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Abstract—Managing the Quality-of-Experience (QoE) of video X
streaming for wireless clients is becoming increasingly ifportant 7 )'
due to the rapid growth of video traffic on wireless networks.The Video Server Il

inherent variability of the wireless channel as well as the ariable
bit rate (VBR) of the compressed video streams make managing
the QoE a challenging problem. Prior work has studied this
problem in the context of transmitting a single video stream
In this paper, we investigate multiplexing schemes to tramsit
multiple video streams from a base station to mobile clientshat
use number of playout stalls as a performance metric.

In this context, we present an epoch-by-epoch framework to
fairly allocate wireless transmission slots to streaming ideos. In ] ) )
each epoch our scheme essentially reduces the vulnerahyjlito Fig. 1. A video streaming system
stalling by allocating slots to videos in a way that maximize of the displayed video or it magtall the video to wait for

the minimum ‘playout lead’ across all videos. Next, we show mgre frames to arrive, or both. This work considers systems

that the problem of allocating slots fairly is NP-complete gen that stall in response to delayed frames
for a constant numper of videos. We then present a fast lead- Wh t . ltiole vid ) irel h |
aware greedy algorithm for the problem. Our choice of greedy én streaming multple videos over a wireless channel,

algorithm is motivated by the fact that this algorithm is optimal  in the case where the rate of each video as well as the rate
when the channel quality of a user remains unchanged within available to each wireless client varies with time, the secan
an epoch (but different users may experience different chamel  jistribute stalls among video streams by appropriatelytimul

quality). Moreover our experimental results based on puble . . . . . .
MPEG-4 video traces and wireless channel traces collectedoim plexing or scheduling their transmissions. This paper ictans

a WiMAX test-bed show that the greedy approach performs a this multiplexing problem with the goal of minimizing still
fair distribution of stalls across the clients when compare to ~across all mobile clients.
other algorithms, while still maintaining similar or lower average The frame transmission scheduling/multiplexing algarith
number of stalls per client. we investigate in this paper makes three contributionst,Fir
we present an epoch-by-epoch framework based on two ideas:
(a) We divide the transmission time ingpochs and use a

With the deployment of broadband wireless networks, thdarkov model to estimate the set of rates available to each
popularity of multimedia content on mobile devices is exwireless client during the next epoch. (b) We defineplagout
pected to increase significantly. A large portion of multitiee lead of a video as the duration of time the video can be
traffic is forecasted to be recorded videos such as movigtayed using the data already buffered by its client. Sihee t
YouTube videos, and TV shows [1]. The inherent variability oplayout lead plays an important role in determining whether
both the wireless channel and the bit rate of compressedsideideo stalls in an epoch, we present a fair multiplexing sohe
makes streaming videos on wireless networks a challengihat takes into account the channel rates and maximizes the
task. This work investigates how multiple variable bit rateninimum lead among all videos in an epoch. Second, we show
(VBR) videos can be multiplexed over a time-varying wirslesthat the optimization problem of maximizing the minimum
channel while still maintaining a good QoE at the mobileead is NP-complete even for two videos. We present a fast
clients. lead-aware greedy algorithm that is sub-optimal for wesle

A wireless streaming system consists of a video server carirannels, but we show that the algorithm is optimal for the
nected to a base station over a high bandwidth wired backbapmecial case where the channel quality of a user does not vary
link and clients at mobile stations (MS) that communicaténwi within an epoch, but different users may have different cledn
the base station (BS) using a wireless channel (Fig. 1). Theality. Finally, we conduct trace-driven simulations twit
server stores pre-encoded videos, and upon receiving sexjugublicly available MPEG-4 video traces, and wireless clehnn
streams out videos to the requesting clients. A video streajality traces that we collected from a WiMAX test-bed. Our
is composed of a sequence of frames that the client buffsimulations demonstrate that the greedy algorithm ensares
and plays according to their playout times. If a frame is néair distribution of stalls across clients while maintaigi a
received by its playout time, the client degrades the qualitow average number of stalls per client. In particular, when

|. INTRODUCTION



Notation Definition

the wireless network is average-provisioned or slightlgrev

. - A n number of clients

provisioned as compared to the total bit-rate of the comeitle [ 7, 4 channel rate vector, transition matrix (resp.)
videos (cases that are interesting in practice), the gregdyr N;I, N5 | #intervals/epochfslots/interval#slots/epoch (resp.
algorithm reduces the number of stalls by a factor of 3 oj; 'f”'t'a' Pfolbab'é'ty C:'St”bUt'O“ f(;f channel state

H H H H rames played out per secon
4 when compared to other algorithms in our ;lmulatlons. @) '.Y@Vi 77bits Zcomplete frames (resp.) ransmified T epokh
results also show that the greedy scheme is robust agafmst lead at the end of the epoch
changes in client’sstall-recovery buffering scheme (which D, inverse playback curve _ '
determines how long a client stalls the playout when a framéii #Dits that can be transmitted to clienin slot j

is not received in time) and changes in epoch duration. TABLE |
~ In the remainder of this paper, the video streaming Systef}oorrant NOTATIONS(NOTE: SUBSCRIPTi REFERS TO CLIENTI AND #
is described in Section II. Section Il introduces multiple DENOTES'NUMBER OF)
ing based on playout leads and develops the corresponding

. . ) g II.
problem formulation. Hardness results are given in Sedibn
followed by the greedy algorithm in Section V. The evaluatio ) _ i )
framework and results for the experiments are given in Sec-"We define arepoch to contain a fixed number of intervals
tion VI and Section VII, respectively. Comparison with el (Fig. 2(b)). The variation of rates across intervals, asnsee
work is presented in section VIII. We conclude in Section Xt & client, is modeled using a generic discrete-time Markov

EPOCHBY-EPOCHMULTIPLEXING BASED ON
PLAYOUT LEADS

with directions for future work. model given by(R, A) where the possible channel states are
identified by the transmission raté&= (ry,r,...,7x) and
Il. STREAMING SYSTEM AND CHANNEL MODEL A is the transition matrix. R is also called the rate vector.)

We consider a video streaming system similar to [2] anderer; denotes the number of bits that can be transmitted in
shown in Fig. 1. We assume that the server simultaneously andime slot when the channel is in statd2]. Each client’s
separately streams videoswvy,...,v, to n clients1,...,n channel is modeled as an independent Markov chain, and
via the base station. A video object is composed of a sequeraeh client estimates the transition matrix corresponding
of frames that are displayed at a constant rate by the clieité. channel as discussed below. At the beginning of the gpoch
However, since the size of each frame varies significantblients send their transition matrix as well as the initi@ts
the required transmission rate also varies with time. Forodthe channel to the server so that the server can compute the
videow, its playback curve p;(t) specifies the cumulative dataexpected rates of all slots available to all clients durihg t
needed by time relative to the start of its playout, in order toepoch.
play the video without interruptions. The playback curveis At the beginning of each epoch, our multiplexing scheme
characteristic of a video and is independent of the undeglyiallocates slots to clients within that epoch. To motivate th
channel. We assume that clients have sufficient buffer spaaikcation strategy, note that a client’s current buffexes{in
and they buffer frames that have been received but not ysts) indicates its vulnerability to stalling: the smallére
displayed. If the next frame to be displayed is not receivwed lbuffer, the more likely is the occurrence of a stall. Howef@r
its playout time, the client stalls playout for a certaination VBR videos, buffer size is a poor indicator of this vulnetipi
during which it continues to buffer data received from thsince it does not consider the amount of data needed to play
server. It resumes playout based onste|-recovery buffering the next few frames. On the other hand, filayout lead of
scheme. Common buffering schemes include: (i) waiting for ahe video, i.e., the duration of additional time a client gday
fixed amount of time, (ii) waiting for a fixed amount of futurethe video using only its buffered data, takes into accouat th
playout data, and (iii) waiting for a fixed number of future/BR nature of the video. Therefore in our scheme, within each
playout frames. For a clierit its receiver curve G;(t) specifies epoch the server attempts to prevent stalls by maximizieg th
the cumulative amount of data it has received by tim&he playout leads. To ensure that the stalls are evenly dis&tbu
cumulative amount of data played out by times given by its across all videos, slots are allocated such that the minimum
playout curve O;(t). Figure 2(a) shows an example playbackead among all videos is maximized. In our system model,
receiver, and playout curve for a client. The notation used we assume that clients communicate their playout leadseto th
this paper is summarized in Table |. server at the beginning of each epoch.

We assume a broadband wireless system (such as WiMAX) , o
wherein the transmission time is divided intmtervals “ Modeling the Multiplexing Problem
(Fig. 2(b)). The duration of an interval is small enough so As previously noted, to avoid stalls, at the beginning ofheac
that the channel state remains unchanged within it. Interv&poch, slots are allocated to clients such that the minineaui |
are divided into a fixed number of (transmissisitts that are among all videos is maximized at the end of that epoch. We
allocated to clients. The base station can transmit to at moew present our modeling of this multiplexing problem.
one client in a slot. Depending on the channel conditionsh ea ‘
client receives a certain bit rate in the allocated slote Bt Preliminaries: Let N/ and N;! denote the number of in-
rate for a client remains the same in all slots within an wdér tervals in an epoch, and the number of slots in an interval,
but can change between intervals. Following [2], we assurrespectively. Thus the total number slots in an epdgl) =
that the wireless channel is error-free due to an ideal ermd¥.N;!. Each video is played at the constant raté"dfames
control mechanism such as ARQ. per second.
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Fig. 2. (a) Playback, receiver and playout curves of a videsam (b) Epochs, Intervals, Slots

Consider thei’” client in a particular epoch. Lel; be the transmitting a frame does not increase the lead of the Video.
state vector denoting the probability distribution of chah The inverse playback curve can be easily computed from the
states at the®” client at the beginning of the epoch. Thenyideo frame sizes.
given the Markov channel model, the state probability distr
bution of the channel state at the client at the beginningnef tEstimating FE[V;] from E[Y;]: As g; and o; are known
k*" interval in the epoch id; A*. constants,F[L;] = g; — o; + E[V;]/F. Unfortunately, since

Let X, be the random variable denoting the number dhe video frame sizes can vary widely, the mappifg
bits that can be transmitted to clienin any slot of thek’” from Y; to V; is non-linear, and hence, we cannot easily
interval. Then, its expectatiof[X;;] is the dot product of obtain E[V;] from E[Y;]. Therefore, we estimaté&[V;] by
[;A* and the channel transmission rate vectar Suppose ®i(E[Yi]). Thus, E[Li] ~ g; — 0; + ®i(E[Yi]) = g; — 0 +
that the server assigsy;, slots to clienti in the k" interval. (1/F)® (Zk e siwE[I; A% . R]).

Then the random variablg for the number of blts transmltted

to client 7 in this epoch can be expressed& 1 sikXik. The Multiplexing Problem: Our goal, at the beginning of

From linearity of expectationf[Y;] = Zk o» sinE[Xin] = an (_apoch, is to assign slots with the goal of maximizing the
Nin . minimum expected lead at the end of the epoch. This problem
jh Sik E[1;A™.R]. can be expressed as follows:

Playout Lead: The playout lead of a video at a given time is  Objective: Max Min{E[Li],..., E[L,]}
the additional duration of time that the video can be playeid 0  subject to the constraints:

using only data currently in the client buffer. Thereforee t 1.5 sip = N2 VE < N
playout lead is equal to the number of complete frames inthe 2.5, >0, Vi <n,Vk < Nm

client buffer divided by the frame ratE. At the beginning of

the epoch, leb; and g; denote the amount of time for which IV. HARDNESSRESULT

the video has been played out at the cligrand the amount  Wwe now investigate the optimization problem described in
of time for which the data required for the playout has begRe previous section. We first reformulate the problem as a

received at the client, respectively. (The values;adndg; can  combinatorial problem. (We assume that slots in an epoch are
be computed from the calculation in the previous epoch, aggdmbered sequentially from 1 W)

the video playout and receiver curves.) Thus, the playad le

of the video: at the beginning of this epoch ¢ —o;, and this  |nputs and Constraints. At the beginning of an epoch, the
value is known at the beginning of the epoch. lgtbe the yjideo of the;” client has an initial lead df = ¢;—o,; seconds;
random variable denotlng the playout lead of the video at th@ it has received the data Correspond|ng toRh.d frames
end of this epoch, antl; be the random variable denoting theafter the last played frame.
number of additional frames that can bempletely received | etr;; be the number of bits of video that can be transmitted
by the end of this epoch. Thed,; = g; — o; + (Vi/F). to clienti in slot j. Thus, r; = E[I;A*.R], when slot;
belongs to intervak. For ease of presentation, we also call
Inverse Playback Curve: For an epoch, we now define ar;; the rate of videa in slot j. Given the values of the rates, a
deterministic function that maps the number of bits reatige slot allocation for an epoch specifies the client to whichheac
the number oftomplete frames received. Thimwverse (frame)  slot is allocated.
playback curve ®; for each videa is defined as follows: ib
bits are transmitted to videbin this epoch, then the numberThe Problem.In the Lead-based Multiple Video Transmission
of complete frames that are received increasesbbip) at (LMVT) problem, given the above input, we need to find a slot
the end of the epoch. Thug; = ®,(Y;). (Note that partially allocation that maximizes the minimum lead among all videos



S To motivate our choice of the above greedy algorithm, we
L: function initialization now show that the algorithm is optimal for LMVT when each

2. AwailableSlots + {1,...,N5L}; j <1 . ) L L
3V client i lead; « initial lead of i; I; « initial state distribution; C“ent$ Channe_l condition does not change within an epoch
rcvbits; < 0 (but different clients may have different rates).
4: VY clients: compute the inverse playback curdg for this epoch . ; it
5. for 1< k<N do {for all intervals in epoch} Lemma 3: If the rate of eqch cll_ent does not change Wlthln
6: while j < kN$! do {for all dotsin interval}  an epoch, the greedy algorithm yields an optimal solutian fo
7: rij + B[LARR); j < j+1 LMVT.
8: function greedy algorithm _ Proof: As the rate of a client does not change within
1%3 Se'leCtta C“efl‘ft"\’_'th ﬂ;e '(;?WGSt *ﬂit- le bﬁl glleta;li < ldeac(lvﬁ an epoch, each slot that is allocated to the clieprovides
: select a slot; s.t S vatlableSlots) an T € : : .
AvailableSlots,rij > riz) a constant .number of bits, say. .Inlth|s setting, the gree(_zly
11:  allocate sloyj to clientd; rcvbits; < rcvbits; + ri; algorithm simply chooses the clientthat has the lowest id
120 lead; + initial lead of videoi + Zi(revbits;) among the clients with the minimum lead, and selects the next
13: removej from AvailableSlots available slot and allocates it to The proof of optimality is
by induction on the number of allocated slots.
Fig. 3. A greedy algorithm (executed at the beginning of egebch) For the induction, we first introduce some notation and

at the end of the epoch. (Here, ‘lead’ refers to the expect@fServations. At any point in the execution of the LMVT
playout lead described in the previous section.) We now sh&gorithm, the lead of a client can only change on receiving
that the following decision version of LMVT is NP-compIete.SUﬁ'C'em slots for the client’s next video frame, and tliere,
given a constant,, does there exist a slot allocation such thdhe client's lead can change only by a multiplelgf. For any
every user has a lead of at ledstseconds at the end of theLMVT solution (slot allocation to clients)X, let IX denote
epoch? We show the NP-completeness by reduction from g lead of client in solution X, and 'Ietlﬁm = min{l;*}
subset-sum problem [3]. Due to lack of space the proof 8f the minimum lead inX. Let s/(X, j) denote the number

NP-completeness is given in the appendix. of slots allocated to clienj in solution X. Note that for a
Lemma 1: The decision version of the LMVT problem isSlutionY” and clientk, if I¥ > ;" thensi(X, j) > sl(Y, k),
NP-complete. on the other hand, ifl(X, j) > si(Y, k) thenlX > I}

For a constant number of videos, we have designedBase Case: If only 1 slot is available, the greedy algorithm
pseudo-polynomial time algorithm to optimally solve LMvTallocates it to a client with the minimum lead and therefore
using dynamic programming. However, this algorithm reegiir the minimum lead is maximized.
long running time when the number of videos is high. Due téduction Step: Let us assume that the greedy algorithm
lack of space the algorithm is presented in the appendix. Yields an optimal solution for every d < c slots. Let

Lemma 2: For a constant number of videos, there is &(c + 1) be the solution given by the greedy algorithm for

pseudo-polynomial time algorithm to optimally solve LMVT.c + 1 slots. We must prove tha(c + 1) is optimal. To show
by contradiction, let us assume that there exists an ateerna

V. A LEAD-AWARE GREEDY ALGORITHM solution S(c + 1) # G(c + 1) that is optimal forc + 1 slots,

We now present a fast lead-aware greedy algorithm for tR89 S(CS+ }) has a h{gher minmum IeadG th?ﬁ'(c +1).
LMVT problem. The algorithm is optimal for LMVT for the Thus, et > e (e, 150D > 00t 11/ F)
case when the channel conditions remain constant within ipPservationAQ]. Let client: have the lowest id among the
epoch, but different users may have different channel talFlients with the minimum lead irt7(c). After the (c + 1)th
(as shown in Lemma 3 below). Later in our simulations, w@lot is allocated ta by the greedy algorithm, we have one of
numerically evaluate the algorithm for the general casenwhthe following two cases:
the channel conditions of users may vary.

Case 1: Minimum lead changes, i.&."") > 1),

Lead-Aware Greedy Algorithm. Starting with the initial playout ~ Let j be a client with the minimum lead i6'(c + 1), i.e.,
leads of the videos and all the slots in the epoch, the gree@*t" = 19! (j need not be different from). Then
algorithm_ aIIoc_:ates slots one by one (Figur(_e 3) as followgs(c+1) > liicnﬂ) > li(iffl) — G(e+D) [ObservationA]. Thus,
In each iteration, the algorithm selects a videavith the jjis allo

C S X cated at least one more slotdfic+1) than inG(c+1).
minimum lead, such that videohas the lowest id among the| ¢t 4s remove a slot fromi in S(c + 1) to obtain a solution

videos with the minimum lead. Then the algorithm allocateg ) for ¢ slots. Since we have only removed one slot frpm
chentz.a slotj in which clienti has the hlghest. rabegmong in S(c+ 1) to obtainS(c), 15 > Bletl) _ 1/F > (G let)
all available slots. Before moving to the next iteratiorgt gl : g =7 J

- - - -~ [ObservationB], and 1°(¢) = min{15(¢) 1Slcty > GletD)
is marked unavailable for all videos, and the lead of clieist ) min — i ofmin S =
increased corresponding to the transmission bits to video (Where the last inequality follows from inequalitiésandB).
S : : : Thus, we havg®(®) > (Gletl) —Gletl) o 460 \yhich js a

1 using the inverse playback curde, (line 12 of Figure 3). » WE min = U5 = tmin min

The algorithm iterates until there are no available slotth contradiction since(c) is optimal forc slots.

epoch. (We would like to remind the reader that the lead in

this algorithm refers to thexpected value of the lead random Case 2: Minimum lead remains unchanged at some value

variable.) e, (Clett) — GO

1 Yman = bmin = #-



Observe that this can happen either when {&)as not (becaus&s(c—d) is optimal forc—¢ slots). Letg be the client
received data constituting an entire frame and therefare Wwith the minimum leadS(c — ). We consider four possible
lead has not advanced (b¥eceived data constituting one orcases.
more frames and its lead advanced but there is another clienfl) ¢ is not in P. In this case, no slots were removed frgm

j such that; Gl = ZZ.G(C) =z. to obtainS(c— d) from S(c+ 1), and sog had the minimum
We first conS|der the case when — 0. As (5™ > lead in S(c + 1) as well. Therefore/;“™" = (5" >

man

z+ 1/F > 0 (from A0), in S(c + 1) every client is lmgffl) >l§i<C 9 (from AO andC).

allocated enough slots for at least its first frame, Thus, for(2) ¢ belongs toP1. Note that, since a process iR1

each clientj, the minimum number of slots needed for theeceives the minimum number of slots that is required for

first frame, saysl’, is less or equal to thasl(S(c+ 1),7), its lead to bez + 1/F in G(c + 1) (from C1 and D1),

and therefore}" . sl < ¢+ 1. Now consider the execution ofand I, () > Sleth) > Gt 4 /P = 2 4+ 1/F (from

the greedy algonthm until the minimum lead (over all videosAQ), ¢ receives equal or more slots ii(c + 1) than in

becomes greater than 0. The algorithm selects a cliem  G(c+1). Then,sl(S(c—6),q) = sl(S(c+1),q) — (sl(G(c+

the increasing order of their client id, and allocates ¢lign 1), ¢q) — sl(G(c+ 1 — §),q)) > sl(G(c+1),q) — (sl(G(c +

enough slots for its first frame, i.esl’;, and then moves to the 1) q) — sl(G(c+ 1-9),q)) = sl(G(c+1—4),q). Therefore,

next frame. Therefore, givern+- 1 >§: sl slots, the greedy ;5 I (e=0) > 1§ Gletl=0) _ o lign — 1/F (where the

algorithm will allocate sufficient slots to each client fes first Iast mequallty fo||0W5 frorrc)

frame, and hence, the allocation will have a minimum lead of (3) ¢ belongs toP2 but is distinct fromw. Sinceq € P2,

at leastl/F. Thus,lmg‘;“) > 1/F, a contradiction. 5 5 Gt (from D), and thereforesl(S(c + 1), q) >
We now consider the case when> 0. Let us look back in sql(G(c + 13 q). Now, sl(S(c — 6),q) = sl(S(c+ ):q)

time to the point in the greedy algorithm’s execution whes tr(sl(G(c +1),q) — sl(G(c+1—6),q)) > sl(Glc+1),q)) —

minimum lead inG has last changed. Let us assume that th(gl( Gle+ 1)7(1) _ 3l(G(c—|— 1-6),q)) = sl(G(c+ 1-16),q).

occurreds slots back, i.e%(¢™) = z—1/F and1{¢ 0t = Therefore, ¢~ > (G190 — o 5 Gle=o) _ o y/p

= 15\ = - [ObservationC]. Thus, in the solution (where the ast |nequal|ty follows fror@)

G(c +1—4), there must have been a set of cliefitseach  (4) ¢ = w. Sinceq € P2, 17V > 1§*V (from D), and

with lead 2. thereforesi(S(c + 1),q) > sl(G(c + 1),q). Now, sl(S(c —
Consider the period of execution of the greedy algorlthlg) q) = sl(S(c+1),q) — (sl(G(c+1),q) — sl(G(c+ 1 —
while going fromG(c + 1 —§) to G(c + 1). In this period, §) ¢)) — 1> sl(G(c+1),q)) — (sl(G(c + 1), q) — sl(G(c +
the algorithm must have assigned slots only to client$’in | _ 8),q) —1 > sl(G(c+ 1-4),q). Therefore,lqs(c";) >
Also, no client in P would have received slots more tharl (c+1=0)'_ 7 Gle=0) _ z—l/F’ (where the last inequa_lity
what is required for its next one frame (because on recmwg@lows from Q). min n

slots required for one frame, the client’s lead increased,ifa As a special case of the above lemma, when the transmission
does not remain a client with the minimum lead) [Observat'oé}\annel is of Constant Bit Rate (CBR), i.e., the rate of slots

C1]. Let P1 be the set of clients inP that have received d h ithi h h .
sufficient slots for their next frame in this period, amt® 0 not change within an epoch or across the users, e.g., In a
wired link, the greedy algorithm is optimal.

be the remaining set of clients iR (that have not received .
enough slots for their next frame in this period). We notd tha Ie?ggogsrg ]ilm';?rsciutcl: oEr)wao(r:hL?\;]\r}?l'l the greedy algorithm
P2 cannot be an empty set, otherwise, the lead76f + 1) y P
would be higher thait(c +1 — ). VI. EXPERIMENTAL SETUP

Let ¢ be any client inP2. Thean(c+1) z. Since, from . .
our initial assumptions{>“t" > ZG(C+1) z, ZS(C+1) A. Trace Driven Experiments
[5(e+1) iy o To demonstrate the efficacy of the greedy algorithm, we

G(c+1)
; >z =l ObservationD]. Also, for an cllent ; .
an Glet1) [ i y perform trace-based experiments and report the resultssn t
Jin P11 =z + 1/F (since it has received slots for : . X

J section. Our evaluation uses two types of traces:

c+1 c+1
the next frame) [Observatiob1]. As, 17“*) > [P+ > (i) VBR Video Traces describing the variation in the frame
56D = 2, we have, TV > 2 4 1/F = lf(c“) sizes of videos for emulating video playouts.
[ObservationE]. (i) User-Level Wireless Channel Traces describing the rates

To show a contradiction, let us modify the solutiStc+1) received by various users over time to emulate real wireless
by removingé + 1 slots to obtain a solutiort(c — ¢) for channel conditions.
¢ — 0 slots as follows. For every client in P, we remove  We use the publicly available MPEGMBR Video Traces
any sl(G(c+1),7) — sl(G(c+ 1 —9),j) slots from its slot [4], [5] in our experiments. The videos play out at a constant
allocation, and in addition, we remove one more slot from orieame rate of 30 frames per second. We perform experiments
(arbitrarily chosen) client, sayw, in P2. (The removed slots with video traces encoded in Common Intermediate Format
add up tod + 1 because slots were allocated by the greedy(CIF) and Quarter CIF (QCIF). All evaluation is performed
algorithm to obtainG(c + 1) from G(c + 1 — 4).) We now considering that a group of 8 different videos is being strec
show that the minimum lead i§(c — ¢) is higher than the simultaneously to 8 different users over a wireless channel
minimum lead inG(c — ), thus resulting in a contradiction Unless mentioned otherwise, all results are reported fér ClI



Name of Mean bit Mean frame | Standard fi that th h | stat h iqnifi il v f
Video rate (Mbps) | size (Kb) deviation of ion that the channel state changes significantly only from
frame size(Kb)| one interval to the other. We use the mapping between the
Star Wars IV 0.42 14 176 modulation and coding schemes (MCS) and the SINR values
#g{glgféryepmggs ! 2'82 gé'i gg'z for a WiIMAX network provided in [6] to generate the Markov
Niatrx 1 041 3.4 171 Chain for modeling wireless channel state transitions fooma
Matrix T 0.61 20.2 255 interval to the next. The transition matrix is then deteraain
Matrix [If 0.52 171 20.5 by empirically computing the probabilities of transitiogi
Rpo News 253 - > between these states from the t llected. We ch
Silence— of the 0.44 27 ) between these states from the traces collected. We choose an
Lambs interval duration to be 1 second in our experiments because
we want to capture channel variation due to path loss and
TABLE Il shadowing effects. The fast fading behavior of the channel

CIF VIDEO TRACE STATISTICS will average out for video frames (as their playout duration

is typically large). Due to lack of space, we present further

Parameter Value

PHY OFDMA details in the appendix.

Carrier Frequency 2.59 Ghz The main objective of our experiments is to demonstrate

(F:Paer‘:]‘geéu?:t?ng'dth éom'\é'"'z that the proposed greedy algorithm is able to achieve its

Transmission power | 30 dbm goal of minimizing the number of stalls irrespective of the

Antenna model Sector epoch duration, interval size or number of slots per interva

Fragmentation/Packing ON Determining the optimal epoch duration, the interval size o

ARQ OFF the number of slots in an interval so as to maximize viewer
TABLE IlI satisfaction is beyond the scope of this work.

WIMAX SYSTEM PARAMETERS FOR TRACE COLLECTION
VII. RESULTS

videos. A brief description of the 8 CIF video traces used, |, this section we present and discuss the results for the

is given in Table II. Detailed information about the CIF andiqys experiments conducted. We compare the performance
QCIF traces is available in [S]. _ of the greedy algorithm against two baseline approaches: th

User-Level Wireless Channel Traces describe the rates gqa)-split and the weighted-split algorithms. In the it
achieved by different users in every interval of each epocgpproach, we divide the number of slots available in every
To generate these traces we collected signal strength MEEaSHhierval equally among all the users. In the weighted-ghét
ments over a (802.16e) WIMAX network deployed in WINy,a) number of slots in any interval is divided in proportio
LAB at Rutgers University. During our trace collection, th§, he mean bit rate of the individual video streams. While
base station was made to continuously transmit data packgji§cating the slots, these two algorithms neither conside
and signal strength (RSSI) was recorded; we performed gy oyt lead nor the wireless channel variability, and leenc
measurement at the receiver (a laptop) under vehicular gd” expect them to be significantly unfair compared to our
pedestrian mobility. A brief description of the parametefs greedy strategy.
the WIMAX network used in our trace collection is giver_1 in_ To emphasize the importance of making scheduling deci-
Table I1l. (Due to lack of space, we present further details gjons pased on playout lead, we also consider a variant of our
the appendix.) greedy algorithm from Section V (we denote our algorithm
B. Scheduling Algorithm: Parameters from Section V by greedy-time). We consider a greedy-bit

' ) algorithm which is similar to our greedy-time algorithm ept

To evaluate our epoch-by-epoch multiplexing strategy #asfyr one crucial aspect; it allocates the next slot to the ide
on playout lead we need to specify the epoch duratiofith the minimum lead in terms of playout bits instead of
interval size and the number of slots in an interval. To couptayout time. To avoid cluttering the plots with many lines,
the number of stalls at the client, we assume the followinge show only a few results for the greedy-bit algorithm. The
buffering scheme: if the client is not allocated enough dageedy-bit approach ignores the variability in the frameesi
in the current epoch to playout for the whole duration of thg.e., burstiness) of a video with the result that it all@safiewer

epoch, the client stalls for the whole epoch. (We evaludterot resources to a video experiencing a burst, thereby unfairly
common buffering schemes in Section VII-C.) For ensuringraking it stall for longer durations.

smooth viewing experience, it is undesirable to have snrallo

large epochs as the former will result in frequent glitchédlev A Distribution of Salls

the latter will significantly delay playout. Hence in our exp In this subsection we study the distribution of stalls as a

ments we consider epochs to be in the seconds’ timescale. fivection of the number of slots in an interval (keeping the

perform our experiments considering an epoch duration of Irfierval duration constant). The epoch duration is takeheo

seconds. However, we also evaluate our algorithm for varyin0 seconds. Using the steady state probabilities of the dlark

epoch durations. model, one can compute the expected number of bits received
Recall that in our multiplexing strategy, epochs are didideper slot. By varying the number of slots in an interval we are

into intervals, which are subdivided in slots (Figure 2(Qur essentially varying the total resource (in terms of bandwid

algorithm takes scheduling decisions based on the assunimt is available at the base station.
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1) Vehicular Mobility: Figure 4 presents the variation of 27 393
the average number of stalls for four multiplexing algarmith 58 5.7
equal-split, weighted-split, greedy-bit and greedy-tinfa- 82 8.0

ble IV provides the expected bit rate in the steady state for
different values of the number of slots per interval. In our
experiment, the mean bit rate of the aggregate of 8 CIF
videos is approximately 5.4Mbps. Thus, from Table IV, wanfair, a fact also evident from its large standard deviatar

note that 34, 58 and 82 slots per interval correspond to tHte under-provisioned scenario. To validate this obsemwat
wireless channel being severely under-provisioned, aeeraWe performed experiments excluding the two high bit rate
provisioned and over-provisioned, respectively for thige- Videos and found that the performance of the equal-split
lar mobility scenario. In terms of the average number ofstalgorithm becomes similar to greedy-time algorithm in the
per video, both the greedy algorithms perform better than tHnder-provisioned case, with respect to the average number

equal-split and the weighted-split approaches, exceptuiie Of stalls. N _
network is severely under-provisioned. In the average and over-provisioned scenario, we observe

that the greedy algorithms outperform the other two ap-

The under-provisioned case is not of practical interest psoaches. With respect to fairness, the standard deviafion
the average number of stalls experienced is very high for #fle number of stalls shows that in terms of evenly distrimti
algorithms. We, however, offer an explanation as to why thike stalls among the videos, our greedy-time algorithm per-
equal-split performs the best in terms of average number fofms significantly better than other algorithms. As disads
stalls in this scenario. The main reason is that 2 videosen tharlier, we observe that the greedy-bit algorithm is uniair
set of 8 videos considered, have mean bit rates much higlétributing the stalls (Figure 4), and so we will not corsid
than the others (Table Il). In the equal-split approachvidiéo the greedy-bit algorithm any further.
streams are given the same number of slots and consequentlfo highlight the performance of the greedy-time algorithm,
a significantly larger number of stalls is experienced by thee present results for the average number of stalls expmxien
high bit rate videos in comparison to the low bit rate onefor the mildly over-provisioned case (64 and 70 slots) in
Therefore, although the average number of stalls is low&able V. The mildly over-provisioned case is the scenario
in equal-split when compared to greedy-time, equal-sglit of interest in practice and we observe that the greedy-time

TABLE IV
EXPECTED STEADY STATE BIT RATE FOR A GIVEN NUMBER OF SLOTS



Scheme (Nstfggsbtg;))f Stals (Nstfggsbe;ro())f Stals stalls for the entire epoch when there is not enough data

Equal Split 10.25 7.25 present to playout for the whole epoch. However, the media

Weighted Split | 9.875 7.75 players at the clients may have a different buffering scheme

Greedy 2.75 1875 Following [2], we now consider the three common buffering
TABLE V schemes:

NUMBER OF STALLS PER VIDEO FOR AVERAGEPROVISIONED NETWORK . .
« Fixed Stall Buffering Delay (FBD): Once a stall occurs,

o
2 14 : : : : : : resume display only after a fixed duration of time.

2 = -Equal Split « Fixed Buffered Playout Data (FPD): Once a stall occurs,
g € +Gre.Edy(T'mel resume display only after a fixed amount of data is
" “ 7= Weighted Spli received.

8 10 “‘ « Fixed Buffered Playout Time (FPT): Once a stall occurs,
“U_) N\ resume display only after the receiver has accumulated
° 8 5 ] enough data corresponding to a fixed playout duration.
3 6 ‘\,* ] We performed experiments to determine whether our al-
§ '“\V, gorithm’s performance is sensitive to different clientfeuihg

Z 4 s . 1 schemes. Figures 7(a), 7(b), and 7(c) show the variationeof t
S N ’*"’:::* average number of stalls for the FBD, FPD and FPT buffering
gz A A schemes respectively. In these simulations we again cenesid

g ‘ ‘ ‘ ‘ ‘ 64 slots in each interval. In terms of playout stalls, thesgse

< % 10 20 25 30 35 40 time algorithm still outperforms the other schemes irretipe

15
Epoch Duration (in seconds) of the buffering scheme adopted by the player at the client.
We also observed that the greedy-time algorithm performs
significantly better in terms of evenly distributing the lista

cross the videos, although we omit the plot due to lack of

pace.

Fig. 6. Sensitivity to epoch duration
algorithm reduces the number of stalls by a factor3ofo
4 when compared to equal-split and weighted-split. Overa,
we observe that the greedy-time multiplexing algorithmegiv
the best performance both in terms of reducing the average Sensitivity to Different Video Traces

number of st_aIIs per video and evenly distributing the stall We also conducted experiments with two sets of 8 QCIF
among the videos. video traces, available from [4], [5]. We observed that, for
2) Pedestrian Mobility: Figure 5 shows the result for the - L SO '

. . . the QCIF video traces the trend obtained is similar to CIF
experiments conducted under pedestrian mobility. We obser . . ; . .
. . . videos, with the greedy-time algorithm outperforming the

that the greedy-time algorithm again outperforms the equ X .
gther approaches. Although the gains are not as prominent as
n the case of the CIF videos in terms of average number of

and weighted split algorithms in terms of average number 0
stalls and fairness in the pedestrian mobility case as ek tﬁtalls, the greedy-time algorithm still significantly oatforms
in terms of fairness. Due to lack of space, we present the

to lack of space, in the remaining sections we only present
results for the vehicular mobility case. . .
results in the appendix.

B. Sensitivity to Epoch Duration

In the experiments presented thus far, we have fixed the
epoch duration to be 10 seconds. In Figure 6, we present thé\lthough compression techniques reduce the mean bit rate
variation in the average number of stalls per video as a fomct Of video streams, it introduces considerable rate vaitgbil
of the epoch duration. The number of slots in an interv@ver several time scales [7], [8]. Resource allocation for
is 64. We observe that the average number of stalls for tH8R video streaming has been studied extensively for wired
greedy-time algorithm decreases slightly as the epocttidnra Networks. Smoothing the video transmission is one of the
increases. As we increase the epoch duration, the reasonffdmary techniques used for reducing the effect of bit-rate
faster decrease in the number ofstalls of the other schenyagability. By pre-fetching some of the initial video fras
as compared to the greedy scheme is that, the greedy sch&gfere their display times, smoothing techniques can nizem
starts with a significantly lower number of stalls, and tfiere, the effect of variability in bit-rates under various resweir
the benefits of increase the epoch duration is not as proedungonstraints, such as peak bit rate, client buffer size, aitidli
as the other schemes. Although it is not captured in Figuref@ayout delay [9], [10], [11], [12].
the total stall duration averaged over all videos increasts Rate allocation for multiple video streams is a well studied
the increase in epoch duration due to our buffering scherfeoblem [13], [14], [15], [16], [17]. [13] investigates mimiz-
that whenever a video stalls, it stalls for an whole epocte (Wng rate variability when transmitting multiple video siras

study other buffering schemes in the Section VII-C.) given the client buffer size in a high-speed wired network. |
the RCBR service introduced in [14], the rate of each video is

C. Sensitivity to Buffering schemes renegotiated at the end of each interval to provide stadilsti
Recall that in the results presented above, we have assur@ers guarantees. [15] presents a call-admission scheme at a
a client stall-recovery buffering scheme in which the dierstatistical multiplexer and bound the aggregate loss fitiha

VIIl. RELATED WORK
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(a) Fixed Stall Buffering Delay Strategy(FBD)

Fig. 7.
A linear programming model is proposed in [16] to computg4]
a globally optimized smoothing scheme to stream multiple
videos. A recent work [17] derives bounds on the dropped
frames, delay, and buffer requirement that can be obtainesi
by statistically multiplexing VBR streams at the video sarv
by using a two-tiered bandwidth allocation. Although our
algorithm perform periodic rate allocation among multiple
video streams, our work differs from the above papers iffl
two crucial aspects: our primary objective of fairly mamagi
playout stalls across the videos, and our focus on timeivary (7
wireless channel.

Our work is closest to the work presented in [18], [2]€]
for managing stalls. Given the initial playout delay and the
receiver buffer size, [18] determines upper and lower beundgj
on the probability of stall-free display of a video. [2] déyes
an analytical framework to find the distribution of the numb 10]
of stalls while streaming a VBR video over a wireless channel
However, unlike our work, both papers consider a singlewide
stream. The problem of transmitting multiple VBR videos
from a base station to mobile clients has been studied in [18}
but the work focusses on maximizing bandwidth utilization
while reducing energy consumption, and do not to address {h&
issue of stalling of video playout.

[13]
IX. CONCLUSION

In this paper, we have presented a multiplexing scheme[ﬁ]
manage stalls for multiple video streams that are transthitt
over a time-varying bandwidth-constrained wireless clehnn
We considered a fairness criterion of maximizing the mirnimu [15]
playout lead for managing stalls. We have assumed that
all server-to-client channels have the same transitiorrimat
for the Markov channel model, which might not hold ir16]
practice. Some clients may have a poor channel condition for
a protracted period of time, and in maximizing the minimum 7,
playout lead scheme, the performance of the entire systeyn ma
be degraded due to these clients. We plan to address thés iss
e e i
in detail as part of our future work.

REFERENCES [19]

[1] Cisco, “Visual Networking Index: Global mobile data ffia forecast [20]
update, 2009-2014."

[2] G. Liang and B. Liang, “Balancing interruption frequenand buffering
penalties in VBR video streaming,” ilNFOCOM, 2007.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stémtroduction
to Algorithms, Second Edition. The MIT Press and McGraw-Hill Book
Company, 2001.

[21]

[22]

4 5 6 7 8
FPD (Buffer Size in Mb)
(b) Fixed Buffered Playout Data (FPD)

> 50 < 40 > 40
6 = @ = Equal Split — < = ® = Equal Split 6 = @ = Equal Split
<4 b Greedy (Time| @D 350, —A— Greedy (Time, o 350 e Greedy (Time,
o 40- =7 Weighted Spli % * =¥ Weighted Splif o =7 Weighted Spli
= t:U 30 . < 301 1
) B ok &

L 250 e 250
5 39 B, e k)
o et 3 = o0b
ks 3 20| "V ‘e 3 20|

L ~
gzo gls O Seo, gls,

Ve hE

= 210 Ve, e Z 10t
@ 10f [<2) V. Y P 5]
[=)] [ LI " » >
s S L VoY © 50
] . o A A 4 A g o
<< o < % 9 10 << o 10

2 4 6 8
FPT (Duration in seconds)

(c) Fixed Buffered Playout Time (FPT)

Different buffering schemes

G. Auwera, P. David, and M. Reisslein, “Traffic and qualdharacteri-
zation of single-layer video streams encoded with H.26@Advanced
video coding standard and scalable video coding exterisitEEE

Transactions on Broadcasting, vol. 54, no. 3, 2008.

P. Seeling, M. Reisslein, and B. Kulapala, “Network penfiance eval-
uation with frame size and quality traces of single-layed amo-layer
video: A tutorial,” [EEE Communications Surveys and Tutorials, vol. 6,

no. 3, 2004, clF Video traces at http://trace.eas.asurgzkrg4/index.
html and QCIF Video traces at http://trace.eas.asu.edbiogmain.cgi.

J. G. Andrews, A. Ghosh, and R. Muhamétijndamentals of WIMAX:

Understanding Broandband of Wreless Networking.  Prentice Hall
Communications Engineering and Emerging Technologiee§e2007.
M. W. Garrett and W. Willinger, “Analysis, modeling anggeration of
self-similar VBR video traffic,” inACM S GCOMM, 1994.

A. R. Reibman and A. W. Berger, “Traffic descriptors for RBrideo
teleconferencing over ATM networkslEEE/ACM Trans. Netw., vol. 3,

no. 3, 1995.

S. S. Lam, S. Chow, and D. K. Y. Yau, “An algorithm for lossé
smoothing of MPEG video,ACM SGCOMM Comput. Commun. Rev.,

vol. 24, no. 4, 1994.

T. Ott, T. V. Lakshman, and A. Tabatabai, “A scheme forosithing

delay-sensitive traffic offered to ATM networks,” IfEEE INFOCOM

'92: Proceedings of the eleventh annual joint conference of the IEEE

computer and communications societies on One world through commu-

nications (\Vol. 2), 1992.

N. B. Shroff and M. Schwartz, “Video modeling within me&irks using
deterministic smoothing at the source,” iINFOCOM, 1994.

S. Sen, J. Dey, J. Kurose, J. Stankovic, and D. Towsl8eaming
CBR transmission of VBR stored video,” B8PIE Symposium on \oice

Video and Data Communications, 1997.

J. D. Salehi, S.-L. Zhang, J. Kurose, and D. Towsley,gigurting stored
video: reducing rate variability and end-to-end resoureguirements
through optimal smoothing,IJEEE/ACM Trans. Netw,, vol. 6, no. 4,
1998.

M. Grossglauser, S. Keshav, and D. N. C. Tse, “RCBR: apkinand
efficient service for multiple time-scale traffid EEE/ACM Trans. Netw.,

vol. 5, no. 6, 1997.

Z.-L. Zhang, J. F. Kurose, J. D. Salehi, and D. F. Towst&moothing,
statistical multiplexing, and call admission control fdored video,”
IEEE Journal on Selected Areas in Communications, vol. 15, no. 6,
1997.

H. Stern and O. Hadar, “Optimal video stream multiptexithrough
linear programming,” inEEE International Symposium on Information

Technology, 2002.

J. Londono and A. Bestavros, “A two-tiered on-line sarvside band-
width reservation framework for the real-time delivery ofiltiple video
streams,"BUCS-TR-2008-012, Boston University, 2008.

G. Liang and B. Liang, “Effect of delay and buffering oittgr-

free streaming over random VBR channel$EEE Transactions on

Multimedia, vol. 10, no. 6, 2008.

C.-H. Hsu and M. Hefeeda, “On statistical multiplexingvariable-bit-
rate video streams in mobile systems,”ACM Multimedia, 2009.

P. Sadeghi, R. A. Kennedy, P. Rapajic, and R. Shams,it&-gtate
markov modeling for fading channeldEEE Sgnal Processing Maga-

zine, 2008.

H. Rahul, F. Edalat, D. Katabi, and C. Sodini, “Frequeaware rate
adaptation and mac protocols,” MobiCom, 2009.

G. Verticale and L. Musumeci, “Impact of multippath fag on the
fairness of the wimax system,” ilCLAN, 2009.



10

APPENDIX algorithm, we assume that the server is allowed to transmit a
A. Hardness bi; < ry; bits to the videa in slot j. Note that this assumption
does not change the optimal value of the objective becauise fo

an:(Lj) tﬁéogflaojoljtl c“uErlv:é: for e:gr?o\];:i d(é;(I;/eiT g Sélgtsjligc\?gﬁg; ic;;]my solution in which the server transmits < r;; bits in slot
polynomial time whether each video ’wiII have a lead Iof o \.”de(-n' we can modlfy the solution to transmi; bIFS n

° . slot . This modification does not decrease the objective value
seconds at the end of the epoch. Thus the decision version Ak qoes not change the slot allocation.)

LN||VT IS |ntNP. f th bset bl . aSset We present our algorithm in two steps. First, we present
n an instance of the subset-sum probiem, given abset algorithm considering the number of bits transmitted to
P positive integergx1,...,zp}, and a positive integeB, we

?each video, and later we show how to modify the algorithm

) . . o incorporate lead. (Recall thm;; denotes the total number

In the subset is exactls [3]. Let Y be the sum of all INCYEIS ¢ j5ts in an epoch, and let the slots in an epoch be numbered
in S. (We assumd&3 < Y; otherwise, the subset-sum mstanc?rom 1 to N¥!

is trivial to solve.) LetIl denote the sefl,..., P}. For this _. . P’ .

: . Finding feasible Tx-vectors. For a given n-tuple <

instance of the subset-sum problem, we construct an instanc : I
bi,...,b, > (which we call a transmission-vector dix-

of LMVT as follows.

. . - vector) and a given number of total slots, say we determine
There are two videos; andw,, each with zero initial lead, wﬂ(ether there is slot allocation such that, for edch i < 7,

need to find a subset &f such that the sum of the element

and each plays at 1 frame per second. Let the inverse playbac _ . e ) .
curve ofv;, @, (b), be a function which is 0 fob < B, and 1 video v; receivesb; bits in the allocation. If there is such a

. i - _slot allocation, we say that the Tx-vector ris-feasible. Let
for b > B. (An example of such a video is one that contalnslg(m T) denotes the predicate whether Tx-veciris m-
single frame of size B bits.) Similarly, l&(b) be a function ! b

o : feasible. For a Tx-vectdF, we denote byl'[i] thei*" element
Wh'(.:h is 0 forb < ¥ — B, and 1 f.orb > Y — B. The required of T'. For any pair of Tx-vectofl'l and 72, we define the
minimum leadL for each video is 1.

There is only one slot in each interval, and there &e relationT1 X 72 to be true if and only if'1[i] < T2[] for

: . <i<n. i i
intervals. For each slat € II, the rates of both the videos areeachl < i < n. The maximum number of Stl)|ts that can be

. . . . N,
equal toz;; i.e.,z; = r1; = ro;. We now show that the abovelransmitted to a videe; in the epoch is)(3_;.1 i;), and we
instance of subset-sum problem has a solution if and onlydgnote it byb;**. This maximum is achieved when all slots
the constructed LMVT problem instance has a solution. are allocated ta;. We compute theV;-feasibility of all Tx-
Suppose the subset-sum problem instance has a soluN8AtOrs whose™ element is at most**, for eachl < i < n.
given by a subsef’ of S. We construct a solution for the We first state the following straightforward lemma.
instance of LMVT as follows: for each < j < P, if z; € S’  Lemma 4: For any pair of Tx-vectord'l and72 such that
then we allocate the slot to videov;, else we allocate the 71 = 72, and for anym > 0, if T2 is m-feasible theril'l is
slot to videow,. In either casey; bits are transmitted in slot alsom-feasible.
j for the allocated video. Since, the sum of all elements in A slot allocation forT'1 can be easily obtained by appro-
S” is B, this allocation results in transmission &f bits and priately reducing the number of bits in the slot allocation
Y — B bits for v; andwvs, respectively. Thus, both videos havdor 72. We omit the proof of the lemma here. Our dynamic
a lead 1. programming algorithm for finding feasibility of Tx-vectr
For the reverse direction, assume that we have a solutionimediately follows from the following lemma. (Recall that
LMVT in which both the video have a lead of 1. Thus,and 7 IS the rate of videa in slot m.)
vy are transmitted at lea#? bits andY — B bits, respectively. Lemma 5: Let 7" denote any Tx-vector. For eadh< i <
In the solution, suppose that; C II be the set of slots that n, let W; denotes a Tx-vector that is identical 0 except
are allocated ta;, and the remaining slots are allocated tthat W;[i] is maximum(Q[i] — 7, 0). Let F(0,T) be true if
Va. T =< 0,...,0 >, and false otherwise. Then, fon > 1,
Note that, for eacly € II;, the number of bits transmitted F'(m, T') is true if and only if at least one of the predicates
to vy is r1; = x;. Since at leasB bits are transmitted to;, F(m —1,W;), 1 <i < n is true.
B <) icn, mj = 2_jen, ¥j- Similarly, for videovs, Y — Proof: Suppose(m—1,W;) is true for somd < i < n.
B <) iemm, T2 = ijel‘[\l‘h x;. However by construction, Then, there is a slot allocation usimg— 1 slots such that for
Yjen®j =Y, 803y a; = Bandy ;=Y —B. everyl <j<n,videov; is transmittedV;[;] bits. Consider
Thus, the subsefz; : j € II;} of S'is a solution of the a slot allocation form slots that is identical to that folV;

subset-sum instance. m until slotm — 1, and them! slot is allocated tay; with r;,,
) (or T[i], if T[i] < 7iy) transmission bits. Then, in this new
B. Algorithm for proof of Lemma 2 slot allocation, every video is transmitted the number @ bi

1) An optimal pseudo-polynomial time algorithm for specified in Tx-vectofl. Thus, F(m,T) is true.
LMVT: We now give a dynamic programming based algorithm For the reverse direction, suppoBém, T') is true for some
to solve LMVT. If the number of videos is a constant, thd” andm > 1, and hence, there is an allocation fBrusingm
algorithm runs in time pseudo-polynomial in terms of thelots. Consider the video that is allocated in stotsaywv;, and
input. Note that, it follows from the proof of Lemma 1 that thesayb bits are allocated in slot.. Then, there is slot allocation
LMVT problem is NP-complete even for two videos. (In thisusingm — 1 slots for the Tx-vectoff” which is identical tol’
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except thafl”[:] = T'[i]| —b. Thus,F(m —1,T") is true. Since, the SINR value reported in [6]. The minimum and maximum
b < rym, W; = T'. Then, from Lemma 4F (m — 1,W;) is values of RSSI measured in our experiments is -85 dBm and
also true. H -37 dBm. We map the maximum and minimum values of our
RSSI measurements to the corresponding ones in [6] and do a
In the dynamic programming algorithm, using Lemma Sinear extrapolation to determine the mapping between RSSI
starting from them = 1 to m = Nng,, we compute the ranges and the rates achieved.
F(m,T) for all possible values of’ << b***,..., b >. We know that the states of the Markov model correspond
For each of theN:, slots, there are at mogf[;"; b}"*” to the number of bits that can be successfully transmitted in
Tx-vectors. To update each vector, we need to lookup a slot. The vector of transmission rates is taken tofbe-
entries in the dynamic programming table. Thus, the timet 1.5 2 3,4, 4.5] «+ 50000 bits. We conduct experiments by
complexity of the algorithm iO(nNg! TT;, b"**) and the changing the number of slots in an interval. Varying theltota
space-complexity i€) (N, [Ti; b7"e”). number of slots in an interval, while keepig unchanged,
is equivalent to varying the bit rate at which the base statio
Finding feasible Tx-vectors with maximum value of its can transmit the video streams. A larger number of slots can
min-lead. Recall that, in Section IlI-A, we approximated thepe viewed as an increase in the available wireless channel
(expected) lead of a vide&[L;] by g; — o; + ®;(E[Yi]), resources, such as the channel bandwidth (in Hz).

whereY; is the number of bits transmitted to cliehin the 2) Generating User-Level Traces: Signal strength measure-
epoch, and®; is the inverse playback curve of the videqnents (RSSI values) are collected by making the base station
for client 7. Before starting our algorithm, we compute theontinuously transmit data packets and receiving them on a
inverse playback curve for each video. Then, at each Sigpion To capture different kinds of behavior of mobile nsse

of the dynamic programming algorithm, after calculating thye consider both pedestrian and vehicular mobility scesari
feasibility for each Tx-vector, if the vector is feasibleeth 1o vehicular measurements were gathered by placing the
we also compute i_ts min-!ead (over all videos) by computir]gpmp in a car and driving around the WINLAB campus.
the lead of each videousingg; — o; + ®;(E[Yi]). Als0, We  gjgnal strength measurements under pedestrian mobility ar
maintain a pollnter to the feasible vegtor with the maximu@athered by walking around the same campus with the laptop.
value of its min-lead, among all feasible vectors seen so f@he pase station only has a transmission range of 500 meters.
(and the pointer is updated at each step of the algorithmipherefore, we collect received power measurements for only
Thus, at the end of algorithm, we will have a pointer t0 thg yehjcular and pedestrian mobility experiments, each of
feasible vector with the maximum value of its min-lead. Thi§yration 10 minutes. The entire transmission range of tise ba
modification increases the time-complexity of each step bysgyiion was exhaustively covered by these experiments@nd s
factor of n, and in addition, requires the time to pre-comput&e did not perform additional experiments.

the inverse playback curves. Each interval is assumed to be of 1 second duration and
C. Details of Experimental Setup hence actual channel conditions (i.e. RSSI) at the beginnin
1) Markov Chain Model: In this subsection we describe®f €ach second need to be known for generating kiee-Level
the Markov Chain model used in our experiments. We use theces: We use the RSSI-rate mapping to determine the rate
mapping between the modulation and coding schemes (Mc&§ieved in any interval. Using this approach we genewite
and the SINR values for a WIMAX network provided in [6] tot@ces from the RSSI measurements consisting of the rates
generate the Markov Chain. The SINR regime is divided into@¢hieved in each interval for the 3 vehicular and pedestrian
number of ranges and there exists an MCS for each range tR@Pility cases.
maximizes throughput. The MCS in turn indicate the différen In our experiments the duration of each video being
rates that are achievable in practice. Hence we can consigégamed by the 8 users is approximately 27 minutes or 48000
each of these SINR ranges to correspond to a state in fremes (the frame rate is/30"" of a second). We synthetically
rate based Markov Chain model. Finite State Markov chaig§nerate 8 differenUser-Level Traces (each 27 minutes)
based on SNR to model the wireless channel have been v@Tulating the real channel conditions (separately foraear
studied in literature. [20] provides a detailed descriptidthe and pedestrian mobility) by randomly choosing sectionsfro
various models available in literature. Further use of SNR theserate traces and stitching them together.
bitrate mappings is also common [21], [22]. We would like to 3) Determining the Transition Matrix of the Markov Chain:
note here that the MCS only inform us how the rates achievéd obtain the transition matrix of the Markov Chain we first
are related. For example, assuming a loss less channel usiombine all therate traces into a single one. From this
16QAM, 3/4 the rate achieved will be twice that obtained bgombinedate trace one can determine the sequence of states
using QPSK, 3/4. The actual number of bits received howewbirough which the Markov Chain has progressed. We then
depends on the bandwidth (in Hz) of the channel. find out the number of transitions from each state to the
Our Markov channel model for the wireless channel thusthers by observing the sequence of states. For exampiles let
has 6 different states [6]. Considering the different MG® t consider the sequence of states{is...2,4,6,2,4......}. The
rates achieved in the 6 states of the Markov Chain have thgbsequencg2,4} means that we increment the number of
following ratio [1,1.5,2,3,4,4.5]. Our base station reportstransitions from stat@ to state4 by one. The next transitions
RSSI values whose unit of measurement is different froare from statesl to 6, 6 to 2 followed by another transition
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Fig. 8. Distribution of stalls with variation of slots for QFE videos

from 2 to 4. Once all the transitions have been consideradcreases. For example, the average number of stalls is6.4 a

we normalize each entry (i..e say transition from stateo 3.1

when the FPT duration is 1 and 5 seconds respectively.

state2) by the sum of all transitions from staie Following The average duration of each stall is 4.6 and 9.6 seconds
this approach the transition matrix is easily determineat. Frespectively. This is expected because when the condition

the vehicular mobility case we observed that the range fafr

resuming playout is less restrictive it is satisfied lyasi

the received signal was such that the highest rate was neVherefore the user resumes playout but is forced to stop more
achieved. Most of the values of the received signal strengiften because enough data has not been buffered.

were confined to the first 4 states of the Markov Chain. This
is primarily due to the fact that vehicular motion is confined
to roads and we are not able to reach very close to the base
station. In the pedestrian mobility scenario however diteons
among all the 6 states is observed.

D. Additional Experimental Results

1) Results for second set of QCIF videos. We present the
results for the two sets of QCIF videos in Figure 8. The
results, depicting the average number of stalls and thelatdn
deviation of stalls, are shown in Figure 8. Keeping in mind
the low mean bit-rate requirement of the QCIF videos, all
the rates in the Markov channel model i.e. the number of
bits received in a slot, were scaled down by 10. This scaling
down is done to investigate the algorithm performance near
the average provisioned and over provisioned cases, sasnar
that are interesting in practice.

2) A note on our results on different buffering schemes: We
would like to note here that irrespective of the client briffg
strategy, the total duration of stalls remains approxiiyates
same for all approaches as it is contingent on the amount of
data transmitted by the base station to the client. In althihee
playout strategies, the average number of stalls decremses
the x-axis increases. The total duration of each stall hewev



