processor with 2GB RAM, the algorithm (for 25

nodes, 100 slots, 10 channels and 10 hops) in naive form takes

8 seconds of user time and 10 ms of system time to execute a

request. Although, this much delay is amenable for real-time

call set up, any further improvement is better for low call set

up latency. The second trick that we use to reduce this time is

to partition the state space. The partition is based on the high-

est numbered slot and highest numbered channel being used

in the already existing schedule. During search, we consider

the most likely partition. For example, for very first call, we

do not search over all the channels as the call would get ac-

cepted using one or two channels. For subsequent calls, we

maintain the highest numbered channel being used and start

our channel search from this number. If the search fails in the

partitioned space, we go to the next step of exploring a bigger

partition. However, in our evaluation, almost always, the call

was scheduled in the first partition of the search space. With

this trick, the user and system time required for algorithm to

execute new request reduced to 2 seconds and 1 ms respec-

tively.

7 Integer Linear Program (ILP) formulation

In this section, we give an Integer Linear Programming

(ILP) formulation for the delay-constrained, multi-hop, multi-

radio, multi-channel TDMA scheduling problem.

The ILP is shown in Fig. 9. This ILP is an offline algorithm

in that it aims to schedule not only a given flow, but also may

reschedule other existing flows. That is, its input is a collec-

tion of flows. The variables Xs,c,f,e capture the joint routing,

slot, and channel assignment for each flow. The ILP’s objec-

tive is to maximize the number of calls accepted, modeled by
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Variables:

Xs,c,f,e is 1 if link e (e is directional) for flow f is scheduled

in slot s and on channel c.
Yf is 1 if flow f is entirely scheduled.

Of,v is 1 if, for flow f, the transmission slot of the incoming

edge at intermediate node v comes later than the outgoing

edge. (out of order case mentioned in [14]).

Objective:

max
∑

f Yf

Flow-schedulability:

Yf ≤
∑

s

∑
c

∑
e∈(OutEdges(src)) Xs,c,f,e. . . . (1)

Yf ≤
∑

s

∑
c

∑
e∈(InEdges(dst)) Xs,c,f,e. . . . (2)

Routing path:

For source vertex, src of flow f:∑
s

∑
c

∑
e∈(OutEdges(src)) Xs,c,f,e ≤ 1. . . . (3)

∑
s

∑
c

∑
e′∈(InEdges(src)) Xs,c,f,e′ ≤ 0. . . . (4)

For destination vertex, dst of flow f:∑
s

∑
c

∑
e∈(InEdges(dst)) Xs,c,f,e ≤ 1. . . . (5)

∑
s

∑
c

∑
e′∈(OutEdges(dst)) Xs,c,f,e′ ≤ 0. . . . (6)

For every v /∈ (src, dst)∀f∑
s

∑
c

∑
e∈(OutEdges(v)) Xs,c,f,e −

∑
s

∑
c∑

e′∈(OutEdges(v)) Xs,c,f,e′ = 0. . . . (7)
Primary interference:∑

c

∑
f

∑
e∈InEdges(v) U OutEdges(v) Xs,c,f,e ≤ R,∀s,∀v.

. . . (8)
Secondary interference:

∀ e,e’ ∈ Interferece graph,∑
f (Xs,c,f,e + Xs,c,f,e′) ≤ 1,∀s,∀c,. . . . (9)

Delay-constraint:

∀ f and ∀ v /∈ (src(f), dst(f)),∑
e∈InEdges(v)

∑
s

∑
c(s + 1)Xs,c,f,e ≤

∑
e′∈OutEdges(v)∑

s′

∑
c s′ ∗ Xs′,c,f,e′ + (S − 1)Of,v . . . . (10)

1 + (
∑

Of,v − 1) ∗ S ≤ D. . . . (11)
Xs,c,f,e ∈ {0, 1}, Yf ∈ {0, 1}, Of,v ∈ {0, 1}. . . . (12)

Figure 9. Integer Linear Program for integrated scheduling

Yf variable. Constraints (1), (2) ensure that, for a flow, at least

one outgoing edge from the source and at least one incoming

edge to the destination is scheduled. In addition, constraints

(3)-(6) ensure that the if a flow is scheduled, exactly one out-

going edge from the source and exactly one incoming edge

to the destination is scheduled. Constraint (7) ensures that the

flow is conserved at every intermediate node. Thus, these con-

straints together ensure that the variable Yf is set iff the flow

f is scheduled end-to-end from source to destination. Con-

straint (8) ensures that in a slot, for a node, the total number

of channels used are less than the number of radios available

(i.e. primary interference). Among the set of interfering links

for a slot, constraint (9) allows only one link to be active (i.e.

secondary interference). This also covers the case that a radio

can not be scheduled for transmission and reception on two

links in the same slot.

Constraints (10) and (11) model (a necessary condition for)

the limit on end-to-end delay. The end-to-end delay is deter-

mined by the scheduling delays of the consecutive links [14].

There are two ways in which links can be scheduled: in order

and out of order, as shown in Fig. 3. Let us denote the slot

in which link Li is scheduled by Sl(Li). For two consecu-

tive links L1 and L2, if they are scheduled in order, the link

scheduling delay is Sl(L2)− Sl(L1). Otherwise in out of or-
der case, this delay is S−Sl(L1)+Sl(L2). Now, for in order
case, if L1 is scheduled in slot 1 and L2 in slot S, the worst

case delay is S − 1. For the out of order link scheduling, the

worst case scheduling delay is S − 1 if Sl(L1) = Sl(L2)+1.
For the delay constraint, we want the sum of the individual

link scheduling delays to be less than the given deadline. Now

to model this constraint, we define a variable Of,v for every

flow f and every node v. This variable will be set to 1 if flow

f passes through v and incoming-outgoing links are sched-

uled out of order. Constraint (10) asserts that the slot in which

e (incoming edge) is scheduled must be at most the slot of e′

(outgoing edge), or the slot of e′ + (S−1), in which case Of,v

will be set to 1. Constraint (11) asserts the lower bound on the

deadline by constraining the end-to-end delay to be less than

1+ (allowed number of out of order cases− 1) ∗S. Here, the
first term is the lower bound on in-order scheduling while sec-

ond term is the lower bound delay for out-of-order scheduling.

Note that, the constraint (10) ensures that Of,v = 1 if e and

e′ are scheduled out of order. However, it does not ensure the

converse. But this is alright, the reason being as follows. Sup-

pose e and e′ are in order or f does not pass through v, but
Of,v = 1 at an optimal point p in the ILP’s solution space.

Consider the point p′ obtained by setting Of,v = 0 in p. Then
p′ is still feasible and has the same

∑
Yf cost as p. If the op-

timal number of flows scheduled is F at the point p then the

same number of flows get scheduled at the point p′. Further-
more, p and p’ represent the same schedule. Conversely, if

there is no feasible point for the given input set, the ILP with

constraints (10) and (11) will also not find such an optimal

point.

Note that the above ILP itself is a relaxed version of our de-

lay constrained scheduling, since ILP constraints (10) & (11)

capture only a necessary condition for the delay constraint,

but not the sufficient condition. This is however alright, since

we anyway use the ILP to get an upper bound on our opti-

mization metric. To obtain the upper bound, we remove the

integer variable constraint and solve the Linear Program (LP)

version of the above formulation. The upper bound gives the

number of calls accepted by an offline scheduler for the given

input set. Although, the ILP maximizes the number of calls

accepted over a period of time, even solving the LP-relaxed

version of the formulation is very inefficient in practice in

terms of CPU-time and memory requirements. In our eval-

uation, the GLPK [2] required several minutes on a 2.2GHz

desktop processor with 2GB RAM, to solve the LP formu-

lation to schedule an input flow. This is not acceptable for

real-time application support where flows need to be accept-

ed/rejected with a low latency of at most a few seconds.

8 Evaluation

In this section, we evaluate DelayCheck for (1) 802.15.4-

based mesh network as envisioned in [20] and (2) 802.11-

based mesh network as envisioned in [10].
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802.15.4-based radio has impoverished 250Kbps of data

rate and hence voice delay constraint becomes challenging

to meet in such low data rate mesh networks. The 802.15.4-

based mesh thus acts as stringent test case for the performance

of DelayCheck. We simulate voice based wireless mesh set-

ting envisioned in [20] over an area of 2 km x 2 km, with 125

randomly placed nodes: 25 infrastructure nodes (static back-

bone nodes) and 100 client nodes (handsets). The evaluation

parameters considered are: 1 radio per node, maximum 16

channels per radio, exponential inter-call duration with mean

varied from 30 min to 2 hrs, exponential call duration with

mean of 2 min. The calls are generated from every client

node and we choose source and destination pairs randomly.

We consider a TDMA frame of 60ms with 8 data slots of 6ms

each [20]. We assume scheduling interval to be 240ms which

is 4 times the frame length. We run the simulations for 12 hrs

(a half-days period).

8.1 Scheduler Performance

To evaluate performance of the scheduler, we define a met-

ric, scheduler efficiency, as the number of calls accepted by

DelayCheck compared to the number of calls accepted by LP-

based solution. To solve the LP and find the upper bound

on the number of calls accepted, we use the GLPK [2]. We

model the LP GNUMathProg language. We implement even-

odd slot scheduling algorithm of [18] and compare its per-

formance with DelayCheck. Although, 802.15.4 has 16 non-

overlapping channels, for scheduler testing, we assume that

the scheduler has 4 channels available for scheduling.

Fig. 10 shows number of calls originated, number of calls

accepted by LP-based solution, DelayCheck and even-odd

scheduling for mean inter-call duration of 0.5, 1 and 2 hrs.

For even-odd scheduling, we discard the accepted calls which

fail to meet the deadline. As the bars show, DelayCheck has

scheduler efficiency of 93% (close to upper bound) where as

even-odd scheduling has scheduler efficiency of 69%. The

close to upper bound output of DelayCheck is due to the

consideration of joint routing, channel assignment and link

scheduling in DelayCheck. Also, DelayCheck accepts 34%

more calls than even-odd scheduling. This is mainly due to

the basic limitation of even-odd scheduling where a link can

be active in only one of the two slots. Also, DelayCheck al-

lows scheduling across frames without limiting the scheduling

(of all the links) to a single frame and thus accepts those calls

which can’t be scheduled in a single frame but across multiple

frames within the delay budget.

Fig. 11 shows number of calls rejected by DelayCheck, in

comparison to even-odd scheduling algorithm for mean inter-

call duration of 0.5, 1 and 2 hrs. As the bars show, Delay

check reduces the call rejections by 2 fold as compared to

even-odd scheduling algorithm, even under strict delay con-

straint. Thus the joint routing, channel assignment and link

scheduling along with delay-constraint outperforms the even-

odd scheduling.

We take a more closer look at the scheduler behavior and

observe the admission probability of the scheduler for a new

call request. We consider the data from mean inter-call du-

ration of 1 hr. Fig. 12 plots number of simultaneous calls

in progress on x-axis and the number of calls accepted along

with the number of call requests received; on y-axis. The bar

corresponding to calls admitted also shows the reasons for re-

jection of the call requests. The numbers in the bracket indi-

cate call rejection due to (1) no slot available (2) no channel

available (3) delay budget exceeded. For example, when 3

calls are in progress, DelayCheck admits 94% of the calls.

The CAC module of DelayCheck rejects the other 6% calls

due to delay constraint being exceeded. This implies that al-

though the slot and channel resources were available at the

network nodes, DelayCheck did not find any feasible path

through these resources which meets the delay constraint.

Also as the number of simultaneous calls increases, the re-

source consumption in the network also increases. For exam-

ple, when DelayCheck has 6 calls in progress, it admits only

64% of calls. 9 calls are rejected due to non-availability of

slots, 2 due to non-availability of channels and 3 due to delay

budget getting exceeded.

8.2 Effect of channels

Fig. 13 shows percentage of calls accepted as the number

of channels available for scheduling are increased from 1 to 8.

From the graph, for 0.5 hr inter-call duration, as the number

of channels available increase to 4, the percentage of calls ac-

cepted to jump to 78% from 44%. This justifies the need for

multi-channel capability of the scheduler in a multi-hop mesh

setting like Lo3 [20].

8.3 DelayCheck for 802.11 mesh

As in Sec. 2, we apply DelayCheck to 802.11-based mesh

setting in Fractel [12]. Fractel has a TDMA frame length
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of 200ms with 100 data slots. We assume that 3 orthogonal

channels are available for scheduling. We consider two algo-

rithms as mentioned in Sec. 2, interference-aware CAC [26]

and even-odd scheduling [18]. We increase the load in the

system by increasing the number of simultaneous calls han-

dled by the scheduler, by generating calls through 500 client

nodes. Fig. 1, in Sec. 2, shows the behaviour of DelayCheck,

interference-aware CAC, and even-odd scheduling in terms of

worst case end-to-end delay of an accepted voice call. As can

be observed, DelayCheck always schedules voice calls within

the deadline of 250ms. Moreover, the number of voice calls

admitted (not shown in figure) by DelayCheck are 31% more

than interference-aware CAC and 26% more than even-odd

scheduling. This shows that DelayCheck clearly outperforms

these two algorithms in terms of scheduler efficiency as well

as delay guarantee.

9 Conclusion

In this work, we considered the goal of supporting themax-

imum number of voice calls in a TDMA-based multi-radio,

multi-channel mesh network. We presented DelayCheck,

an online centralized scheduling and call-admission-control

(CAC) algorithm, which effectively schedules constant-rate

voice traffic in TDMA-based multi-channel mesh networks.

To our knowledge, DelayCheck is the first delay-constrained

scheduler which has following features as compared to past

work: (1) scheduling slots across multiple frames within the

delay budget (2) out of order link scheduling in multi-channel

network (3) integrated routing along with channel assign-

ment and link scheduling (4) implementable in practice for

real-time applications. Through simulation based evaluations,

we showed that DelayCheck meets strict (packet-level) de-

lay guarantee for voice traffic in capacity limited multi-hop

wireless networks. We compared DelayCheck with the LP-

based upper bound and two state-of-the-art scheduling algo-

rithms. DelayCheck performed remarkably well, accepting

93% of voice calls as compared to upper bound. In compari-

son to state-of-the-art algorithms, DelayCheck accepted 34%

more voice calls. We also described implementation tricks for

memory and CPU efficient operation of DelayCheck.
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