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Abstract—Reducing fluctuations and mitigating the variability

of wind energy is essential for its integration in grids, electricity

markets, microgrids, and distributed generation settings. In this

work, we present a storage-based wind power smoothing system

that uses novel optimization algorithms to reduce the variability

of wind energy. The system considers forecasted and actual

energy generated, battery size, and energy prices and determines

export rates that have low variability and maximize either the

energy exported or revenue earned. Our optimization algorithms

are novel as they model an equivalent relaxed buffer system

that uses only linear constraints and allows the computation of

optimal smoothing solutions in an efficient manner. This enables

the system to be used in an online manner in real time as

well as in planning and operations. The smoothing system and

the mathematical models and programs used in optimization

are presented along with preliminary simulation results that

demonstrate the need and effectiveness of the system with the help

of real wind energy data. Finally, we compare wind smoothing

to video smoothing and point out the important similarities and

differences.

I. INTRODUCTION

Wind is a major source of renewable energy that is being
used all over the world today. Wind power is being used in grid
and micro-grid settings for a number of different applications
including powering residential customers, power-hungry data
centers [1], [2], and base stations in mobile wireless networks
[3], [4]. According to the global wind energy council, by the
end of 2009, the cumulative installed wind power capacity
worldwide was about 160GW. In US alone, the installed
capacity is expected to grow at a rate of 10-15GW per year
reaching about 300GW by 2030 [5]. In US and EU, the
governments have also crafted green policies that mandate
operators to source a fraction of their supplied energy from
renewable sources thereby reducing CO2 emissions.

However the inherent variability and uncertainty of wind
energy makes it non-dispatchable and hard to integrate into
power grids. Wind is highly variable and intermittent resulting
in power that varies over multiple time scales. Moreover the
generated power also depends on factors such as weather,
temperature, height of the mill, and size of turbine blades, all
of which contribute to compounding its variability. Today in
most grids worldwide, wind power penetration levels are quite
low (generally below 20%) and most of the baseload, load-
following, and peaker generation requirements are met from
dispatchable sources of power such as coal, nuclear, hydro,
or gas/oil plants. Consequently, grids can absorb fluctuations
arising out of a small amount of wind power by ramping
a few dispatchable generators. Some of the variability also
balances out when wind power is sourced from geographi-

cally diverse locations. However as wind becomes a larger
and significant portion of the generation portfolio, mitigating
its variability will become increasingly important to ensure
grid reliability and sustainability. Large penetrations of wind
power can increase the load-following variability faced by
non-wind generation and negatively impact system ramping
requirements. This can lead to a number of problems such as
higher costs of cycling power plants, uneconomic dispatch of
generation, higher reserve requirements, higher energy prices,
and blackouts [6]–[10].

Variability in generation also impacts participation in elec-
tricity markets. Merchant producers and retailers of power
interact using wholesale electricity markets such as day-
ahead (DA) and real-time (RT) markets. After markets close,
participants are committed to supplying or consuming energy
at location-based marginal prices for an upcoming time in-
terval. Conventional generation sources are penalized if they
deviate from their commitments. Due to the variability and
uncertainity of wind power, existing approaches lack a proper
mechanism for wind power producers to participate in DA
markets. Currently wind power is settled at RT price or sold
on long-term power purchase agreements. Additionally, if the
grid load is low and generation is high (e.g. at night), operators
may not be able to sell power and resources are wasted. Thus
existing approaches are not optimal for wind farm operators
as they are unable to get the maximum economic gain for the
power they generate. Accordingly, there is a need to mitigate
the variability of wind energy to integrate its generators into
electricity markets [11].

In this work, we present an optimization-based wind power
smoothing system [12] (Fig 1), which uses forecasting and
storage technologies to mitigate the variability of wind energy
and facilitate its integration into grids and electricity mar-
kets. The system considers the forecasted and actual energy
generated, energy storage size, and energy prices if available
and determines a uniform export rate that maximizes either
the total energy exported or revenue earned. It considers
penalty costs for deviations from an existing export rate and
determines a piece-wise linear export curve that has low
variability while minimizing any wastage of energy. Using
a day-ahead wind energy forecast, the system can compute
a smooth export curve that can be used to plan a day-ahead
energy delivery schedule. The system uses optimization that
is computationally efficient so that it can be extended to work
in an online manner wherein it solves the optimization using
successive forecasts available at each time step to determine
the export rate for the next time step.
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better economic benefits for the power they generate and helps
independent power system operators (ISOs) to integrate more
wind generation into their system in a reliable and sustainable
manner. In particular, the key contributions of our work are:

1. A wind power smoothing system is presented that uses
power forecast and storage to determine an energy export
curve that minimizes variability and maximizes energy
output. Additionally, given variable energy prices, the
system maximizes total revenue. The system can be
used to plan ahead or invoked continuously for real-time
operations. The system can be used to export energy to
the grid or to captive loads in microgrid environments.

2. We develop novel mathematical programming based op-
timization formulations for buffer-based smoothing prob-
lem, which are computationally efficient and can be
solved in polynomial time. The buffer model considers
overflow as well as storage losses due to charging and
discharging operations.

3. The buffer-based smoothing problem is studied using
cumulative input and output curves which sheds new light
on the smoothing problem. Our optimization formulations
model an equivalent relaxed buffer based system using
only linear constraints and still yield smoothing solutions
that are optimal in terms of formulations that model the
full functionality of a buffer using integer constraints.

4. We present preliminary experimental results using real
wind energy data that demonstrate the operational im-
pacts of injecting wind energy into a power system and
the results of the proposed optimization algorithms.

5. We draw parallels between wind and video smoothing and
show that some of the wind smoothing problems can be
regarded as variants of video smoothing problems. Our
work broadens the applicability of networking research
to other domains and helps build synergies between
networking and smart grids.

In the balance of the paper, section II compares related
work followed by section III which presents the mathemat-
ical model of a buffer-based smoothing system. Section IV
presents the main optimization formulations and results for the
system that maximizes the energy exported. Section V presents
the formulation that incorporates energy prices to maximize
revenue. Section VI presents experimental results. Section VII
draws parallels between variants of wind and video smoothing
problems and we conclude in section VIII with directions for
future work.

II. RELATED WORK

Wind power exhibits significant variability due to intermit-
tent and variable wind speeds. However wind power fore-
casting is a well-established domain due to its importance in
integrating wind energy into grids [13]. Several forecasting
systems that forecast at different time scales are utilized all
over the world [14], [15]. Forecasts are available either as point
forecasts, which give the most likely prediction for a future
time period, or more sophisticated probabilistic forecasts that
include the probability density functions as well [13]. Most of

Fig. 1. A storage-based wind power smoothing system that employs novel
computationally efficient optimization algorithms. The system can be used to
reduce the variability of wind energy and maximize the energy exported or
revenue earned.

the wind power forecasts are currently given as point forecasts
and in this work we essentially assume the availability of short-
term point forecasts (up to a day or two).

A number of grid storage technologies are being con-
sidered for different smart grid applications including inte-
grating renewable power sources such as wind [16]. These
include CAES (compressed air energy storage), pumped hydro,
flywheels, supercapacitors, and battery technologies such as
sodium-sulphur or lithium-ion. The choice of storage technol-
ogy depends on application requirements as well as storage
characteristics such as size, weight, cost, lifetime, efficiency,
and per-cycle costs. Current costs of energy storage are signif-
icant and therefore storage needs to be used optimally in order
to offer competitive energy prices in the market and integrate
wind power in a sustainable manner. Our work is independent
of the storage technology and assumes the availability of an
energy storage system of a certain capacity and models the
losses due to charging/discharging operations.

Several papers have proposed storage-based solutions to
efficiently dispatch wind power [17]–[20]. In [17], authors
study different storage technologies in the context of wind
power. In [18], the authors propose a battery storage system for
smoothing power from a wind farm based on a feedback-based
control framework. However, unlike our work the authors do
not explicitly model the penalty for change in the export rate
nor maximize the total energy exported. The authors also do
not consider electricity prices (forecasted or actual). Finally,
authors consider only hour-ahead wind power prediction for
smoothing, whereas our work can consider longer horizons as
well. In [19], the authors study the battery capacity required to
maximize the economic benefit of a wind farm given energy
prices and battery capital costs. However unlike our work, the
authors do not consider time-varying energy prices and the
penalty due to variation in export. In [20], authors consider a
hybrid system with storage and a braking resistor to improve
the power quality and stability of a wind farm. None of the



prior works considers the design of computationally efficient
mathematical programs for smoothing wind energy which is
one of the focus of our work. We model the buffer using
novel linear constraints which enables the computation of fast
smoothing solutions.

The problem of smoothing wind power has similarities with
the work on video smoothing [21]–[26]. However there are dif-
ferences as well and existing solutions cannot be used readily.
In a streaming system, the server needs to determine streaming
rates that allow the receiver to play the video according to
a specific playback curve without overflowing or starving
the receiver buffer. On the other hand in a wind smoothing
system, given a forecasted generation curve, the smoothing
system needs to determine export rates that minimize buffer
overflow/starvation and variability. We highlight the important
similarities and differences between wind smoothing and video
smoothing problems in section VII.

III. MATHEMATICAL MODELS: GENERATION, EXPORT,
STORAGE, AND WASTAGE

∆G(t)

∆W(t)

∆E(t)
B

b(t)

Generation

Wastage (losses, overflow)

Export

Fig. 2. The buffer model for a battery or energy storage of capacity B.

In order to motivate our approach in the subsequent sections,
we now describe the mathematical model of a system that uses
a point forecast and a storage of finite capacity to export wind
energy (for e.g. to the grid). We consider a discrete time system
that determines the amount of energy to be exported at the end
of each time step given the forecast for the next n time steps.
The novelty of the modeling approach is that we consider
cumulative models for generation, export, and wastage, which
allows us to define a conservation relationship linking these
quantities to storage (Fig 2).

Let G(t) denote the forecasted cumulative energy to be gen-
erated by the wind farm by the end of time step t. With usual
notation, let ∆G(t) = G(t) − G(t − 1) denote the forecasted
instantaneous generation for time step t. Similarly let E(t)
denote the cumulative energy to be exported from the wind
farm by the end of time step t and let ∆E(t) = E(t)−E(t−1).
Let b(t) denote the energy available in the battery at the end
of time step t. Let B denote the battery capacity. Then b(t)
may be modeled recursively as follows:

b(t) = min {[b(t− 1) + ∆G(t)− ∆E(t)]+, B} (1)

If more energy is generated than exported at time step t,
then ∆G(t) − ∆E(t) is buffered in the battery provided this
does not exceed the battery capacity. On the other hand, if
more energy is exported than generated, ∆E(t) − ∆G(t) is
retrieved from the battery provided this is available. Since the

Fig. 3. Cumulative generation and export curves: (a) shows a piece-wise
linear feasible export curve E(t) that avoids overflow (b) shows two export
curves. E1(t) is infeasible since it exports more than what is generated. E2(t)
causes overflow since it does not export fast enough to avoid overflow.

energy stored in the battery is non-negative and can be at most
B, the above equation follows.

Unfortunately Eq. (1) does not model the wastage of energy.
The energy generated by the farm could be wasted due to the
following reasons: (i) Overflow which occurs when the excess
energy generated can neither be stored in battery nor exported
for some reason. (ii) Losses which occur while charging
or discharging the battery. Let W(t) denote the cumulative
energy to be wasted by the end of time step t. Now observe
that, by the principle of conservation, the cumulative energy
generated by the end of time step t must have been either
exported, stored, or wasted. Therefore we have

G(t) = E(t) + b(t) +W(t) (2)

With usual notation let ∆W(t) = W(t)−W(t−1) denote the
energy wasted during time step t due to losses and overflow.
Let ω ∈ (0, 1) denote the loss factor i.e. the fraction of energy
lost while charging or discharging the battery. Thus we have

∆W(t) ≥ ω |b(t)− b(t− 1)| = ω |∆b(t)| (3)

i.e. if energy is either stored or retrieved from the battery
during a time step, a fraction of it is wasted. Additional
wastage may result from overflow if there are constraints on
export as well, as considered in the next section.

IV. MITIGATING VARIABILITY AND MAXIMIZING EXPORT

We now consider the problem where the energy from a wind
farm needs to be exported at a uniform rate based on a point
forecast. Exporting at a uniform rate with a battery of finite
capacity may result in wastage from overflow. Therefore we
wish to maximize the amount of energy exported as well as
minimize the variability i.e changes in the export rate. In other
words, we seek a cumulative energy export curve {E(t)}t that
is piece-wise linear with minimal discontinuities.

Fig. 3 shows the various cumulative curves. The curve G(t)
gives the (forecasted) cumulative energy generated by time
step t. The curve G(t) − B gives the minimum cumulative
energy that must be exported by time t to avoid wastage by
buffer overflow. Fig. 3(a) shows a feasible export curve that
avoids buffer overflow. In Fig. 3(b), E1(t) is infeasible as in
certain time steps, total energy exported is more than total
generated (shown by shaded region). E2(t) causes overflow



Objective : max
E(t),W(t),b(t)

∀t

E(n)− v (4)

Variation penalty: v = γ
n�

t=1

|∆E(t)− ∆E(t− 1)| (5)

Ramprate Limit: |∆E(t)− ∆E(t− 1)| ≤ r, ∀t (6)
Conservation: G(t) = E(t) + b(t) +W(t) ∀t (7)

Cumulative: E(t) ≥ E(t− 1) ∀t (8)
W(t) ≥ W(t− 1) ∀t
∆E(t) = E(t)− E(t− 1) ∀t
∆W(t) = W(t)−W(t− 1) ∀t

Battery: 0 ≤ b(t) ≤ B ∀t (9)
Wastage: ∆W(t) ≥ ω |b(t)− b(t− 1)| ∀t (10)

Non negative: E(0) ≥ 0, W(0) ≥ 0 (11)
Input: G(t) ∀t, B, γ, ω, r

Output: E(t), b(t), W(t) ∀t

in certain time steps as the total energy exported is less than
G(t) − B (shown by shaded region). The above figure does
not capture all the system constraints which are precisely
expressed next using a mathematical program.

A. Mathematical Program

The linear program LP1:(4)-(11) yields a low variability cu-
mulative export curve {E(t)}t given the forecast curve {G(t)}t
for the next n time steps. The objective function in Eq. (4)
maximizes the total energy exported and minimizes variability.
The variability is measured using the variation penalty defined
in Eq. (5) which measures the total rate change. A higher
value of parameter γ decreases variability at the expense of
reducing export while a lower value increases export at the
expense of increasing variability. The parameter r in Eq. (6)
is used to bound the individual rate changes in order to control
the ramp-ups and dropoffs in the export. The battery, wastage,
and conservation constraints are as modeled in the previous
section. The cumulative constraints in Eq. (8) ensure that
export and wastage are non-decreasing. The absolute value
terms in the objective and constraints can be linearized using
standard LP techniques.

B. Overflow Constraints: Mixed Integer Program

Observe that LP1 does not have any overflow constraints
which ensure that energy is wasted only if it cannot be buffered
in the battery. Thus LP1 is allowed to discard energy even if
the battery is not full. This may be prevented by introducing
the following integer binary constraints:

Overflow: ∆W(t)−ω|∆b(t)| ≤ M y(t) ∀t (12)
b(t) ≥ B y(t) ∀t
y(t) ∈ {0, 1} ∀t

Time Solution 1 Solution 2
step ∆G(t) ∆E(t) b1(t) ∆W1(t) b2(t) ∆W2(t)
i 10 10 0 0 0 0

i+ 1 30 10 18 2 18 2
i+ 2 20 10 20 8 18 10
i+ 3 15 10 20 5 20 3

...
...

...
...

...
...

...

Fig. 4. Two different solutions with the same {E(t)}t but different {b(t)}t
and {W(t)}t. Capacity B = 20, the loss factor ω = 0.1. In both cases the
total energy wasted by the end of step i + 3 is 15 units. Energy is buffered
in step i + 2 in solution 1 while in step i + 3 in solution 2.

where M is a large constant, for instance, M = maxt ∆G(t).
These constraints ensure that whenever ∆W(t)−ω|∆b(t)|>0,
i.e. when there is an overflow, it must be the case that the bat-
tery is full, i.e. b(t)=B. Introducing overflow constraints into
LP1 will yield a mixed integer program which we denote by
MIP1:(4)-(12). Unfortunately MIPs are NP-hard and therefore
computationally expensive, which can introduce challenges
when delivering energy in real time. We now present an
alternate approach that avoids these overflow constraints.

C. Linear solution processing

Lemma 1: Let f denote the objective function (4) of LP1
and MIP1. Let X = ({E(t)}t, {b(t)}t, {W(t)}t) and X � =
({E �(t)}t, {b �(t)}t, {W �(t)}t) denote the optimal solutions of

LP1 and MIP1 respectively for a given problem instance. Then

f(X) = f(X �), although {b(t)}t and {W(t)}t) may be different

from {b �(t)}t and {W �(t)}t.

The overflow constraints in MIP1 essentially ensure that
energy is not wasted if it can be buffered and eventually ex-
ported. Although LP1 does not have these constraints, it cannot
waste any exportable energy due to the following reasons.
Observe that W(t) is non-decreasing i.e. W(t+1) ≥ W(t) ∀t.
Thus if LP1 finds a solution that assigns W(ti) = x, then for
all subsequent time steps t > ti, it must assign W(t) ≥ x.
This implies that any energy wasted during a time step is not
available for use in subsequent time steps. Since the objective
maximizes E(n), LP1 can assign energy to W(t)’s only if that
energy cannot be exported in subsequent steps by buffering. In
fact LP1 can be regarded as a relaxation of MIP1, since the job
of overflow constraints is partly handled by linear cumulative
constraints on W(t).

The consequence of this relaxation is that LP1 may have dif-
ferent solutions with the same export curve, which buffer ear-
lier or later, but waste the same amount of energy eventually.
An example of this is shown in Fig. 4, where two LP1 solutions
({E(t)}t, {b1(t)}t, {W1(t)}t) and ({E(t)}t, {b2(t)}t, {W2(t)}t)
with the same export curve (hence the same objective value),
waste energy at different time steps. Another example is when
at the last time step t=n, keeping E(n) fixed, one can move
some energy from b(n) to W(n) without altering the objective
value and obtain an alternate optimal solution to LP1. Thus a
given {E(t)}t may have several feasible {W(t)}t and {b(t)}t.

We now present a procedure to transform the optimal
solution of LP1, X = ({E(t)}t, {b(t)}t, {W(t)}t) into an



optimal solution of MIP1, X = ({E(t)}t, {b(t)}t, {W(t)}t).
Since the export curve and hence the objective value are
unchanged, we have f(X) = f(X). The procedure is as follows:

function transform({b(t)}t, {W(t)}t)
for t = 1 to n do

if (∆W(t) > ω|∆b(t)|) then

B � ← B− b(t) % available buffer space
B � ← min{ B �, (1−ω)∆W(t) }
b(t) ← b(t) + B � % move energy to buffer
∆W(t) ← ∆W(t)− B � % update wastage

else

b(t) ← b(t), ∆W(t) ← ∆W(t)
end if

end for

return ({b(t)}t, {W(t)}t)

The transform procedure obtains {b(t)}t and {W(t)}t in
O(n) steps by moving any non-overflow energy in ∆W(t)
to b(t), while taking losses into account. X still obeys all
constraints of LP1 and also the overflow constraints of MIP1.
Therefore X is a feasible solution of MIP1. Now we have
f(X) = f(X) ≥ f(X �). The inequality follows since X satisfies
only a subset of constraints satisfied by X �. Since X � is the
optimal solution of MIP1, f(X �) is maximal and therefore
f(X) = f(X �). So X is also an optimal solution of MIP1.

Thus by omitting the overflow constraints, the optimal
export curve {E(t)}t can be computed efficiently using LP1
in polynomial time. Additionally, {W(t)}t and {b(t)}t can be
obtained using the fast transform procedure.

D. Uniqueness of export curve and other variation penalties

We now discuss if two different export curves {E1(t)}t and
{E2(t)}t may both be optimal to LP1. To understand this,
let vector V = [∆E(2) − ∆E(1), . . . ,∆E(n) − ∆E(n − 1)].
The variation penalty v = γ�V�1 (i.e. L1 norm of V).
Keeping E(n) fixed, it is easy to see that one can construct
vectors V1 �= V2 such that �V1�1 = �V2�1 and both satisfy
constraints of LP1. Therefore multiple export curves may yield
the same objective function value (provided the ramprate limit
r is sufficiently large). Fig. 5(a) shows an example of two
export curves with the same objective value.

Since LP1 minimizes the L1 norm of V , the vector V
is expected to be sparse, i.e. the piece-wise linear export
curve {E(t)}t has few discontinuities. An alternative variation
penalty to consider is γ�V�2 which yields a smooth export
curve with several small linear segments. Using the L2 norm
for variation penalty in Eq. (5) results in a quadratic program
that can still be solved using fast polynomial time algorithms.

E. Online extensions for real-time operation

LP1 determines a low variability energy export curve {E(t)}t
given a forecast curve {G(t)}t. Such an export curve can
be used to deliver energy at a consistent rate in future. For
instance given a day-ahead wind energy forecast, it can be
used to compute a day-ahead low variability energy export
curve. However during real-time operations, the forecast may

Fig. 5. ((a) Two different export curves E1(t) and E2(t) are shown which
have the same variation penalty v = γ�V�1 and objective value. (b) The
online wind power smoothing system is shown which solves an optimization
problem at each time step to determine the export rate at the next time step.

differ from actual generation and this needs to be considered in
order to make decisions about future export. We now present
an online wind power smoothing system that considers the
actual energy generated so far, looks ahead at the forecast for
the next n steps, and invokes LP1 in order to determine the
energy to be exported during the next time step. The system
repeats the process at each time step in a continuous manner
(Fig. 5(b)).

Let g(t) and e(t) denote the actual cumulative energy gen-
erated and exported at the end of time step t respectively. Let
the current time be the end of time step T , where the current
battery state b(T), the actual energy exported e(T), and the
actual generation g(T) are known. The energy to be exported
during the next time step, E(T+1) is determined as follows:

1: function online(T)
2: (b(T), e(T), g(T)) ← system_state()
3: G(T) ← g(T), E(T) ← e(T)
4: W(T) ← G(T)− E(T)− b(T)
5: {E(t), b(t),W(t)}T+n

(T+1) ← LP1({G(t)}T+n
T )

6: return ∆E(T+1)

Thus the online smoothing system instructs an energy de-
livery system to export ∆E(T + 1) units of energy during
time step T + 1. The delivery system functions as follows:

if ∆g(T+1) > ∆E(T+1) then

store ∆g(T+1)− ∆E(T+1) in buffer if possible
else

retrieve ∆E(T+1)− ∆g(T+1) from buffer if possible
end if

Thus wind power smoothing system repeats the function
online again at the end of time step T + 1.

F. Alternative variation penalty for micro-grids

In the case of micro-grids and captive power plants, wind
power is complemented with non-wind generation to jointly
serve loads locally. As the fraction of wind power increases,
the load-following variability faced by non-wind generation



increases as well, thus impacting its cost, efficiency, and
reliability. We now show that LP1 can be extended to directly
control the variability faced by non-wind generation.

Let �(t) denote the total load jointly served by wind and
non-wind generation. If E(t) is the energy supplied by wind,
then �(t) − E(t) denotes the complementary energy supplied
by non-wind generation. Although LP1 attempts to reduce the
variability of wind energy E(t), it can be extended to reduce
the variability of the complementary energy supplied by non-
wind generation. Given a cumulative load forecast L(t), this
is achieved by modifying LP1 as follows:

Residual load: R(t) = L(t)− E(t) (13)

Variation penalty: v = γ
n�

t=1

|∆R(t)− ∆R(t− 1)| (14)

V. MITIGATING VARIABILITY AND MAXIMIZING REVENUE

We now consider the problem where energy prices vary over
time and we wish to determine an export curve {E(t)}t that
maximizes revenue while minimizing variability. We consider
a model where prices vary across time intervals and the
variability within each interval needs to be minimized, i.e. the
export curve will incur a rate-change penalty within a time
interval but may change rates across time intervals.

Markets that determine energy prices are highly sophisti-
cated and vary by location. However these are based on some
common underlying principles that we consider in our work.

A. Day-ahead (DA) and Real-time (RT) Markets

Generators and retailers buy or sell energy in hourly DA
and RT intra-hour markets. Both these are ex-ante markets,
meaning that energy is actually delivered after the markets
close and prices are set. The DA market is an hourly market
while the RT market is generally for an interval within an
hour (e.g. 15 min). DA markets generally close a day before
while RT intra-hour markets close an hour or two before the
actual intra-hour interval. RT balancing markets exist so that
participants may bid their remaining resources based on a
better forecast of grid conditions, demand, and supply. For
e.g., a generator that has committed a certain amount of
energy in DA market may participate as a consumer in the
RT intra-hour market if she expects a shortfall of energy
during a certain time interval. After the markets close, bids
are evaluated and energy prices (also known as location-
based marginal prices) are determined for the upcoming time
interval. Thus each participant becomes committed for the
delivery or consumption of a certain amount of energy at a
specific price during an upcoming time interval. The DA and
RT prices are generally different. Having gone through a two-
settlement process to finalize commitments, if during actual
operations, a generator delivers more or less than committed,
she pays a penalty both for discarding as well as procuring
the balance energy from ancillary or regulation services.

interval

time steps per intervalk

commitments

E(t)

t

G(t)− B

. . .

G(t)

m intervals

Fig. 6. Mitigating variability and maximizing revenue: A cumulative
export curve E(t) is shown along with the forecasted generation G(t) and
G(t) − B. The red circles show the energy commitments that have already
been made through DA & RT markets and need to be met during each time
interval. Since the energy prices vary across time intervals, the export curve
attempts to maximize the total revenue earned by optimally meeting as many
commitments as possible while minimizing the rate changes within each
interval.

Objective: max
E(t),W(t),b(t)

∀t

D−
�

j

vj (15)

Variation penalty for interval j:

vj = γ �
j∗k�

t=(j−1)∗k

|∆E(t)− ∆E(t− 1)| ∀j = 1, . . . ,m (16)

Energy supplied in jth interval:
ej = E(j ∗ k)− E((j− 1) ∗ k) ∀j = 1, . . . ,m (17)
Dollars for total energy supplied in m intervals:

D =

m�

j=1

pa
j c

a
j + pr

jc
r
j − pg

j |ej − (caj + crj )| (18)

Ramprate limit, Conservation, Cumulative, Battery,
and Wastage constraints (6)-(11) of LP1 (19)

B. Mathematical program

We consider the above model wherein a wind power gen-
erator has firmed her supply commitments by successively
bidding in DA and RT markets (based on the best available
forecast and bid strategy). Having done that, during real time
operations she is required to deliver her commitments within
each intra-hour interval by exporting energy at a uniform rate.
Let j = 1 denote the current intra-hour interval. We assume
that markets have closed for all intervals j=1..m. Let caj and
crj denote the energy commitments to be met for jth interval
from DA and RT markets respectively. Let cj = caj +crj denote
the total energy commitment. Similarly let pa

j and pr
j denote

the DA and RT market prices per unit of energy for the jth
interval. Let pg

j denote the price per unit of energy from
regulation during the jth interval. Let ej denote the total energy
exported in the jth interval. Then the payment for this energy is
pa
j c

a
j +pr

jc
r
j−pg

j |ej−(caj +crj )| i.e., the payment for supplying



the committed amount cj after procuring or discarding the
balance through regulation.

We consider a discrete time system as before with k time
steps within each intra-hour interval. Let n = k ∗ m denote
the total number of time steps across all m intervals and let
{G(t)}t denote the forecast available for the n steps. Our goal
is to determine the export curve {E(t)}nt=1 such that export
rate changes are minimized within each interval and the total
revenue is maximized (Fig. 6). Rate changes across intervals
are not penalized. The linear program LP2:(15)-(19) achieves
this objective and outputs an export curve for the next n time
steps covering m intervals. Since LP2 looks ahead both at the
forecast and energy commitments for the next m intervals,
it optimizes across intervals to meet these commitments and
maximizes revenue. The rate changes within intervals are
penalized using the variation penalty (17) where γ � represents
the cost of rate change. As in the case of LP1, LP2 is
computationally efficient since the overflow constraints have
been omitted. The optimality results of Lemma 1 continue to
hold for LP2.

Similarly, the online smoothing system presented in IV-E
can invoke LP2 instead of LP1 at each time step to export
energy at a uniform rate to the grid. A variant of LP2 can also
be used for planning purposes to participate in DA markets. For
example, given the energy and DA price forecasts for 00-23
hours during the next day, LP2 can determine a low-variability
energy export curve for the next day that maximizes revenue.
This is achieved by replacing (18) by D =

�
j �pjej, where �pj

denotes the forecasted energy price during each interval that
now represents an hourly duration.

VI. EXPERIMENTS

We conduct experiments using the historical wind en-
ergy data published by the Alberta Electric System Operator
(AESO) [27]. AESO operates the Electric power system of
Alberta, Canada and one of its primarily responsibilities is to
economically and reliably dispatch generation to meet system
load. AESO has published 10-min data about the total system
load that it serves as well as the aggregate wind energy
generation used in their system. The amount of wind energy
in the system is not significant at the moment and varies from
0 to 8% (about 0.64GWh) of system load with an average of
about 2.3%.

Figure 7(a) attempts to compare the variability of load with
the variability of wind energy for a few days during the third
quarter of 2011. The wind energy and load time series have
both been normalized using their L2 norms respectively in
order to view them on the same scale. We observe that the
system load exhibits a regular diurnal pattern and exhibits
much lower variability than wind energy.

In order to estimate the operational impacts of injecting a
large amount of wind energy into the system, we triple the
amount of wind energy and subtract it off from the load to
obtain the residual load that would be served by dispatching
non-wind generation. Figure 7(b) plots the original system load
along with the residual load. Wind energy now serves up to

24% of system load with an average of about 7%. We observe
that the ramp range of system load is about 2GWh while
the ramp range of residual load reaches 3GWh (annotated
with arrow marks). When the wind generation is negatively
correlated with the system load, it does not serve the peak load
and therefore the residual load sometimes has the same peaks
as the original load. However it reduces the minimum off-peak
load thus increasing the ramp range of residual load. We also
observe that residual load has thinner and sharper peaks as
well as more short term variability compared to system load.

Increased ramp range implies that the system will be
able to utilise less of cheap baseload generation (which is
generally constant eg. coal, nuclear) and will need more
of load following (e.g. hydro) and expensive & inefficient
peaker generation (e.g. gas). Sharper peaks imply that the
system needs more nimble generation that can ramp up and
down rapidly. Increased short term variability implies that the
system needs more regulation reserves to match the short term
random fluctuations of load. All these factors can contribute to
increasing the cost of non-wind generation as well as increase
CO2 emissions and may defeat the purpose of injecting wind
generation into the system.
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Fig. 7. (a) A comparison of variability of wind energy versus the variability
of load. (b) Operational impacts of injecting wind energy: The original system
load is shown along with the residual load (= load − wind) that needs to be
served by non-wind generation.

Next we conduct Monte-Carlo simulations to study the
smoothing behavior of LP1 that has been implemented using
CPLEX [28]. We regard the daily 10-min wind generation time
series as the forecasted generation curve {∆G(t)}t and use
LP1 to compute the corresponding low-variability export curve
{E(t)}t by varying over different storage sizes B and variation
penalty factors γ while keeping the storage loss factor ω and



ramp rate limit r fixed. We vary B in step sizes equal to the
standard deviation of ∆G(t)

Fig. 8(a) and (b) show the benchmark results using data
for one of the sample days and plot the instantaneous and
cumulative curves respectively. For this day, the wind genera-
tion sourced into the system varies between 135− 585 MWh.
σ(∆G(t)) ≈ 96 MWh. The blue curve in Fig. 8(a) shows the
low variability export curve {∆E(t)}t when B = σ(∆G(t)) and
γ = 1. Fig 8(b) shows the corresponding cumulative curve as a
fraction of total energy generated. We observe that blue curve
exports about 90% of the total wind energy generated.

Keeping B fixed, increasing γ yields the grey curve that has
lower variability but also lower export as some of the energy is
lost in overflow. Keeping γ fixed, increasing B yields the green
curve that has higher export and also lower variability since
γ also penalizes rate changes. The corresponding cumulative
curves in Fig 8(b) show that the green curve has minimum
variability and maximum export due to a large storage size.

Fig. 8(c) shows how the fraction of energy exported in-
creases with buffer size for different γ. We observe that as
γ increases, we need larger buffer sizes to export the same
amount of energy. This is because as the variation penalty
increases, the export curve becomes more smoother at the
expense of potentially causing more overflow. For each value
of variation penalty, at a certain point, the curve flattens out
indicating that the system is exporting the maximum amount
of energy. For instance, the blue curve which corresponds to
the case when γ = 1, shows that it is sufficient to have a buffer
B = 2σ to export about 95% of energy. Thus the optimization
framework could also be used to size batteries to achieve an
acceptable level of smoothness and energy export with the
help of historical wind energy data.

VII. COMPARISON WITH VIDEO SMOOTHING PROBLEMS

As mentioned earlier in section II, the wind smoothing
problem has similarities with the video smoothing problem.
The networking community has contributed a large body of
literature on video smoothing, which covers different variants
of this problem [21]–[26]. One of the basic variants is as
follows. A streaming server wishes to transmit a stored VBR
(variable bit rate) video to a client at a rate that has low
variability. The client has a buffer of fixed capacity and
attempts to play the video according to the video playback
curve (which specifies the data required for each frame of
video). The server is required to determine a piece-wise
CBR (constant bit rate) export rate that has low variability
and neither starves nor overflows the client buffer. Given a
cumulative playback curve Gv(t), a client buffer of size Bc,
the server must transmit the video according to a cumulative
export curve Ev(t), such that the following holds at the client:
Gv(t) ≤ Ev(t) ≤ Gv(t) + Bc, ∀t (assuming a zero delay
and loss network channel, see [21]). For the wind smoothing
problem, given a forecasted generation curve G(t) and a buffer
of size B, the cumulative energy export curve E(t) should be
such that G(t) − B ≤ E(t) ≤ G(t), ∀t. However for a given
video, the total amount of data to be transmitted is fixed and
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Fig. 8. Simulation results using daily 10-min historical wind energy data
from AESO. (a, b): Instantaneous and cumulative export curves for different
buffer sizes B and variation penalty γ, (c) Fraction of total energy exported
as a function of buffer size B for different variation penalties γ.

only the transmission variability needs to be minimized. In the
problem addressed by LP1, both the total energy as well as
variability are variables in optimization and one can transmit
more or less energy depending on the cost of variability.

Another important attribute of wind smoothing is the un-
certainty of generation and the need for a forecast. The basic
video variant above corresponds to stored video wherein the
video playback curve is fixed and known. However one can
formulate an equivalent problem in video streaming if the
video is from a live event and is VBR. Let Glv(t) denote
the cumulative forecasted video generation curve from a live
event. Let Bs denote the buffer size at the server. Since Bs

is constrained by the delay that can be introduced in live



streaming, the buffer may overflow if the server does not
transmit the video at the right rate. The server wishes to
maximize export (or minimize losses) and minimize vari-
ability. The cumulative export curve Elv must be such that
Glv(t) − Bs ≤ Elv(t) ≤ Glv(t), ∀t. Therefore this problem
is equivalent to the wind smoothing problem addressed in
section IV and LP1 may be used to obtain an optimal solution.
To the best of our knowledge, such a problem has not been
addressed in the video literature. Another source of uncertainty
in the video smoothing problem comes from the network
channel that introduces delays and losses and this can modify
the export curve seen at the client.

There are also a couple of system differences between
video and wind problems. In the video problem, although the
physical buffer is cheap, its size is constrained by the delay that
it introduces. In the wind problem, the buffer size is limited
by its price and can have charging/discharging losses. The
wind problem also does not have any packet re-ordering issues
which may arise in the video problem.

VIII. CONCLUSIONS AND DISCUSSIONS

Wind energy generation is expected to grow significantly
over the next couple of years and therefore smoothing so-
lutions to mitigate its variability are important to integrate
it in a reliable and sustainable manner into power grids. In
this work, we presented an optimization-based wind power
smoothing system that uses storage to mitigate the variability
of wind power. The system maximizes the energy exported or
revenue earned. We presented a novel technique of modeling
the buffer using only linear constraints that allows efficient
computation of optimal smoothing solutions. Our work paves
the way for computationally efficient smoothing systems that
could be used in real-time operations.

We plan to extend our work in a couple of different direc-
tions. Future work will build upon the simulation experiments
by considering forecast and generation together with different
penalty metrics and battery sizes. We plan to extend our
battery model to include varying loss rates, the number and
depth of charging/discharging cycles, and battery lifetime. We
plan to extend our optimization formulations to take into
account stochastic forecasts by formulating stochastic linear
programs that consider recourse models. Lastly, one of the
challenges faced by wind farm operators is to optimally size
the battery based on available wind conditions since battery
storage systems are currently expensive. We shall study this
problem in future.
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