
1

On Managing Quality of Experience of
Multiple Video Streams in Wireless Networks

Partha Dutta∗, Member, IEEE, Anand Seetharam∗, Student Member, IEEE,

Vijay Arya, Member, IEEE, Jim Kurose, Fellow, IEEE, Malolan Chetlur, Member, IEEE, and

Shivkumar Kalyanaraman, Fellow, IEEE

Abstract—Managing the Quality-of-Experience (QoE) of video streaming for wireless clients is becoming increasingly important

due to the rapid growth of video traffic on wireless networks. The inherent variability of the wireless channel as well as the Variable

Bit Rate (VBR) of the compressed video streams make QoE management a challenging problem. In this paper, we investigate

scheduling algorithms to transmit multiple video streams from a base station to mobile clients. We present an epoch-by-epoch

framework to fairly allocate wireless transmission slots to streaming videos. In each epoch our scheme reduces the vulnerability

to stalling by allocating slots to videos in a way that maximizes the minimum ‘playout lead’ across all videos. We show that the

problem of allocating slots fairly is NP-complete even for a constant number of videos. We then present a fast lead-aware greedy

scheduling algorithm. Our greedy algorithm is optimal when the channel quality of a user remains unchanged within an epoch.

Our experimental results, based on public MPEG-4 video traces and wireless channel traces that we collected from a WiMAX

test-bed, show that the lead-aware greedy approach results in a fair distribution of stalls across the clients when compared to

other algorithms, while still maintaining similar or fewer average number of stalls per client.

Index Terms—Video streaming, quality-of-experience, playout buffer management, base station scheduling.

F

1 INTRODUCTION

With the deployment of broadband wireless networks,
the popularity of multimedia content on mobile de-
vices is expected to increase significantly. A large por-
tion of multimedia traffic is forecasted to be recorded
videos such as movies, YouTube videos, and TV
shows [1]. The inherent variability of both the wireless
channel and the bit rate of compressed videos makes
streaming videos on wireless networks a challenging
task. This work investigates how multiple Variable Bit
Rate (VBR) videos can be multiplexed over a time-
varying wireless channel while still maintaining a
good QoE at the mobile clients.

A wireless video streaming system consists of a
video server connected to a base station over a high
bandwidth wired backbone link and clients at Mo-
bile Stations (MS) that communicate with the Base
Station (BS) using a wireless channel (Figure 1). The
server stores pre-encoded videos, and upon receiving
requests, streams videos to the requesting clients. A
video stream is composed of a sequence of frames

• ∗The first two authors are primary authors of this work.

• P. Dutta is with Xerox Research Center, India, V. Arya and M. Chetlur
are with IBM Research, India, S. Kalyanaraman is with IBM Research,
Australia. This work was done when all the above authors were at IBM
Research, India.
E-mail: Partha.Dutta@xerox.com,{vijay.arya, mchetlur, shivkumar-
k}@in.ibm.com

• A. Seetharam, and J. Kurose are with the School of Computer Science,
University of Massachusetts, Amherst, USA.
E-mail: {anand, kurose}@cs.umass.edu

�����������	

�����������

��������	

��

��

Fig. 1. A video streaming system

that the client buffers and plays according to their
playout times. If a frame is not received by its playout
time, the client degrades the quality of the displayed
video and/or may stall the video to wait for more
frames to arrive. Here we consider systems that stall
in response to delayed frames. Namely, we consider
the general case of VBR videos being streamed with
the rate available to each wireless client varying over
time.

In this paper, we consider a wireless video stream-
ing system where multiple mobile clients are stream-
ing different VBR videos from a base station. Our
goal is to develop a fair packet scheduling algorithm
at the base station, for packet transmission over the
wireless channel that minimizes playout stalls across
all mobile clients. We assume that time is divided into
slots and scheduling decisions are taken at beginning
of an epoch (which consists of multiple slots). Prior
work [2], [3] that studies the impact of video quality
on user behavior demonstrate quantitatively (based
on real world datasets) that frequent stalling can result

2

in users abandoning their video streams. The number
of stalls per client thus appears to be a good metric to
capture the quality of user experience and minimizing
it can lead to reduced user abandonment.

We formulate this problem as an optimization prob-
lem that takes into account the varying rate of the
video streams and wireless channel at the clients and
allocates slots so as to maximize the minimum playout
lead among all videos in an epoch. Our contributions
are as follows. (a) We show that the optimization
problem of maximizing the minimum lead is NP-
complete even for two videos. (b) We develop a fast
lead-aware greedy scheduling algorithm that is sub-
optimal for wireless channels, but show that this
algorithm is optimal when the channel quality of
a user does not vary within an epoch, even with
different users possibly having different channel qual-
ity. (c) Finally, we conduct trace-driven simulations
with publicly available MPEG-4 video traces, and
wireless channel quality traces that we collected from
a WiMAX test-bed. Our simulations demonstrate that
the greedy algorithm achieves a fair distribution of
stalls across clients while maintaining a low average
number of stalls per client. In particular, when the
wireless network is average-provisioned as compared
to the total average bit-rate of the considered videos
(a case that is interesting in practice), the greedy
algorithm reduces the number of stalls by a factor of
3, when compared to other algorithms in our simu-
lations. We also study the sensitivity of the greedy
algorithm against changes in epoch duration, client’s
stall-recovery scheme, different video traces and poor
channel conditions.

The remainder of this paper is organized as follows.
Sections 3, and 4 describe the video streaming system
characteristics and develop the scheduling problem
formulation respectively. Hardness results are given
in Section 5 followed by the greedy algorithm in
Section 6. The evaluation framework and results for
the experiments are given in Section 7 and Section 8,
respectively. Comparison with related work is pre-
sented in Section 2. We discuss the adaptability and
scalability of the greedy algorithm in Section 9 and
conclude the paper in Section 10.

2 RELATED WORK

Although compression techniques reduce the mean
bit rate of video streams, it introduces considerable
rate variability over several time scales [4], [5]. Re-
source allocation for VBR video streaming has been
studied extensively for wired networks. Smoothing
video transmission is one of the primary techniques
used for reducing the effect of bit rate variability. By
pre-fetching some of the initial video frames before
their display times, smoothing techniques can mini-
mize the effect of bit rate variability under various
resource constraints, such as peak bit rate, client buffer
size, and initial playout delay [6], [7], [8], [9].

Rate allocation for multiple video streams is a well
studied problem [10], [11], [12], [13], [14]. [10] inves-
tigates minimizing rate variability when transmitting
multiple video streams given the client buffer size in
a high-speed wired network. In the RCBR service in-
troduced in [11], the rate of each video is renegotiated
at the end of each interval to provide statistical QoS
guarantees. [12] presents a call-admission scheme at a
statistical multiplexer and bounds the aggregate loss
probability. A linear programming model is proposed
in [13] to compute a globally optimized smoothing
scheme to stream multiple videos. [14] derives bounds
on the dropped frames, delay and buffer requirement
that can be obtained by statistically multiplexing VBR
streams at the video server by using a two-tiered
bandwidth allocation. Although our algorithm per-
forms periodic rate allocation among multiple video
streams, our work differs from the above papers in
two crucial aspects: our primary objective of fairly
managing playout stalls across the videos, and our
focus on time-varying wireless channel.

Scheduling algorithms for improving user QoE in
cellular networks have also been designed ([15], [16]
and the references therein). Our work is closely related
to [15], [16], where the authors have proposed greedy
algorithms for optimizing Mean Opinion Score (MOS)
for resource allocation in wireless networks (3G and
LTE). The main difference between our work and the
above mentioned papers is the user QoE metric -
we specifically consider video stalling whereas they
mainly consider MOS. Another aspect that we con-
sider in this work which is not explored in [15], [16]
is that we demonstrate the hardness of our scheduling
problem. In [17], the authors consider the problem of
transmitting multiple VBR videos to mobile clients,
but the work focusses on maximizing bandwidth uti-
lization while reducing energy consumption and does
not to address the issue of stalling of video playout.

Our work is closest to the work presented in [18],
[19] for managing stalls. Given the initial playout
delay and the receiver buffer size, [18] determines
upper and lower bounds on the probability of stall-
free display of a video. [19] develops an analytical
framework to find the stall distribution while stream-
ing a VBR video over a wireless channel. However,
unlike our work, both papers consider a single video
stream.

Gracefully degrading the quality of the displayed
video when network conditions deteriorate is an ac-
tive area of research. Scalable video coding for [20],
[21], [22] and prioritization of packets [23] are two
such methods used for video streaming. Recently,
there have been measurement studies on the qual-
ity of videos streamed over deployed WiMAX net-
works [24]. The authors in [25] compare video stream-
ing over a WiMAX network and a wired broadband
network (with equal reserved rates), and demonstrate
that with fine-tuning of network parameters, per-

3

formance over WiMAX is comparable to the wired
networks in terms of the network QoS metrics. Re-
cently, in [26], authors have investigated the impact of
WiMAX network parameters on the end-user’s QoE
in video streaming. However, none of these papers
consider mechanisms to multiplex video streams.

3 NETWORK MODEL

In this section we describe the video streaming system
and our wireless channel model.

3.1 Streaming system characteristics

We consider a video streaming system similar to [19],
as shown in Figure 1. We assume that the server
simultaneously and separately streams n videos
v1, . . . , vn to n clients 1, . . . , n via the base station.
A video object is composed of a sequence of frames
that are displayed at a constant frame rate by the
client. However, since the size of each frame varies
significantly, the required transmission rate of a video
varies with time.

For a video vi, its playback curve pi(t) specifies the
cumulative data needed in the first t time units of
the video playout, in order to play the video without
interruptions. Thus, pi(t) is the sum of the sizes of
the first tF frames of the video, where F denotes the
frame rate. The playback curve is a characteristic of a
video and is independent of the underlying channel.

For a client i, its receiver curve Gi(t) specifies the
cumulative amount of data it has received by time
t. The cumulative amount of data played out by
time t is given by its playout curve Oi(t). Note that
Gi(t) and Oi(t) depend on the channel conditions and
transmission scheme at the base station, and Oi(t)
additionally depends on the buffering scheme of the
client. In particular, unlike the playback curve, the
playout curve may vary between different streaming
instances of the same video. Figure 2(a) shows an
example playback, receiver, and playout curve for a
client. The notation used in this paper is summarized
in Table 1.

We assume that clients have sufficient buffer space
to buffer frames that have been received but not yet
displayed. If the next frame to be displayed is not
received within its playout time, the client stalls play-
out for a certain duration during which it continues
to buffer data received from the server. It resumes
playout based on its stall-recovery buffering scheme.
Common buffering schemes include: (i) waiting for a
fixed amount of time, (ii) waiting for a fixed amount
of future playout data, and (iii) waiting for a fixed
number of future playout frames.

3.2 Timing consideration

We assume a broadband wireless system (such as
WiMAX/LTE) in which scheduling decisions are

Notation Definition
n number of clients
pi, Gi, Oi playback, receiver and playout curves

(resp.)
R,A channel rate vector and transition matrix

(resp.)
N in

ep , N
sl
in, N

sl
ep #intervals/epoch, #slots/interval and

#slots/epoch (resp.)
Ii initial probability distribution of channel

state
F frames played out per second
Yi, Vi #bits and #complete frames (resp.) trans-

mitted in epoch
Li lead at the end of the epoch
Φi inverse playback curve
rij #bits that can be transmitted to client i in

slot j

TABLE 1

Important notations (note: subscript i refers to client i
and # denotes ‘number of’)

taken at the time granularity of epochs. Epochs are
divided into intervals (Figure 2(b)). The duration of an
interval is small enough so that the channel state does
not change significantly within an interval. Intervals
are divided into a fixed number of (transmission)
slots that are allocated to clients. The base station can
transmit to at most one client in a slot. Depending on
channel conditions, each client receives a certain bit
rate in the allocated slots. Following [19], we assume
that the wireless channel is error-free due to an error
control mechanism such as ARQ.

3.3 Channel model

We model the wireless channel between each client
and the base station (i.e., bit rate received at the client),
as a discrete-time Markov chain. We assume that the
Markov chain changes state at the beginning of an
interval. The possible channel states are identified by
the transmission rates R = (r1, r2, . . . , rK) (R is also
called the rate vector). Here ri denotes the number
of bits that can be transmitted in a time slot when
the channel is in state i [19]. As the Markov chain
changes state at the beginning of each interval, the bit
rate for a client remains the same in all slots within
an interval. Let A denote the transition matrix of the
Markov chain. We assume A is available at the server,
with each client’s channel modeled as an independent
Markov chain.

4 MODELING THE SCHEDULING PROBLEM

Our goal in this paper is to design a scheduling
algorithm that executes periodically (at the beginning
of each epoch) at the base station. Informally, the
goal of the scheduling algorithm is to transmit video
data to clients (some clients being allocated more
transmission slots in an interval than others) in order
to minimize playout stalls among all clients; we will
precisely formulate this optimization problem shortly.

Minimizing the number of stalls within an epoch
directly is difficult as it can incur high complexity. To

4

0 5 10 15
0

5

10

15

20

25

30

35

40

45

Playback Curve

Receiver Curve

Playout Curve

Stall

Bits

Lead at time t

Time
t

(a) (b)

Fig. 2. (a) Playback, receiver and playout curves of a video stream (b) Epochs, Intervals, Slots

determine whether a client will stall or not during an
epoch, it is necessary to determine the probability of
the client receiving a specific number of bits during
that epoch. Computing this probability is hard as one
has to deal with summation of dependent random
variables (the number of bits received in an interval
for a client follows a Markov chain). We discuss this
issue further, later in this section.

To motivate our strategy for allocating base station
transmission slots to clients, we note that a client’s
current buffer size (in bits) indicates its vulnerability
to stalling; the smaller the buffer, the more likely is
the occurrence of a stall. However, for VBR videos,
a client’s current buffer size may be an inaccurate
indicator of this vulnerability, since it does not con-
sider the amount of data needed to play the next
few frames. On the other hand, the playout lead of the
video, i.e., the duration of additional time a client can
play the video using only its currently buffered data,
takes into account the VBR nature of the video.

Therefore, in our scheme the server attempts to
prevent stalls by fairly maximizing the playout lead
among all receivers. To ensure that stalls are evenly
distributed across all videos, slots are allocated such
that the minimum lead among all clients is max-
imized. In contrast, if the scheduler goal were to
maximize the minimum current buffer size (in bits),
it would refrain from allocating bits to a client with
large buffer, with the effect that this client could stall
multiple times in succession if that large number
of bits corresponded to short amount of played-out
video. Indeed, we will see later that using current
buffer size as the optimization metric can result in
non-uniform allocation of stalls.

To perform this scheduling algorithm, we assume
that at the beginning of each epoch, clients commu-
nicate their channel state to the server, as already
done in numerous wireless standards. Clients also
communicate their playout lead to the server. The
initial state of the client’s channel and the transition
matrix of the Markov chain is used to determine the
expected rate available to clients in different intervals
during an epoch.

We do not consider client channel state during

previous epochs while scheduling slots for the current
epoch. As the server obtains fresh client channel state
at the beginning of each epoch along with client
playout lead, considering client channel information
from previous epochs does not provide any additional
value given a Markovian channel model. We also
do not consider subsequent epochs because wireless
channel prediction for longer than an epoch may not
be accurate.

Preliminaries: Let N in
ep and Nsl

in denote the number of
intervals in an epoch and the number of slots in an
interval respectively. Thus the total number slots in
an epoch is Nsl

ep = N in
epN

sl
in. Each video is played at

the constant rate of F frames per second.

Consider the ith client in a particular epoch. Let Ii
be the state vector denoting the probability distribu-
tion of channel states at the ith client at the beginning
of the epoch. Then, given the Markov channel model,
the probability distribution of the channel state at the
client at the beginning of the kth interval in the epoch
is IiA

k.

Let Xik be the random variable denoting the num-
ber of bits that can be transmitted to client i in any slot
of the kth interval. Then, its expectation E[Xik] is the
dot product of IiA

k and the channel transmission rate
vector R. Suppose that the server assigns sik slots to
client i in the kth interval. Then the random variable
Yi for the number of bits transmitted to client i in

this epoch can be expressed as
∑Nin

ep

k=1 sikXik. From

linearity of expectation, E[Yi] =
∑Nin

ep

k=1 sikE[Xik] =
∑Nin

ep

k=1 sikIiA
kR.

Before proceeding further, we discuss briefly why
determining the probability of client i stalling (pi)
in an epoch is computationally expensive. Let ci be
the amount of data that client i has to receive by
the end of the epoch to avoid stalling. Then pi =

1 − P [Yi > ci] = 1 − P [
∑Nin

ep

k=1 sikXik > ci]. It is
difficult to determine the above probability because
Xik are dependent random variables. To determine
the probability of a client stalling, it is necessary to
determine the joint distribution of (Xi1, Xi2,XiNin

ep
)

5

which is computationally expensive.
Playout Lead: The playout lead of a client at any
given time being the additional duration of time that
its video can be played out using the data available in
its buffer, it is equal to the number of complete frames
in the client buffer divided by the frame rate F . Let
li denote the playout lead of client i at the beginning
of an epoch. Let oi denote the total amount of time
for which the video has been played out at the client
i (calculated from the playout curve). Let gi be the
time for which the data received at the client can be
played out (calculated from the playout curve). Thus
li = gi−oi, is a known constant value at the beginning
of the epoch. Note that oi and gi account for the data
consumption at the client and the amount of data
received during the previous epoch, respectively. In
Figure 2(a), the green bar denotes the playout lead
for the video at time t.

Let Li be the random variable denoting the playout
lead of the video at the end of an epoch (assuming
that the video stalls during the epoch), and Vi be
the random variable denoting the number of additional
frames that can be completely received by the end of
the current epoch. Then, Li = li + (Vi/F).

Inverse Playback Curve: For an epoch, we now define
a deterministic function that maps the number of bits
received to the number of complete frames received.
The inverse playback curve Φi for each video i is defined
as follows: if b bits are transmitted to video i in this
epoch, then the number of complete frames that are
received increases by Φi(b) at the end of the epoch.
Thus, Vi = Φi(Yi). (Note that partially transmitting a
frame does not increase the lead of the video.)

Estimating expected playout lead: We know that
Li = li + (Vi/F). As li is a known constant at
the beginning of an epoch, E[Li] = li + E[Vi]/F .
Now E[Vi] = E[Φi(Yi)]. Unfortunately, since the
video frame sizes can vary, the mapping Φi from bits
to frames is non-linear, and hence, we approximate
E[Vi] ≈ Φi(E[Yi]). The main benefit of this approxima-
tion is that computation of Φi(E[Yi]) is simple, making
the execution of our greedy algorithm in Section 6
fast. Thus the expected lead is estimated as E[Li] ≈

li + (1/F)Φi(E[Yi]) = li + (1/F)Φi(
∑Nin

ep

k=1 sikIiA
kR).

The Multiplexing Problem: Our aim, at the begin-
ning of an epoch, is to assign slots with the goal of
maximizing the minimum expected lead at the end of
the epoch. This problem can be expressed as follows:

Objective: maxmin{E[L1], . . . , E[Ln]}
subject to the constraints:

1.
∑n

i=1 sik = Nsl
in, ∀k ≤ N in

ep

2. sik ≥ 0 , ∀i ≤ n, ∀k ≤ N in
ep

(1)

5 HARDNESS RESULT

We now investigate the multiplexing problem de-
scribed in the previous section. We formulate it as a
combinatorial problem and call it Lead-based Multiple
Video Transmission (LMVT) problem. (We assume that
all slots from all intervals of an epoch are numbered
sequentially from 1 to Nsl

ep.)

Inputs. At the beginning of an epoch, the ith client
has an initial lead of li seconds i.e., its buffer contains
data corresponding to the F ∗ li frames received after
the last played frame. Let rij be the expected number
of bits that can be transmitted to client i in slot j. Thus
if slot j belongs to interval k, then rij = IiA

kR. For
ease of presentation, we also call rij the rate of client
i in slot j.

The LMVT Problem. Given the above inputs, we
need to find a slot allocation that maximizes the
minimum lead among all clients at the end of the
epoch. Here, ‘lead’ refers to the expected playout lead
(1). A slot allocation for an epoch essentially specifies
for each slot, the client to which that slot is allocated.

We now show that the following decision version of
LMVT is NP-complete: given a constant L, does there
exist a slot allocation such that all videos have a lead
of at least L seconds at the end of the epoch?

Lemma 1: The decision version of the LMVT prob-
lem is NP-complete.

Proof: Clearly the decision version of LMVT is
in NP. We show that the problem is NP-complete
by reducing subset-sum [27] to LMVT. The decision
version of subset-sum is as follows: given a set S of
positive integers {x1, . . . , xP }, and a positive integer
B, does there exist a subset S′ ⊆ S such that the
sum of elements in S′ is exactly B [27]. Let Π denote
the index set {1, . . . , P} and let Y =

∑
j∈Π xj . It is

assumed B < Y , otherwise the subset-sum instance is
trivial to solve.

For an instance of subset-sum, we construct an
instance of LMVT as follows. Let Π be the set of
slots in the epoch with one slot per interval. Let
there be two videos v1 and v2. Let the set S map
to the rates available in each slot as follows. Let xj

be the rate available to both the videos in slot j i.e.,
xj = r1j = r2j . Let the initial lead for both the videos
be zero and both play at the rate of 1 frame/second.
Let the inverse playback curve of v1, Φ1(b), be a
function which is 0 for b < B, and 1 for b ≥ B. An
example of such a video is one that contains a single
frame of size B bits. Similarly, let Φ2(b) be a function
which is 0 for b < Y − B, and 1 for b ≥ Y − B. Let
the required minimum lead L for each video be 1. We
now show that the above instance of subset-sum has
a solution if and only if the constructed instance of
LMVT has a solution.

Subset-sum to LMVT: Suppose the subset-sum problem
instance has a solution given by a subset S′ of S.

6

We construct a solution for the instance of LMVT as
follows: for each j ∈ Π, if xj ∈ S′ then we allocate the
slot j to video v1, else we allocate the slot to video v2.
In either case, xj bits are transmitted in slot j for the
allocated video. Since, the sum of all elements in S′

is B, this allocation results in transmission of B bits
and Y −B bits for v1 and v2, respectively. Thus, both
videos have a lead 1 at the end of the epoch.

LMVT to Subset-sum: For the reverse direction, assume
that we have a solution of LMVT in which both the
video have a lead of 1. Thus, v1 and v2 are transmitted
at least B bits and Y − B bits, respectively. In the
solution, suppose that Π1 ⊆ Π be the set of slots
that are allocated to v1, and the remaining slots are
allocated to v2.

Note that, for each j ∈ Π1, the number of bits
transmitted to v1 is r1j = xj . Since at least B bits
are transmitted to v1, B ≤

∑
j∈Π1

r1j =
∑

j∈Π1
xj .

Similarly, for video v2, Y − B ≤
∑

j∈Π\Π1
r2j =∑

j∈Π\Π1
xj . However by construction,

∑
j∈Π xj = Y ,

so
∑

j∈Π1
xj = B and

∑
j∈Π\Π1

xj = Y − B. Thus,
the subset {xj : j ∈ Π1} of S is a solution of the
subset-sum instance.

For a constant number of videos, we have designed
a pseudo-polynomial time algorithm to optimally
solve LMVT using dynamic programming. The time
complexity of the dynamic programming algorithm is
high; it is exponential in the number of videos.

Lemma 2: For a constant number of videos, there
is a pseudo-polynomial time algorithm to optimally
solve LMVT.

Let us now present an optimal dynamic program-
ming algorithm for LMVT. We present a brief descrip-
tion of the algorithm here while a detailed proof is
presented in the Appendix (in Supplement Material).

We begin by introducing a simple definition. A
transmission vector (or Tx-vector) is an n-tuple <
a1, . . . , an >, where the ith element indicates the
number of bits to be transmitted to video i. For a Tx-
vector T , we denote by T [i] the ith element of T . For a
given number of total slots, say z, and a Tx-vector T ,
we say that T is z-feasible if there is a slot allocation
such that, for each 1 ≤ i ≤ n, video vi receives a total
of T [i] bits in the allocation.

Our dynamic programming algorithm iterates over
the number of slots m that varies from 1 to Nsl

ep and
determines the feasible Tx-vectors. In each iteration
(say for slot m), the algorithm does the following. 1)
It computes the m-feasibility of the Tx-vectors based
on the (m − 1)-feasibility of a subset of Tx-vectors
(computed in the previous step). 2) For each feasible
Tx-vector for slot m, then computes the minimum
lead considering all videos. 3) For each feasible Tx-
vector T , stores an allocation pointer to the Tx-vector
from the previous step from which its m-feasibility
was computed.

Finally, in the iteration when m = Nsl
ep, we maintain

a pointer to determine the Nsl
ep-feasible vector with the

maximum value of its min-lead among all the Nsl
ep-

feasible vectors. Thus, at the end of algorithm, we
obtain a pointer to a Nsl

ep-feasible Tx-vector T ′ with the
maximum value of min-lead, and we follow the Nsl

ep

allocation pointers from T ′ to < 0, . . . , 0 > to obtain an
optimal slot allocation.

6 A LEAD-AWARE GREEDY ALGORITHM

We now present a fast lead-aware greedy algorithm
for the LMVT problem. The algorithm is optimal
for LMVT for the case when the channel conditions
remain constant within an epoch, but different users
may have different channel quality (as shown in
Lemma 3 below). Later in our simulations, we nu-
merically evaluate the algorithm for the general case
when the channel conditions of users may vary.

Lead-Aware Greedy Algorithm: Starting with the initial
playout leads of the videos and all the slots in the
epoch to be allocated, the greedy algorithm allocates
slots one by one (Figure 3) as follows. In each itera-
tion, the algorithm selects a video i with the minimum
expected lead, such that video i has the lowest id
among the videos with the minimum lead. Then the
algorithm allocates client i a slot j in which client i
has the highest rate r among all available (yet to be
scheduled) slots. Before moving to the next iteration,
slot j is marked unavailable for all videos, and the
expected lead of client i is increased corresponding to
the transmission of r bits to video i using the inverse
playback curve Φi (line 12 of Figure 3). The algorithm
iterates until there are no available slots in the epoch.
Note that, the client with the minimum lead that is
selected by the algorithm may change between any
two slot allocations. Hence, the algorithm allocates
slots one by one even though each client’s channel
condition does not change within an interval.
Complexity analysis: The total number of slots con-
sidering all epochs and intervals is given by Nsl

ep. We
now evaluate the runtime of the greedy algorithm in
Figure 3.
Time Complexity: Initialization

• Lines 5 -7 : O(max(nNsl
ep, nN

sl
inK

2)). This is be-
cause the matrix multiplication (IiA

kR) will re-
quire O(K2) time.

Time Complexity: Greedy algorithm

• Line 9: O(n)
• Line 10 O(Nsl

ep)
• Lines 11-13 O(1) (assuming constant computation

time for Φ(.))
• Lines 9-13 O(Nsl

ep) + O(n) = O(max(Nsl
ep, n)) =

O(Nsl
ep) (as Nsl

ep > n usually)
• Lines 8-13 are executed (Nsl

ep) times and thus the

greedy algorithm takes O(Nsl
ep

2
).

Total Time Complexity : O(max(Nsl
ep

2
, nNsl

inK
2)). We

provide further details in the Appendix (in Supple-
ment Material).

7

1: function initialization
2: AvailableSlots← {1, . . . , Nsl

ep}; j ← 1
3: ∀ client i: leadi ← initial lead of i; Ii ← initial state

distribution; rcvbitsi ← 0
4: ∀ client i: compute the inverse playback curve Φi for this

epoch
5: ∀ client i: for 1 ≤ k ≤ N in

ep do {for all intervals in epoch}

6: while j < kNsl
in do {for all slots in interval}

7: rij ← IiA
kR; j ← j + 1

8: function greedy algorithm: while AvailableSlots 6= 0 do
9: select a client with the lowest id i s.t. (∀q ≤ n, leadi ≤ leadq)

10: select a slot j s.t. (j ∈ AvailableSlots) and (∀x ∈
AvailableSlots, rij ≥ rix)

11: allocate slot j to client i; rcvbitsi ← rcvbitsi + rij

12: leadi ← initial lead of video i +
Φi(rcvbitsi)

F
13: remove j from AvailableSlots

Fig. 3. A greedy algorithm (executed at the beginning

of each epoch)

To motivate our choice of the above greedy algo-
rithm, we now show that the algorithm is optimal
for LMVT when each client’s channel condition does
not change within an epoch (but different clients may
have different rates).

Lemma 3: If the rate of each client does not change
within an epoch, the greedy algorithm yields an op-
timal solution for LMVT.

Proof: As the rate of a client i does not change
within an epoch, each slot that is allocated to the client
i provides a constant number of bits, say ri. In this
setting, the greedy algorithm simply chooses the client
i that has the lowest id among the clients with the
minimum lead, and selects the next available slot and
allocates it to i. The proof of optimality is by induction
on the number of allocated slots.

For the induction, we first introduce some notation
and observations. At any point in the execution of the
LMVT algorithm, the lead of a client can only change
on receiving sufficient slots for the client’s next video
frame, and therefore, the client’s lead can change only
by a multiple of 1/F . For any LMVT solution (slot
allocation to clients) X , let lXi denote the lead of
client i in solution X , and let lXmin = mini{l

X
i } be the

minimum lead in X . Let sl(X, j) denote the number
of slots allocated to client j in solution X . Note that
for a solution Y and client k, if lXj > lYk then sl(X, j) >
sl(Y, k), on the other hand, if sl(X, j) ≥ sl(Y, k) then
lXj ≥ lYk .

Base Case: If only 1 slot is available, the greedy
algorithm allocates it to a client with the minimum
lead and therefore the minimum lead is maximized.
Induction Step: Let us assume that the greedy
algorithm yields an optimal solution G for every
d ≤ c slots. Let G(c + 1) be the solution given by
the greedy algorithm for c + 1 slots. We must prove
that G(c + 1) is optimal. To show by contradiction,
let us assume that there exists an alternate solution
S(c+1) 6= G(c+1) that is optimal for c+1 slots, and
S(c + 1) has a higher minimum lead than G(c + 1).

Thus, l
S(c+1)
min > l

G(c+1)
min (i.e., l

S(c+1)
min ≥ l

G(c+1)
min + 1/F)

[Observation A0]. Let client i have the lowest id
among the clients with the minimum lead in G(c).
After the (c+ 1)th slot is allocated to i by the greedy
algorithm, we have one of the following two cases:

Case 1: Minimum lead changes, i.e., l
G(c+1)
min > l

G(c)
min .

Let j be a client with the minimum lead in G(c+1),

i.e., l
G(c+1)
min = l

G(c+1)
j (j need not be different from i).

Then l
S(c+1)
j ≥ l

S(c+1)
min > l

G(c+1)
min = l

G(c+1)
j [Observa-

tion A]. Thus, j is allocated at least one more slot in
S(c+1) than in G(c+1). Let us remove a slot from j in
S(c+1) to obtain a solution S(c) for c slots. Since we
have only removed one slot from j in S(c+1) to obtain

S(c), l
S(c)
j ≥ l

S(c+1)
j − 1/F ≥ l

G(c+1)
j [Observation

B], and l
S(c)
min = min{l

S(c)
j , l

S(c+1)
min } ≥ l

G(c+1)
j (where

the last inequality follows from inequalities A and B).

Thus, we have l
S(c)
min ≥ l

G(c+1)
j = l

G(c+1)
min > l

G(c)
min which

is a contradiction since G(c) is optimal for c slots.

Case 2: Minimum lead remains unchanged at some

value z, i.e., l
G(c+1)
min = l

G(c)
min = z.

Observe that this can happen either when (a) i has
not received data constituting an entire frame and
therefore its lead has not advanced (b) i received data
constituting one or more frames and its lead advanced

but there is another client j such that l
G(c)
j = l

G(c)
i = z.

We first consider the case when z = 0. As l
S(c+1)
min ≥

z + 1/F > 0 (from A0), in S(c + 1) every client is
allocated enough slots for at least its first frame, Thus,
for each client j, the minimum number of slots needed
for the first frame, say sl′j , is less or equal to than
sl(S(c+1), j), and therefore,

∑
j sl

′
j ≤ c+1. Now con-

sider the execution of the greedy algorithm until the
minimum lead (over all videos) becomes greater than
0. The algorithm selects a client j, in the increasing
order of their client id, and allocates client j enough
slots for its first frame, i.e., sl′j , and then moves to
the next frame. Therefore, given c + 1 ≥

∑
j sl

′
j slots,

the greedy algorithm will allocate sufficient slots to
each client for its first frame, and hence, the allocation
will have a minimum lead of at least 1/F . Thus,

l
G(c+1)
min ≥ 1/F , a contradiction.

We now consider the case when z > 0. Let us look
back in time to the point in the greedy algorithm’s
execution when the minimum lead in G has last
changed. Let us assume that this occurred δ slots back,

i.e., l
G(c−δ)
min = z−1/F and l

G(c−δ+1)
min = . . . = l

G(c+1)
min = z

[Observation C]. Thus, in the solution G(c + 1 − δ),
there must have been a set of clients P each with lead
z.

Consider the period of execution of the greedy
algorithm while going from G(c+ 1− δ) to G(c+ 1).
In this period, the algorithm must have assigned slots
only to clients in P . Also, no client in P would have
received slots more than what is required for its next

8

one frame (because on receiving slots required for
one frame, the client’s lead increases, and it does not
remain a client with the minimum lead) [Observation
C1]. Let P1 be the set of clients in P that have received
sufficient slots for their next frame in this period, and
P2 be the remaining set of clients in P (that have
not received enough slots for their next frame in this
period). We note that P2 cannot be an empty set,
otherwise, the lead of G(c+ 1) would be higher than
G(c+ 1− δ).

Let q be any client in P2. Then l
G(c+1)
q = z. Since,

from our initial assumptions, l
S(c+1)
min > l

G(c+1)
min = z,

l
S(c+1)
q ≥ l

S(c+1)
min > z = l

G(c+1)
q [Observation D]. Also,

for any client j in P1, l
G(c+1)
j = z + 1/F (since it has

received slots for the next frame) [Observation D1].
As, l

S(c+1)
j ≥ l

S(c+1)
min > l

G(c+1)
min = z, we have, l

S(c+1)
j ≥

z + 1/F = l
G(c+1)
j [Observation E].

To show a contradiction, let us modify the solution
S(c + 1) by removing δ + 1 slots to obtain a solution
S(c − δ) for c − δ slots as follows. For every client
j in P , we remove any sl(G(c + 1), j) − sl(G(c + 1 −
δ), j) slots from its slot allocation, and in addition, we
remove one more slot from one (arbitrarily chosen)
client, say w, in P2. (The removed slots add up to
δ + 1 because δ slots were allocated by the greedy
algorithm to obtain G(c + 1) from G(c + 1 − δ).) We
now show that the minimum lead in S(c−δ) is higher
than the minimum lead in G(c− δ), thus resulting in
a contradiction (because G(c − δ) is optimal for c −
δ slots). Let q be the client with the minimum lead
S(c− δ). We consider four possible cases.

(1) q is not in P . In this case, no slots were removed
from q to obtain S(c−δ) from S(c+1), and so q had the

minimum lead in S(c+1) as well. Therefore, l
S(c−δ)
q =

l
S(c+1)
min > l

G(c+1)
min = z > l

G(c−δ)
min (from A0 and C).

(2) q belongs to P1. Note that, since a process in P1
receives the minimum number of slots that is required
for its lead to be z + 1/F in G(c + 1) (from C1 and

D1), and l
S(c+1)
q ≥ l

S(c+1)
min ≥ l

G(c+1)
min + 1/F = z + 1/F

(from A0), q receives equal or more slots in S(c + 1)
than in G(c+1). Then, sl(S(c−δ), q) = sl(S(c+1), q)−
(sl(G(c+1), q)− sl(G(c+1− δ), q)) ≥ sl(G(c+1), q)−
(sl(G(c+1), q)−sl(G(c+1−δ), q)) = sl(G(c+1−δ), q).

Therefore, l
S(c−δ)
q ≥ l

G(c+1−δ)
q = z > l

G(c−δ)
min = z− 1/F

(where the last inequality follows from C).

(3) q belongs to P2 but is distinct from w. Since q ∈

P2, l
S(c+1)
q > l

G(c+1)
q (from D), and therefore sl(S(c+

1), q) > sl(G(c+ 1), q). Now, sl(S(c− δ), q) = sl(S(c+
1), q)− (sl(G(c+1), q)− sl(G(c+1− δ), q)) > sl(G(c+
1), q))−(sl(G(c+1), q)−sl(G(c+1−δ), q)) = sl(G(c+1−

δ), q). Therefore, l
S(c−δ)
q ≥ l

G(c+1−δ)
q = z > l

G(c−δ)
min =

z − 1/F (where the last inequality follows from C).

(4) q = w. Since q ∈ P2, l
S(c+1)
q > l

G(c+1)
q (from D),

and therefore sl(S(c + 1), q) > sl(G(c + 1), q). Now,
sl(S(c−δ), q) = sl(S(c+1), q)−(sl(G(c+1), q)−sl(G(c+
1 − δ), q)) − 1 > sl(G(c + 1), q)) − (sl(G(c + 1), q) −

sl(G(c+1− δ), q))− 1 ≥ sl(G(c+1− δ), q). Therefore,

l
S(c−δ)
q ≥ l

G(c+1−δ)
q = z > l

G(c−δ)
min = z − 1/F (where

the last inequality follows from C).
As a special case of the above lemma, when the

transmission channel is of Constant Bit Rate (CBR),
i.e., the rate of slots do not change within an epoch
or across the users, e.g., in a wired link, the greedy
algorithm is optimal.

Corollary 1: For a CBR channel, the greedy algo-
rithm yields an optimal solution for LMVT.

7 EXPERIMENTAL SETUP

7.1 Scheduling Algorithm: Parameters

To evaluate our epoch-by-epoch scheduling strategy
based on playout lead we need to specify the epoch
duration, interval size and the number of slots in an
interval. Recall that in our scheduling strategy, epochs
are divided into intervals, which are subdivided into
slots (Figure 2(b)).

For ensuring a smooth viewing experience, it is un-
desirable to have small or large epochs as the former
will result in frequent glitches while the latter will
significantly delay playout. Hence in our experiments
we consider epochs to be in the seconds timescale.
We perform our experiments considering an epoch
duration of 10 seconds (except Figure 6 where we vary
the epoch duration). We choose an interval duration
to be 1 second in our experiments because we want
to capture channel variation due to path loss and
shadowing effects. The fast fading behavior of the
channel will average out for video frames (as their
transmission time is typically large with respect to the
fast fading timescale). In our experiments, we vary the
number of slots in an interval. By varying the number
of slots in an interval we can vary the total resource
(in terms of bandwidth) available at the base station
because the rates in our Markov model correspond to
the number of bits received in a slot.

The main objective of our experiments is to demon-
strate that the proposed greedy algorithm is able to
achieve its goal of minimizing the number of stalls
across a broad range of epoch durations, interval
sizes and number of slots per interval. Determining
the optimal epoch duration, the interval size or the
number of slots in an interval so as to maximize
viewer satisfaction is beyond the scope of this work.

We assume the following buffering scheme at the
client - if the client does not have enough data to
playout for the whole duration of the epoch, it stalls
for the entire epoch. We also assume that the clients
have infinite large buffers to store all received packets.

7.2 Trace-Driven Experiments

To demonstrate the efficacy of the greedy algorithm,
we perform trace-driven experiments. Our evaluation
uses two types of traces:

9

(i) VBR Video Traces that provide the variation in the
frame sizes of videos for emulating video playouts.
(ii) User-Level Wireless Channel Traces that provide the
rates achieved by different users in every interval of
each epoch.

7.2.1 VBR Video Traces

We use the publicly available MPEG-4 VBR Video
Traces [28], [29] in our experiments. The videos play
out at a constant frame rate of 30 frames per second.
We perform experiments with video traces encoded
in Common Intermediate Format (CIF) and Quarter
CIF (QCIF). All evaluation is performed in a scenario
where 8 different videos are being simultaneously
streamed to 8 different users over the shared wireless
infrastructure. Unless mentioned otherwise, all results
are reported for CIF videos. A brief description of
the 8 CIF video traces used, is given in Table 2.
The duration of the videos used in our experiments
is approximately 27 minutes. Detailed information
about the CIF and QCIF traces is available in [29].

7.2.2 User-Level Wireless Channel Traces

Signal Strength Measurement: The wireless channel
traces we use were obtained from signal strength
measurements over a (802.16e) WiMAX network
deployed in WINLAB at Rutgers University. The
WiMAX base station is installed in WINLAB. During
our trace collection, the base station continuously
transmitted data packets, and signal strength (RSSI)
was recorded at the receiver (a laptop) under
vehicular and pedestrian mobility. As our interval
duration is 1 second, we obtain signal strength quality
one second apart from each another. To eliminate any
fast fading effects, we consider the average signal
strength at the beginning of each second. Additional
details are available in [30]. A brief description of the
parameters of the WiMAX network used in our trace
collection is given in Table 3. The vehicular mobility
traces were collected by driving a car around the
campus multiple times while the pedestrian mobility
experiments were performed by walking around
the same campus. We conducted 4 vehicular and 4
pedestrian mobility experiments, each of duration
approximately 10 minutes. As the base station only
has a range of 500m, the entire range was effectively
covered by these experiments.

RSSI-Rate Mapping: To obtain a mapping between
the RSSI values and the rates achieved, we use
the mapping between the modulation and coding
schemes (MCS) and the SINR values for a WiMAX
network provided in [31]. A common approach is to
divide the SINR regime into a number of ranges and
for each range there exists an MCS that maximizes
throughput. The MCS indicate the rates achievable in
practice. Six different rates are achievable in practice
and they have the following ratio [1, 1.5, 2, 3, 4, 4.5]

Name of Mean bit Mean frame Standard
video rate (Mbps) size (Kb) deviation of

frame size
(Kb)

Star Wars IV 0.42 14 17.6
Lord of the
Rings I

0.65 21.6 22.7

Tokyo
Olypmics

1.06 35.4 39.4

Matrix I 0.41 13.4 17.1
Matrix II 0.61 20.2 25.5
Matrix III 0.52 17.1 20.5
NBC News 1.33 44 34
Silence of the
Lambs

0.44 14.7 22.2

TABLE 2

CIF video trace statistics

[31]. As mentioned earlier, our base station reports
RSSI values, which is similar to the SINR values
reported in [31]. The minimum and maximum values
of RSSI measured in our experiments are -85 dBm
and -37 dBm and we map them to the corresponding
SINR values in [31]. We use linear extrapolation to
determine the mapping between RSSI ranges and
the rates achieved. We use the RSSI-rate mapping
to generate the rate traces (i.e., traces indicating
the rates achieved over time) for the vehicular and
pedestrian mobility experiments. We then generate 8
different User-Level Wireless Channel Traces (each 27
minutes long) emulating the real channel conditions
(separately for vehicular and pedestrian mobility)
from the rate traces.

Markov Chain Model: Our Markov channel model
has 6 different states corresponding to the rates
achieved. The states of our Markov model correspond
to the number of bits successfully transmitted in a
slot. The vector of transmission rates is taken to be
R = [1, 1.5, 2, 3, 4, 4.5] ∗ 50000 bits for the CIF videos.
SNR based Markov chain models describing the
wireless channel have been well studied in literature.
[27] provides a detailed description of the various
models available in literature. Similarly the use of
SNR to bit rate mapping is also common [28], [29].
We determine the transition matrix of the Markov
chain empirically (from the rate traces) by counting
the number of transitions from one state (say i) to
other states and then normalizing them by the total
number of transitions from state i.

We note here that after about 40 steps (i.e., 40
seconds), the probability distribution obtained from
any starting state using the transition matrix reaches
very close (5%) to the steady state distribution for both
vehicular and pedestrian mobility scenarios. There-
fore, the transition matrix does not reach steady state
during the duration of an epoch (which is 10 seconds)
and is thus useful as a prediction mechanism for
making scheduling decisions.

10

55 60 65 70 75 80
0

5

10

15

20

25

30

Number of Slots in an IntervalA
v

er
ag

e
N

u
m

b
er

 o
f

S
ta

ll
s

p
er

 V
id

eo

Equal Split

Greedy (Bits)

Greedy (Time)

Weighted Split

(a) Average number of stalls

55 60 65 70 75 80
0

5

10

15

20

25

30

Number of Slots in an Interval

S
ta

n
d

ar
d

 D
ev

ia
ti

o
n

Equal Split

Greedy (Bits)

Greedy (Time)

Weighted Split

(b) Fairness

Fig. 4. Vehicular: Distribution of stalls with variation of wireless channel resource (slots) for CIF videos

45 50 55 60 65 70
0

5

10

15

20

25

30

35

Number of Slots in an IntervalA
v

er
ag

e
N

u
m

b
er

 o
f

S
ta

ll
s

p
er

 V
id

eo

Equal Split

Greedy (Time)

Weighted Split

(a) Average number of stalls

45 50 55 60 65 70
0

5

10

15

20

Number of Slots in an Interval
S

ta
n

d
ar

d
 D

ev
ia

ti
o

n

Equal Split

Greedy (Time)

Weighted Split

(b) Fairness

Fig. 5. Mixture of vehicular and pedestrian mobility: Distribution of stalls with variation of wireless channel

resource (slots) for CIF videos

Parameter Value
PHY OFDMA
Carrier Frequency 2.59 GHz
Channel Bandwidth 10 MHz
Frame duration 5 ms
Transmission power 30 dbm
Antenna model Sector
Fragmentation/Packing ON
ARQ OFF

TABLE 3

WiMAX system parameters for trace collection

8 RESULTS

In this section we present and discuss results for
the various experiments conducted. We compare the
performance of the greedy algorithm against two
baseline approaches: the equal-split and the weighted-
split algorithms. In the equal-split approach, we di-
vide the number of slots available in every interval
equally among all the users. In the weighted-split
the total number of slots in any interval is divided
in proportion to the mean bit rate of the individual
video streams. While allocating the slots, these two
algorithms neither consider the playout lead nor the
wireless channel variability, and hence, we expect
them to be unfair, and have lower overall performance
compared to our greedy strategy.

To emphasize the importance of making scheduling
decisions based on playout lead, we also consider a
variant of our greedy algorithm from Section 6 (we
denote our algorithm from Section 6 by greedy-time).
We consider a greedy-bit algorithm which is similar
to our greedy-time algorithm except for one crucial

Number of Slots Expected Bit-Rate (Mbps)
34 3.23
58 5.7
82 8.0

TABLE 4

Expected steady state bit rate vs. number of slots

aspect: it allocates the next slot to the video with the
minimum lead in terms of playout bits (buffer size)
instead of playout time. To avoid cluttering the plots
with many lines, we show only a few results for the
greedy-bit algorithm. The greedy-bit approach ignores
the variability in the frame sizes (i.e., burstiness) of a
video with the result that it allocates fewer resources
to a video experiencing a burst, thereby unfairly
making it stall for longer durations.

8.1 Distribution of Stalls

In this subsection we study stall distribution as a
function of the number of slots in an interval (keeping
the interval duration constant). Using the steady state
probabilities of the Markov model, one can compute
the expected number of bits received per slot. In
Figures 4 and 5, the number of slots is varied from 50
to 80, so that the slot duration corresponds roughly
to the frame duration.

8.1.1 Vehicular Mobility

Figure 4 shows the variation of the average number
of stalls for four scheduling algorithms: equal-split,
weighted-split, greedy-bit and greedy-time. Table 4

11

Scheme Number of Stalls Number of Stalls
(Slots 64) (Slots 70)

Equal Split 10.25 7.25
Weighted Split 9.875 7.75
Greedy-time 2.75 1.875

TABLE 5
stalls per video for average-provisioned network

provides the expected bit rate in the steady state for
different values of the number of slots per interval. In
our experiment, the mean bit rate of the 8 CIF videos
is approximately 5.4 Mbps. Thus, from Table 4, we
note that 34, 58 and 82 slots per interval correspond
to the wireless channel being under-provisioned,
average-provisioned and over-provisioned, respec-
tively for the vehicular mobility scenario.

In terms of the average number of stalls per video,
both the greedy algorithms perform better than the
equal-split and the weighted-split approaches for the
average and over-provisioned scenarios. With respect
to fairness, the standard deviation of the number of
stalls shows that in terms of evenly distributing the
stalls among the videos, our greedy-time algorithm
performs significantly better than other algorithms.
We observe that the greedy-bit algorithm is unfair
in distributing stalls (Figure 4), and so we will not
consider this algorithm further.

To highlight the performance of the greedy-time
algorithm, we present results for the average number
of stalls experienced for the mildly over-provisioned
case (64 and 70 slots) in Table 5. The mildly over-
provisioned case is the scenario of interest in prac-
tice and we observe that the greedy-time algorithm
reduces the number of stalls by a factor of 3 to
4 when compared to equal-split and weighted-split.
Overall, we observe that the greedy-time multiplexing
algorithm gives the best performance both in terms of
reducing the average number of stalls per video and
evenly distributing the stalls among the videos.

8.1.2 Pedestrian Mobility

We also conducted experiments under pedestrian
mobility. We observe that the greedy-time algorithm
again outperforms the equal and weighted split algo-
rithms in terms of both average number of stalls and
fairness. Due to lack of space we omit the figures; they
are available in [32].

8.1.3 Mix of Vehicular and Pedestrian Mobility

In practical situations, we will usually have a mix
of pedestrian and vehicular users, streaming different
videos from the base station. Figure 5 shows the simu-
lation results considering 4 vehicular and 4 pedestrian
users. We observe that the greedy-time algorithm
outperforms the other two schemes. Interestingly, in
Figure 5(b), the weighted split algorithm has higher
standard deviation when compared to the vehicular
(Figure 4(b)) and pedestrian mobility scenarios. This is
because unlike the vehicular and pedestrian mobility

5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

Epoch Duration (in seconds)A
v

er
ag

e
N

u
m

b
er

 o
f

S
ta

ll
s

p
er

 V
id

eo

Equal Split

Greedy (Time)

Weighted Split

Fig. 6. Sensitivity to epoch duration

cases, where all users have similar channel quality,
in Figure 5(b) we have both pedestrian and vehicular
users and the weighted split approach (which divides
the number of available slots proportional to the mean
bit rate of the videos without taking the channel
conditions into account) results in unfair distribution
of stalls. In contrast to this, the greedy-time heuristic
continues to distribute the stalls fairly. We note that
similar to Figure 4(b), the greedy-bit algorithm is
unfair in distributing the stalls for the experiments
conducted in sections 8.1.2 and 8.1.3 as well. Due
to lack of space, in the remaining sections we only
present the results for the vehicular mobility case.

8.2 Sensitivity to Epoch Duration

In the experiments presented thus far, the epoch du-
ration was fixed at 10 seconds. In Figure 6, we present
the variation in the average number of stalls per video
as a function of the epoch duration. The number of
slots in an interval is 64. We observe that the average
number of stalls for the greedy-time algorithm de-
creases slightly as the epoch duration increases. As the
epoch duration increases, the number of stalls for the
other schemes decreases faster in comparison to the
greedy scheme. This is because as the greedy scheme
starts with a significantly lower number of stalls, in-
creasing epoch duration does not benefit it much. We
note, however, the total stall duration averaged over
all videos increases with increasing epoch duration.

8.3 Sensitivity to Different Video Traces

We also conducted experiments with two sets of 8
QCIF video traces, available from [28], [29]. We show
results for one set of QCIF videos here while the
other one is available in the Appendix (in Supplement
Material). The results, plotting the average number
of stalls and the standard deviation of stalls versus
the number of slots in an interval, are shown in
Figure 7. Given the low mean bit-rate requirement
of the QCIF videos, all the rates in the Markov
channel model, i.e., the number of bits received in
a slot, were scaled down by 10. This scaling down
is done to investigate algorithm performance near
the average provisioned and mildly over provisioned
cases, which are the scenarios that are interesting in

12

55 60 65 70 75 80
0

5

10

15

20

Number of Slots in an IntervalA
v

er
ag

e
N

u
m

b
er

 o
f

S
ta

ll
s

p
er

 V
id

eo

Equal Split

Greedy (Time)

Weighted Split

(a) QCIF set 1: Average Stalls

55 60 65 70 75 80
0

2

4

6

8

10

12

Number of Slots in an Interval

S
ta

n
d

ar
d

 D
ev

ia
ti

o
n

Equal Split

Greedy (Time)

Weighted Split

(b) QCIF set 1: Fairness

Fig. 7. Distribution of stalls with variation of slots for QCIF videos

practice. For QCIF videos, we observe that the greedy-
time algorithm outperforms the other approaches in
terms of fairness, but its performance is similar to the
weighted split algorithm in terms of average number
of stalls. Note that when the number of slots in an
interval is larger than 65 (this corresponds to the
highly overprovisioned case), the other algorithms
slightly outperform the greedy algorithm. The total
number of stalls experienced by any video in this case
is only 0 or 1; the difference between the algorithms
is that some videos experience a stall in case of the
greedy algorithm while no stalls occur for the other
algorithms.

8.4 Sensitivity to Poor Channel Condition

A potential drawback of maximizing the minimum
playout lead is the case where some clients have
poor channel condition for a protracted period of
time. Maximizing the minimum playout lead in this
situation can degrade entire system performance. One
way to tackle this issue is to restrict the maximum
number of slots that can be allocated to any user.

For simulations we consider a vehicular mobility
scenario where two out of eight clients have poor
channel quality: these clients transition only between
the lowest two rates of the Markov model with prob-
ability 0.5. Since we do not have real world traces
mimicking this kind of channel behavior we create
synthetic traces for these two users. For generating the
synthetic traces we assume that in any interval, each
of two users can be in one of the two lowest rates
with probability 0.5. Figure 8 shows the result for this
simulation. The plot x-Thd in the figure signifies our
greedy-time algorithm with the modification that the
maximum number of slots allowed for any client is
xTotalSlots

n
, where n is the number of videos.

We observe that if there is no restriction on the
maximum number of slots allocated for a client (i.e.,
our original greedy-time algorithm), the algorithm
performs worse than the baseline approaches with
respect to the average number of stalls when the
number of slots is small and has superior performance
for the overprovisioned case. We can observe from
Figure 8 that clearly there is a tradeoff in the per-
formance of the greedy-time algorithm between the

50 55 60 65 70 75 80
0

10

20

30

40

50

Number of Slots in an IntervalA
v

er
ag

e
N

u
m

b
er

 o
f

S
ta

ll
s

p
er

 V
id

eo Equal Split

Weighted Split

Greedy (1.5x Thd)

Greedy (2.0x Thd)

Greedy (2.5x Thd)

Greedy (Original)

Fig. 8. Effect of poor channel quality

number of slots in an interval and the threshold im-
posed. The greedy-time algorithm with a low thresh-
old performs best when the number of slots is small,
while the opposite is true when the number of slots
is large. As expected, as the threshold is increased,
the performance of the greedy-time algorithm tends to
the original algorithm with no threshold. In terms of
standard deviation, as expected the Greedy (Original)
algorithm performs best with the standard deviation
increasing as we impose a lower threshold. Overall we
observe that the 2.0x-Thd greedy algorithm performs
the best for the scenario chosen in this experiment.

We also performed experiments with different client
buffering schemes. Due to lack of space we omit them
here; they are available in [32].

9 DISCUSSION

In this section we discuss issues related to the adapt-
ability and scalability of the greedy algorithm. In this
paper we have only considered video streaming ap-
plications, but our algorithm can also be adapted for
the case when there is other concurrent traffic through
the base station. The other applications will consume
a fraction of the base station resources (time slots in
this case); the QoE requirement of these applications
being different from video streaming, our greedy al-
gorithm can execute on the remaining timeslots (after
timeslots required by other applications have been
allocated). Since our approach operates using the slots
available to video, it would find application in any
scheme (even dynamic) in which a provider coarsely
partitioned slots among applications.

13

Our greedy algorithm can also be adapted to work
with two dimensional (time-slot and sub-carrier) al-
location of data - as such the model can be enriched
by having a separate Markov chain for the wireless
channel on each subcarrier. The expected rate received
in the various time slots for the different subcarriers
can be determined using the Markov chains. Note that
our greedy algorithm assumes that channel quality
remains unchanged within an interval. So long this as-
sumption holds, the greedy algorithm can be applied
(it does not matter whether slots within an interval are
divided in time domain, frequency domain or both).

We have also not considered the scenario where
users can join/depart in the middle of an epoch.
Our algorithm can easily be adapted to this situation.
Users departing from the system will cause resources
(slots) allocated to them for that epoch to be unused.
This issue can be dealt with by randomly allocating
the freed slots in the epoch among the different clients.
If a new user joins in the middle of an epoch, this
user will not have data sent to it during that epoch
because all slots have already been allocated to other
users a priori. This will cause an additional delay
(with maximum duration of one epoch) to the new
user. However in the beginning of the next epoch, this
user will be given preference by the greedy algorithm
(and thereby more slots allocated to it) as it will have
playout lead equal to zero.

In this paper we address the problem of streaming
stored video to various clients. The stored video might
be considered as videos cached at devices at the
edge of the telecommunication network. The video
playback curve is just the set of frame sizes. This
information regarding frame sizes can be made easily
available at the base station. For example, Netflix
manifest files already contain this information on a
per-chunk basis, where a chunk is approximately 4
seconds of data [33]. As the frame rate is only 30
frames/sec, the amount of information that is to be
stored per video is not quite small (in the order of a
few Mbits). Hence the memory required for storing
video playout information is small. The runtime of

the algorithm O(Nsl
ep

2
) and thus the greedy algorithm

is easily scalable. Nowadays computational power
is available at the base station [34] and thus base
stations should be able to periodically execute the low
complexity greedy algorithm.

Another issue might be the communication over-
head for the greedy algorithm. Though overhead is
not explicitly modeled in this paper, the information
required to be communicated by each client at the
beginning of an epoch is only the playout lead and
the current channel state (which is only a few bytes
of information per client).

10 CONCLUSION

In this paper, we investigated scheduling schemes
for transmitting multiple video streams from a base

station to mobile clients. We showed that the problem
of allocating slots fairly is NP-complete even for a con-
stant number of videos. We then presented a greedy
algorithm based on a criterion of maximizing the min-
imum playout lead to manage stalls for multiple video
streams transmitted over a time-varying bandwidth-
constrained wireless channel. We demonstrated that
the greedy algorithm is fair and is also capable of
minimizing the average number of playout stalls.

REFERENCES

[1] Cisco, “Visual Networking Index: Global mobile data traffic
forecast update, 2009-2014.”

[2] F. Dobrian, A. Awan, D. Joseph, A. Ganjam, J. Zhan, V. Sekar,
I. Stoica, and H. Zhang, “Understanding the impact of video
quality on user engagement,” in SIGCOMM, 2011.

[3] S. S. Krishnan and R. Sitaraman, “Video stream quality
impacts viewer behavior: Inferring causality using quasi-
experimental designs,” in IMC, 2012.

[4] M. W. Garrett and W. Willinger, “Analysis, modeling and gen-
eration of self-similar VBR video traffic,” in ACM SIGCOMM,
1994.

[5] A. R. Reibman and A. W. Berger, “Traffic descriptors for VBR
video teleconferencing over ATM networks,” IEEE/ACM Trans.
Netw., vol. 3, no. 3, 1995.

[6] S. S. Lam, S. Chow, and D. K. Y. Yau, “An algorithm for
lossless smoothing of MPEG video,” ACM SIGCOMM Comput.
Commun. Rev., vol. 24, no. 4, 1994.

[7] T. Ott, T. V. Lakshman, and A. Tabatabai, “A scheme for
smoothing delay-sensitive traffic offered to ATM networks,”
in IEEE INFOCOM, 1992.

[8] N. B. Shroff and M. Schwartz, “Video modeling within net-
works using deterministic smoothing at the source,” in INFO-
COM, 1994.

[9] S. Sen, J. Dey, J. Kurose, J. Stankovic, and D. Towsley, “Stream-
ing CBR transmission of VBR stored video,” in SPIE Sympo-
sium on Voice Video and Data Communications, 1997.

[10] J. D. Salehi, S.-L. Zhang, J. Kurose, and D. Towsley, “Support-
ing stored video: reducing rate variability and end-to-end re-
source requirements through optimal smoothing,” IEEE/ACM
Trans. Netw., vol. 6, no. 4, 1998.

[11] M. Grossglauser, S. Keshav, and D. N. C. Tse, “RCBR: a simple
and efficient service for multiple time-scale traffic,” IEEE/ACM
Trans. Netw., vol. 5, no. 6, 1997.

[12] Z.-L. Zhang, J. F. Kurose, J. D. Salehi, and D. F. Towsley,
“Smoothing, statistical multiplexing, and call admission con-
trol for stored video,” IEEE Journal on Selected Areas in Com-
munications, vol. 15, no. 6, 1997.

[13] H. Stern and O. Hadar, “Optimal video stream multiplexing
through linear programming,” in IEEE International Symposium
on Information Technology, 2002.

[14] J. Londono and A. Bestavros, “A two-tiered on-line server-
side bandwidth reservation framework for the real-time de-
livery of multiple video streams,” BUCS-TR-2008-012, Boston
University, 2008.

[15] S. Thakolsri, S. Khan, E. Steinbach, and W. Kellerer, “Qoe-
driven cross-layer optimization for high speed downlink
packet access,” Journal of Communications, vol. 4, no. 9, 2009.

[16] M. Shehada, S. Thakolsri, Z. Despotovic, and W. Kellerer,
“Qoe-based cross-layer optimization for video delivery in long
term evolution mobile networks,” in WPMC, 2011.

[17] C.-H. Hsu and M. Hefeeda, “On statistical multiplexing of
variable-bit-rate video streams in mobile systems,” in ACM
Multimedia, 2009.

[18] G. Liang and B. Liang, “Effect of delay and buffering on jitter-
free streaming over random VBR channels,” IEEE Transactions
on Multimedia, vol. 10, no. 6, 2008.

[19] ——, “Balancing interruption frequency and buffering penal-
ties in VBR video streaming,” in INFOCOM, 2007.

[20] H. Radha, M. van der Schaar, and Y. Chen, “The MPEG-
4 fine-grained scalable video coding method for multimedia
streaming over IP,” IEEE Transactions on Multimedia, vol. 3,
no. 1, 2001.

14

[21] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the
scalable video coding extension of the H.264/AVC standard,”
IEEE Trans. Circuits Syst. Video Techn., vol. 17, no. 9, 2007.

[22] G.-M. Su and M. Wu, “Efficient bandwidth resource allocation
for low-delay multiuser video streaming,” IEEE Trans. Circuits
Syst. Video Techn., vol. 15, no. 9, 2005.

[23] J. Huang, C. Krasic, J. Walpole, and W. chi Feng, “Adaptive
live video streaming by priority drop,” in IEEE Conference on
Advanced Video and Signal Based Surveillance (AVSS), 2003.

[24] B. Sousa, K. Pentikousis, and M. Curado, “Experimental eval-
uation of multimedia services in WiMAX,” in International Mo-
bile Multimedia Communications Conference (MobiMedia), 2008.

[25] W. Hrudey and L. Trajković, “Streaming video content over
IEEE 802.16/WiMAX broadband access,” in OPNETWORK,
2008.

[26] A. Vishwanath, P. Dutta, M. Chetlur, P. Gupta, S. Kalyanara-
man, and A. Ghosh, “Perspectives on quality of experience
for video streaming over WiMAX,” Mobile Computing and
Communications Review, vol. 13, no. 4, 2009.

[27] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, Second Edition. The MIT Press and
McGraw-Hill Book Company, 2001.

[28] G. Auwera, P. David, and M. Reisslein, “Traffic and quality
characterization of single-layer video streams encoded with
H.264/AVC advanced video coding standard and scalable
video coding extension,” IEEE Transactions on Broadcasting,
vol. 54, no. 3, 2008.

[29] P. Seeling, M. Reisslein, and B. Kulapala, “Network perfor-
mance evaluation with frame size and quality traces of single-
layer and two-layer video: A tutorial,” IEEE Communications
Surveys and Tutorials, vol. 6, no. 3, 2004, CIF Video traces
availalble at http://trace.eas.asu.edu/mpeg4/index.html and
QCIF Video traces available at http://trace.eas.asu.edu/cgi-
bin/main.cgi.

[30] A. Seetharam, J. Kurose, D. Goeckel, and G. Bhanage, “A
markov chain model for coarse timescale channel variation
in an 802.16e wireless network,” in INFOCOM, 2012.

[31] J. G. Andrews, A. Ghosh, and R. Muhamed, Fundamentals of
WiMAX: Understanding Broandband Wireless Networking. Pren-
tice Hall Communications Engineering and Emerging Tech-
nologies Series, 2007.

[32] P. Dutta, A. Seetharam, V. Arya, M. Chetlur, S. Kalyanaraman,
and J. Kurose, “On managing quality of experience of multiple
video streams in wireless networks,” in INFOCOM, 2012.

[33] V. Adhikari, Y. Guo, F. Hao, M. Varvello, V. Hilt, M. Steiner,
and Z. Zhang, “Unreeling netflix: Understanding and improv-
ing multi-cdn movie delivery,” in IEEE INFOCOM, 2012.

[34] M. Chetlur, P. Dutta, U. Devi, P. Gupta, L. Chen, Z. Zhu,
S. Kalyanaraman, and Y. Lin, “A software wimax medium ac-
cess control layer using massively multithreaded processors,”
IBM Journal of Research and Development, vol. 54, 2010.

Partha Dutta is a Senior Researcher with
Xerox Research Centre India. Before join-
ing Xerox, he has held researcher positions
with IBM India Research Lab and Bell Labs
Research India. Partha received his B.Tech.
from Indian Institute of Technology Kanpur
(1999), and his Ph.D. from Swiss Federal
Institute of Technology Lausanne (2005). His
research interests are in networking and dis-
tributed computing, and his recent work is
on network reservation and virtual machine

placement in multi-tenant data centers. Partha is a member of IEEE
and ACM.

Anand Seetharam is a doctoral student
in the School of Computer Science at
the University of Massachusetts (UMASS)
Amherst. Prior to joining UMASS, he ob-
tained his Bachelor’s degree in Electron-
ics and Telecommunication Engineering from
Jadavpur University, India. His research in-
terests encompass various aspects of wire-
less networks including mobile ad-hoc, sen-
sor, cache and cellular networks.

Vijay Arya is a Research Staff Member at
IBM Research - India since 2010. Prior to
joining IBM, he worked at National ICT Aus-
tralia (NICTA) and completed his doctoral
studies in Computer Science from INRIA
Sophia Antipolis, France in 2005. His re-
search interests include measurements and
modeling, computer networks, and smart
grids.

Jim Kurose received his Ph.D. degree in
computer science from Columbia Univer-
sity. He is currently Distinguished Univer-
sity Professor in the Department of Com-
puter Science at the University of Mas-
sachusetts Amherst. His research interests
include network protocols and architecture,
network measurement, mobile networks, and
modeling and performance evaluation. Dr.
Kurose has served as Editor-in-Chief of the
IEEE Transactions on Communications and

was the founding Editor-in-Chief of the IEEE/ACM Transactions
on Networking. He has served a Technical Program co-chair for
IEEE Infocom, ACM SIGCOMM, ACM SIGMETRICS and ACM IMC.
He has received the IEEE Infocom Achievement Award, the ACM
SIGCOMM Test of Time Award and a number of teaching awards,
including the IEEE Taylor Booth Education Medal. With Keith Ross,
he is the co-author of the textbook, Computer Networking, a top
down approach (6th edition) published by Addison-Wesley. He is a
Fellow of the IEEE and ACM.

Malolan Chetlur is a Research Staff Mem-
ber in IBM Research India (IRL). His re-
search interests include Mobile and Telecom
technologies, parallel and distributed simula-
tion. Dr. Chetlur is a member of ACM and has
served as the TPC of networking and cloud
computing conferences (LANMAN2010-11,
INFOCOM 2011-12, and IEEE-Cloud 2010-
13). Dr. Chetlur received his M.S. and Ph.D.
degrees in computer engineering from the
University of Cincinnati. Prior to joining IBM

Research, he was a Principal Technical Staff Member with AT&T, de-
veloping system automation solutions and enterprise solutions. He is
currently exploring scalable personalized education methodologies
enabled by IT as part of Smarter Education research.

Shivkumar Kalyanaraman (S93M97SM07
F10) received the B.Tech. degree in com-
puter science from the Indian Institute of
Technology, Madras, India, in 1993, the M.S.
and Ph.D. degrees in computer and informa-
tion sciences from the Ohio State University,
Columbus, in 1994 and 1997, respectively.
He also received the Executive M.B.A. de-
gree from Rensselaer Polytechnic Institute,
Troy, NY, in 2005. He is the Chief Scientist
at IBM Research - Australia, and Co-Director

of the UBD — IBM Centre, Brunei. Previously he was a Senior
Manager, Smarter Planet Solutions with IBM Research India, Ban-
galore, India, and was a Professor with the Department of Electrical,
Computer and Systems Engineering, Rensselaer Polytechnic Insti-
tute. His research in IBM is at the intersection of emerging wireless
technologies, smarter energy systems, and IBM middleware and
systems technologies. Dr. Kalyanaraman is an ACM Distinguished
Scientist. He is a Visiting Professor at Universiti Brunei Darussalam.

