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Abstract—Managing the Quality-of-Experience (QoE) of video
streaming for wireless clients is becoming increasingly important
due to the rapid growth of video traffic on wireless networks.The
inherent variability of the wireless channel as well as the variable
bit rate (VBR) of the compressed video streams make managing
the QoE a challenging problem. Prior work has studied this
problem in the context of transmitting a single video stream.
In this paper, we investigate multiplexing schemes to transmit
multiple video streams from a base station to mobile clientsthat
use number of playout stalls as a performance metric.

In this context, we present an epoch-by-epoch framework to
fairly allocate wireless transmission slots to streaming videos. In
each epoch our scheme essentially reduces the vulnerability to
stalling by allocating slots to videos in a way that maximizes
the minimum ‘playout lead’ across all videos. Next, we show
that the problem of allocating slots fairly is NP-complete even
for a constant number of videos. We then present a fast lead-
aware greedy algorithm for the problem. Our choice of greedy
algorithm is motivated by the fact that this algorithm is optimal
when the channel quality of a user remains unchanged within
an epoch (but different users may experience different channel
quality). Moreover our experimental results based on public
MPEG-4 video traces and wireless channel traces collected from
a WiMAX test-bed show that the greedy approach performs a
fair distribution of stalls across the clients when compared to
other algorithms, while still maintaining similar or lower average
number of stalls per client.

I. I NTRODUCTION

With the deployment of broadband wireless networks, the
popularity of multimedia content on mobile devices is ex-
pected to increase significantly. A large portion of multimedia
traffic is forecasted to be recorded videos such as movies,
YouTube videos, and TV shows [1]. The inherent variability of
both the wireless channel and the bit rate of compressed videos
makes streaming videos on wireless networks a challenging
task. This work investigates how multiple variable bit rate
(VBR) videos can be multiplexed over a time-varying wireless
channel while still maintaining a good QoE at the mobile
clients.

A wireless streaming system consists of a video server con-
nected to a base station over a high bandwidth wired backbone
link and clients at mobile stations (MS) that communicate with
the base station (BS) using a wireless channel (Fig. 1). The
server stores pre-encoded videos, and upon receiving requests,
streams out videos to the requesting clients. A video stream
is composed of a sequence of frames that the client buffers
and plays according to their playout times. If a frame is not
received by its playout time, the client degrades the quality
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Fig. 1. A video streaming system

of the displayed video or it maystall the video to wait for
more frames to arrive, or both. This work considers systems
that stall in response to delayed frames.

When streaming multiple videos over a wireless channel,
in the case where the rate of each video as well as the rate
available to each wireless client varies with time, the server can
distribute stalls among video streams by appropriately multi-
plexing or scheduling their transmissions. This paper considers
this multiplexing problem with the goal of minimizing stalls
across all mobile clients.

The frame transmission scheduling/multiplexing algorithm
we investigate in this paper makes three contributions. First,
we present an epoch-by-epoch framework based on two ideas:
(a) We divide the transmission time intoepochs and use a
Markov model to estimate the set of rates available to each
wireless client during the next epoch. (b) We define theplayout
lead of a video as the duration of time the video can be
played using the data already buffered by its client. Since the
playout lead plays an important role in determining whethera
video stalls in an epoch, we present a fair multiplexing scheme
that takes into account the channel rates and maximizes the
minimum lead among all videos in an epoch. Second, we show
that the optimization problem of maximizing the minimum
lead is NP-complete even for two videos. We present a fast
lead-aware greedy algorithm that is sub-optimal for wireless
channels, but we show that the algorithm is optimal for the
special case where the channel quality of a user does not vary
within an epoch, but different users may have different channel
quality. Finally, we conduct trace-driven simulations with
publicly available MPEG-4 video traces, and wireless channel
quality traces that we collected from a WiMAX test-bed. Our
simulations demonstrate that the greedy algorithm ensuresa
fair distribution of stalls across clients while maintaining a
low average number of stalls per client. In particular, when
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the wireless network is average-provisioned or slightly over-
provisioned as compared to the total bit-rate of the considered
videos (cases that are interesting in practice), the greedy
algorithm reduces the number of stalls by a factor of 3 to
4 when compared to other algorithms in our simulations. Our
results also show that the greedy scheme is robust against
changes in client’sstall-recovery buffering scheme (which
determines how long a client stalls the playout when a frame
is not received in time) and changes in epoch duration.

In the remainder of this paper, the video streaming system
is described in Section II. Section III introduces multiplex-
ing based on playout leads and develops the corresponding
problem formulation. Hardness results are given in SectionIV
followed by the greedy algorithm in Section V. The evaluation
framework and results for the experiments are given in Sec-
tion VI and Section VII, respectively. Comparison with related
work is presented in section VIII. We conclude in Section IX
with directions for future work.

II. STREAMING SYSTEM AND CHANNEL MODEL

We consider a video streaming system similar to [2] and
shown in Fig. 1. We assume that the server simultaneously and
separately streamsn videosv1, . . . , vn to n clients 1, . . . , n
via the base station. A video object is composed of a sequence
of frames that are displayed at a constant rate by the client.
However, since the size of each frame varies significantly,
the required transmission rate also varies with time. For a
videovi, its playback curve pi(t) specifies the cumulative data
needed by timet relative to the start of its playout, in order to
play the video without interruptions. The playback curve isa
characteristic of a video and is independent of the underlying
channel. We assume that clients have sufficient buffer space
and they buffer frames that have been received but not yet
displayed. If the next frame to be displayed is not received by
its playout time, the client stalls playout for a certain duration
during which it continues to buffer data received from the
server. It resumes playout based on itsstall-recovery buffering
scheme. Common buffering schemes include: (i) waiting for a
fixed amount of time, (ii) waiting for a fixed amount of future
playout data, and (iii) waiting for a fixed number of future
playout frames. For a clienti, its receiver curve Gi(t) specifies
the cumulative amount of data it has received by timet. The
cumulative amount of data played out by timet is given by its
playout curve Oi(t). Figure 2(a) shows an example playback,
receiver, and playout curve for a client. The notation used in
this paper is summarized in Table I.

We assume a broadband wireless system (such as WiMAX)
wherein the transmission time is divided intointervals
(Fig. 2(b)). The duration of an interval is small enough so
that the channel state remains unchanged within it. Intervals
are divided into a fixed number of (transmission)slots that are
allocated to clients. The base station can transmit to at most
one client in a slot. Depending on the channel conditions, each
client receives a certain bit rate in the allocated slots. The bit
rate for a client remains the same in all slots within an interval
but can change between intervals. Following [2], we assume
that the wireless channel is error-free due to an ideal error
control mechanism such as ARQ.

Notation Definition
n number of clients
R,A channel rate vector, transition matrix (resp.)
N in

ep , N
sl
in, N

sl
ep #intervals/epoch,#slots/interval,#slots/epoch (resp.)

Ii initial probability distribution of channel state
F frames played out per second
Yi, Vi #bits,#complete frames (resp.) transmitted in epoch
Li lead at the end of the epoch
Φi inverse playback curve
rij #bits that can be transmitted to clienti in slot j

TABLE I
IMPORTANT NOTATIONS(NOTE: SUBSCRIPTi REFERS TO CLIENTi AND #

DENOTES‘ NUMBER OF’)

III. E POCH-BY-EPOCHMULTIPLEXING BASED ON

PLAYOUT LEADS

We define anepoch to contain a fixed number of intervals
(Fig. 2(b)). The variation of rates across intervals, as seen
at a client, is modeled using a generic discrete-time Markov
model given by(R,A) where the possible channel states are
identified by the transmission ratesR = (r1, r2, . . . , rK) and
A is the transition matrix. (R is also called the rate vector.)
Hereri denotes the number of bits that can be transmitted in
a time slot when the channel is in statei [2]. Each client’s
channel is modeled as an independent Markov chain, and
each client estimates the transition matrix correspondingto
its channel as discussed below. At the beginning of the epoch,
clients send their transition matrix as well as the initial state
of the channel to the server so that the server can compute the
expected rates of all slots available to all clients during the
epoch.

At the beginning of each epoch, our multiplexing scheme
allocates slots to clients within that epoch. To motivate the
allocation strategy, note that a client’s current buffer size (in
bits) indicates its vulnerability to stalling: the smallerthe
buffer, the more likely is the occurrence of a stall. However, for
VBR videos, buffer size is a poor indicator of this vulnerability
since it does not consider the amount of data needed to play
the next few frames. On the other hand, theplayout lead of
the video, i.e., the duration of additional time a client canplay
the video using only its buffered data, takes into account the
VBR nature of the video. Therefore in our scheme, within each
epoch the server attempts to prevent stalls by maximizing the
playout leads. To ensure that the stalls are evenly distributed
across all videos, slots are allocated such that the minimum
lead among all videos is maximized. In our system model,
we assume that clients communicate their playout leads to the
server at the beginning of each epoch.

A. Modeling the Multiplexing Problem

As previously noted, to avoid stalls, at the beginning of each
epoch, slots are allocated to clients such that the minimum lead
among all videos is maximized at the end of that epoch. We
now present our modeling of this multiplexing problem.

Preliminaries: Let N in
ep and Nsl

in denote the number of in-
tervals in an epoch, and the number of slots in an interval,
respectively. Thus the total number slots in an epochNsl

ep =
N in

ep .N
sl
in. Each video is played at the constant rate ofF frames

per second.
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Fig. 2. (a) Playback, receiver and playout curves of a video stream (b) Epochs, Intervals, Slots

Consider theith client in a particular epoch. LetIi be the
state vector denoting the probability distribution of channel
states at theith client at the beginning of the epoch. Then,
given the Markov channel model, the state probability distri-
bution of the channel state at the client at the beginning of the
kth interval in the epoch isIiAk.

Let Xik be the random variable denoting the number of
bits that can be transmitted to clienti in any slot of thekth

interval. Then, its expectationE[Xik] is the dot product of
IiA

k and the channel transmission rate vectorR. Suppose
that the server assignsik slots to clienti in the kth interval.
Then the random variableYi for the number of bits transmitted

to client i in this epoch can be expressed as
∑Nin

ep

k=1 sikXik.

From linearity of expectation,E[Yi] =
∑Nin

ep

k=1 sikE[Xik] =
∑Nin

ep

k=1 sikE[IiA
k.R].

Playout Lead: The playout lead of a video at a given time is
the additional duration of time that the video can be played out
using only data currently in the client buffer. Therefore, the
playout lead is equal to the number of complete frames in the
client buffer divided by the frame rateF . At the beginning of
the epoch, letoi andgi denote the amount of time for which
the video has been played out at the clienti, and the amount
of time for which the data required for the playout has been
received at the client, respectively. (The values ofoi andgi can
be computed from the calculation in the previous epoch, and
the video playout and receiver curves.) Thus, the playout lead
of the videoi at the beginning of this epoch isgi−oi, and this
value is known at the beginning of the epoch. LetLi be the
random variable denoting the playout lead of the video at the
end of this epoch, andVi be the random variable denoting the
number of additional frames that can becompletely received
by the end of this epoch. Then,Li = gi − oi + (Vi/F ).

Inverse Playback Curve: For an epoch, we now define a
deterministic function that maps the number of bits received to
the number ofcomplete frames received. Theinverse (frame)
playback curve Φi for each videoi is defined as follows: ifb
bits are transmitted to videoi in this epoch, then the number
of complete frames that are received increases byΦi(b) at
the end of the epoch. Thus,Vi = Φi(Yi). (Note that partially

transmitting a frame does not increase the lead of the video.)
The inverse playback curve can be easily computed from the
video frame sizes.

Estimating E[Vi] from E[Yi]: As gi and oi are known
constants,E[Li] = gi − oi + E[Vi]/F . Unfortunately, since
the video frame sizes can vary widely, the mappingΦi

from Yi to Vi is non-linear, and hence, we cannot easily
obtain E[Vi] from E[Yi]. Therefore, we estimateE[Vi] by
Φi(E[Yi]). Thus,E[Li] ≈ gi − oi + Φi(E[Yi]) = gi − oi +

(1/F )Φi(
∑Nin

ep

k=1 sikE[IiA
k . R]).

The Multiplexing Problem: Our goal, at the beginning of
an epoch, is to assign slots with the goal of maximizing the
minimum expected lead at the end of the epoch. This problem
can be expressed as follows:

Objective: Max Min{E[L1], . . . , E[Ln]}
subject to the constraints:

1.
∑n

i=1 sik = Nsl
in, ∀k ≤ N in

ep

2. sik ≥ 0 , ∀i ≤ n, ∀k ≤ N in
ep

IV. H ARDNESSRESULT

We now investigate the optimization problem described in
the previous section. We first reformulate the problem as a
combinatorial problem. (We assume that slots in an epoch are
numbered sequentially from 1 toNsl

ep.)

Inputs and Constraints. At the beginning of an epoch, the
video of theith client has an initial lead ofli = gi−oi seconds;
i.e., it has received the data corresponding to theF ∗ li frames
after the last played frame.

Let rij be the number of bits of video that can be transmitted
to client i in slot j. Thus, rij = E[IiA

k.R], when slot j
belongs to intervalk. For ease of presentation, we also call
rij the rate of videoi in slot j. Given the values of the rates, a
slot allocation for an epoch specifies the client to which each
slot is allocated.

The Problem. In the Lead-based Multiple Video Transmission
(LMVT) problem, given the above input, we need to find a slot
allocation that maximizes the minimum lead among all videos
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1: function initialization
2: AvailableSlots← {1, . . . , Nsl

ep}; j ← 1
3: ∀ client i: leadi ← initial lead of i; Ii ← initial state distribution;

rcvbitsi ← 0
4: ∀ client i: compute the inverse playback curveΦi for this epoch
5: for 1 ≤ k ≤ N in

ep do {for all intervals in epoch}
6: while j < kNsl

in do {for all slots in interval}
7: rij ← E[IiAk.R]; j ← j + 1

8: function greedy algorithm
9: select a client with the lowest idi s.t. (∀j ≤ n, leadi ≤ leadj )

10: select a slot j s.t. (j ∈ AvailableSlots) and (∀x ∈
AvailableSlots, rij ≥ rix)

11: allocate slotj to client i; rcvbitsi ← rcvbitsi + rij

12: leadi ← initial lead of videoi + Φi(rcvbitsi)
F

13: removej from AvailableSlots

Fig. 3. A greedy algorithm (executed at the beginning of eachepoch)

at the end of the epoch. (Here, ‘lead’ refers to the expected
playout lead described in the previous section.) We now show
that the following decision version of LMVT is NP-complete:
given a constantL, does there exist a slot allocation such that
every user has a lead of at leastL seconds at the end of the
epoch? We show the NP-completeness by reduction from the
subset-sum problem [3]. Due to lack of space the proof of
NP-completeness is given in the appendix.

Lemma 1: The decision version of the LMVT problem is
NP-complete.

For a constant number of videos, we have designed a
pseudo-polynomial time algorithm to optimally solve LMVT
using dynamic programming. However, this algorithm requires
long running time when the number of videos is high. Due to
lack of space the algorithm is presented in the appendix.

Lemma 2: For a constant number of videos, there is a
pseudo-polynomial time algorithm to optimally solve LMVT.

V. A L EAD-AWARE GREEDY ALGORITHM

We now present a fast lead-aware greedy algorithm for the
LMVT problem. The algorithm is optimal for LMVT for the
case when the channel conditions remain constant within an
epoch, but different users may have different channel quality
(as shown in Lemma 3 below). Later in our simulations, we
numerically evaluate the algorithm for the general case when
the channel conditions of users may vary.

Lead-Aware Greedy Algorithm. Starting with the initial playout
leads of the videos and all the slots in the epoch, the greedy
algorithm allocates slots one by one (Figure 3) as follows.
In each iteration, the algorithm selects a videoi with the
minimum lead, such that videoi has the lowest id among the
videos with the minimum lead. Then the algorithm allocates
client i a slotj in which clienti has the highest rater among
all available slots. Before moving to the next iteration, slot j
is marked unavailable for all videos, and the lead of clienti is
increased corresponding to the transmission ofr bits to video
i using the inverse playback curveΦi (line 12 of Figure 3).
The algorithm iterates until there are no available slots inthe
epoch. (We would like to remind the reader that the lead in
this algorithm refers to theexpected value of the lead random
variable.)

To motivate our choice of the above greedy algorithm, we
now show that the algorithm is optimal for LMVT when each
client’s channel condition does not change within an epoch
(but different clients may have different rates).

Lemma 3: If the rate of each client does not change within
an epoch, the greedy algorithm yields an optimal solution for
LMVT.

Proof: As the rate of a clienti does not change within
an epoch, each slot that is allocated to the clienti provides
a constant number of bits, sayri. In this setting, the greedy
algorithm simply chooses the clienti that has the lowest id
among the clients with the minimum lead, and selects the next
available slot and allocates it toi. The proof of optimality is
by induction on the number of allocated slots.

For the induction, we first introduce some notation and
observations. At any point in the execution of the LMVT
algorithm, the lead of a client can only change on receiving
sufficient slots for the client’s next video frame, and therefore,
the client’s lead can change only by a multiple of1/F . For any
LMVT solution (slot allocation to clients)X , let lXi denote
the lead of clienti in solutionX , and letlXmin = mini{l

X
i }

be the minimum lead inX . Let sl(X, j) denote the number
of slots allocated to clientj in solution X . Note that for a
solutionY and clientk, if lXj > lYk thensl(X, j) > sl(Y, k),
on the other hand, ifsl(X, j) ≥ sl(Y, k) then lXj ≥ lYk .
Base Case: If only 1 slot is available, the greedy algorithm
allocates it to a client with the minimum lead and therefore
the minimum lead is maximized.
Induction Step: Let us assume that the greedy algorithm
yields an optimal solutionG for every d ≤ c slots. Let
G(c + 1) be the solution given by the greedy algorithm for
c+1 slots. We must prove thatG(c+1) is optimal. To show
by contradiction, let us assume that there exists an alternate
solutionS(c+ 1) 6= G(c+ 1) that is optimal forc+ 1 slots,
and S(c + 1) has a higher minimum lead thanG(c + 1).
Thus, lS(c+1)

min > l
G(c+1)
min (i.e., lS(c+1)

min ≥ l
G(c+1)
min + 1/F )

[ObservationA0]. Let client i have the lowest id among the
clients with the minimum lead inG(c). After the (c + 1)th
slot is allocated toi by the greedy algorithm, we have one of
the following two cases:

Case 1: Minimum lead changes, i.e.,l
G(c+1)
min > l

G(c)
min .

Let j be a client with the minimum lead inG(c + 1), i.e.,
l
G(c+1)
min = l

G(c+1)
j (j need not be different fromi). Then

l
S(c+1)
j ≥ l

S(c+1)
min > l

G(c+1)
min = l

G(c+1)
j [ObservationA]. Thus,

j is allocated at least one more slot inS(c+1) than inG(c+1).
Let us remove a slot fromj in S(c+ 1) to obtain a solution
S(c) for c slots. Since we have only removed one slot fromj
in S(c+ 1) to obtainS(c), lS(c)

j ≥ l
S(c+1)
j − 1/F ≥ l

G(c+1)
j

[ObservationB], and l
S(c)
min = min{l

S(c)
j , l

S(c+1)
min } ≥ l

G(c+1)
j

(where the last inequality follows from inequalitiesA andB).
Thus, we havelS(c)

min ≥ l
G(c+1)
j = l

G(c+1)
min > l

G(c)
min which is a

contradiction sinceG(c) is optimal forc slots.

Case 2: Minimum lead remains unchanged at some valuez,
i.e., lG(c+1)

min = l
G(c)
min = z.
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Observe that this can happen either when (a)i has not
received data constituting an entire frame and therefore its
lead has not advanced (b)i received data constituting one or
more frames and its lead advanced but there is another client
j such thatlG(c)

j = l
G(c)
i = z.

We first consider the case whenz = 0. As l
S(c+1)
min ≥

z + 1/F > 0 (from A0), in S(c + 1) every client is
allocated enough slots for at least its first frame, Thus, for
each clientj, the minimum number of slots needed for the
first frame, saysl′j, is less or equal to thansl(S(c + 1), j),
and therefore,

∑
j sl

′
j ≤ c+1. Now consider the execution of

the greedy algorithm until the minimum lead (over all videos)
becomes greater than 0. The algorithm selects a clientj, in
the increasing order of their client id, and allocates client j
enough slots for its first frame, i.e.,sl′j , and then moves to the
next frame. Therefore, givenc+1 ≥

∑
j sl

′
j slots, the greedy

algorithm will allocate sufficient slots to each client for its first
frame, and hence, the allocation will have a minimum lead of
at least1/F . Thus,lG(c+1)

min ≥ 1/F , a contradiction.
We now consider the case whenz > 0. Let us look back in

time to the point in the greedy algorithm’s execution when the
minimum lead inG has last changed. Let us assume that this
occurredδ slots back, i.e.,lG(c−δ)

min = z−1/F andlG(c−δ+1)
min =

. . . = l
G(c+1)
min = z [ObservationC]. Thus, in the solution

G(c + 1 − δ), there must have been a set of clientsP each
with leadz.

Consider the period of execution of the greedy algorithm
while going fromG(c + 1 − δ) to G(c + 1). In this period,
the algorithm must have assigned slots only to clients inP .
Also, no client inP would have received slots more than
what is required for its next one frame (because on receiving
slots required for one frame, the client’s lead increases, and it
does not remain a client with the minimum lead) [Observation
C1]. Let P1 be the set of clients inP that have received
sufficient slots for their next frame in this period, andP2
be the remaining set of clients inP (that have not received
enough slots for their next frame in this period). We note that
P2 cannot be an empty set, otherwise, the lead ofG(c + 1)
would be higher thanG(c+ 1− δ).

Let q be any client inP2. Then lG(c+1)
q = z. Since, from

our initial assumptions,lS(c+1)
min > l

G(c+1)
min = z, l

S(c+1)
q ≥

l
S(c+1)
min > z = l

G(c+1)
q [ObservationD]. Also, for any client

j in P1, lG(c+1)
j = z + 1/F (since it has received slots for

the next frame) [ObservationD1]. As, lS(c+1)
j ≥ l

S(c+1)
min >

l
G(c+1)
min = z, we have, lS(c+1)

j ≥ z + 1/F = l
G(c+1)
j

[ObservationE].
To show a contradiction, let us modify the solutionS(c+1)

by removingδ + 1 slots to obtain a solutionS(c − δ) for
c − δ slots as follows. For every clientj in P , we remove
any sl(G(c + 1), j) − sl(G(c + 1 − δ), j) slots from its slot
allocation, and in addition, we remove one more slot from one
(arbitrarily chosen) client, sayw, in P2. (The removed slots
add up toδ + 1 becauseδ slots were allocated by the greedy
algorithm to obtainG(c + 1) from G(c + 1 − δ).) We now
show that the minimum lead inS(c − δ) is higher than the
minimum lead inG(c − δ), thus resulting in a contradiction

(becauseG(c−δ) is optimal forc−δ slots). Letq be the client
with the minimum leadS(c − δ). We consider four possible
cases.

(1) q is not inP . In this case, no slots were removed fromq
to obtainS(c− δ) from S(c+ 1), and soq had the minimum
lead in S(c + 1) as well. Therefore,lS(c−δ)

q = l
S(c+1)
min >

l
G(c+1)
min = z > l

G(c−δ)
min (from A0 andC).

(2) q belongs toP1. Note that, since a process inP1
receives the minimum number of slots that is required for
its lead to bez + 1/F in G(c + 1) (from C1 and D1),
and l

S(c+1)
q ≥ l

S(c+1)
min ≥ l

G(c+1)
min + 1/F = z + 1/F (from

A0), q receives equal or more slots inS(c + 1) than in
G(c+1). Then,sl(S(c− δ), q) = sl(S(c+1), q)− (sl(G(c+
1), q) − sl(G(c + 1 − δ), q)) ≥ sl(G(c + 1), q) − (sl(G(c +
1), q)− sl(G(c+1− δ), q)) = sl(G(c+1− δ), q). Therefore,
l
S(c−δ)
q ≥ l

G(c+1−δ)
q = z > l

G(c−δ)
min = z − 1/F (where the

last inequality follows fromC).
(3) q belongs toP2 but is distinct fromw. Sinceq ∈ P2,

l
S(c+1)
q > l

G(c+1)
q (from D), and thereforesl(S(c + 1), q) >

sl(G(c + 1), q). Now, sl(S(c − δ), q) = sl(S(c + 1), q) −
(sl(G(c+ 1), q)− sl(G(c+ 1 − δ), q)) > sl(G(c+ 1), q))−
(sl(G(c+1), q)− sl(G(c+1− δ), q)) = sl(G(c+1− δ), q).
Therefore,lS(c−δ)

q ≥ l
G(c+1−δ)
q = z > l

G(c−δ)
min = z − 1/F

(where the last inequality follows fromC).
(4) q = w. Sinceq ∈ P2, lS(c+1)

q > l
G(c+1)
q (from D), and

thereforesl(S(c + 1), q) > sl(G(c + 1), q). Now, sl(S(c −
δ), q) = sl(S(c + 1), q) − (sl(G(c + 1), q) − sl(G(c + 1 −
δ), q)) − 1 > sl(G(c + 1), q))− (sl(G(c+ 1), q)− sl(G(c+

1 − δ), q)) − 1 ≥ sl(G(c + 1 − δ), q). Therefore,lS(c−δ)
q ≥

l
G(c+1−δ)
q = z > l

G(c−δ)
min = z−1/F (where the last inequality

follows from C).
As a special case of the above lemma, when the transmission

channel is of Constant Bit Rate (CBR), i.e., the rate of slots
do not change within an epoch or across the users, e.g., in a
wired link, the greedy algorithm is optimal.

Corollary 1: For a CBR channel, the greedy algorithm
yields an optimal solution for LMVT.

VI. EXPERIMENTAL SETUP

A. Trace-Driven Experiments

To demonstrate the efficacy of the greedy algorithm, we
perform trace-based experiments and report the results in this
section. Our evaluation uses two types of traces:
(i) VBR Video Traces describing the variation in the frame
sizes of videos for emulating video playouts.
(ii) User-Level Wireless Channel Traces describing the rates
received by various users over time to emulate real wireless
channel conditions.

We use the publicly available MPEG-4VBR Video Traces
[4], [5] in our experiments. The videos play out at a constant
frame rate of 30 frames per second. We perform experiments
with video traces encoded in Common Intermediate Format
(CIF) and Quarter CIF (QCIF). All evaluation is performed
considering that a group of 8 different videos is being streamed
simultaneously to 8 different users over a wireless channel.
Unless mentioned otherwise, all results are reported for CIF
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Name of Mean bit Mean frame Standard
Video rate (Mbps) size (Kb) deviation of

frame size(Kb)
Star Wars IV 0.42 14 17.6
Lord of the Rings I 0.65 21.6 22.7
Tokyo Olypmics 1.06 35.4 39.4
Matrix I 0.41 13.4 17.1
Matrix II 0.61 20.2 25.5
Matrix III 0.52 17.1 20.5
NBC News 1.33 44 34
Silence of the
Lambs

0.44 14.7 22.2

TABLE II
CIF VIDEO TRACE STATISTICS

Parameter Value
PHY OFDMA
Carrier Frequency 2.59 Ghz
Channel Bandwidth 10 MHz
Frame duration 5 ms
Transmission power 30 dbm
Antenna model Sector
Fragmentation/Packing ON
ARQ OFF

TABLE III
WIMAX SYSTEM PARAMETERS FOR TRACE COLLECTION

videos. A brief description of the 8 CIF video traces used,
is given in Table II. Detailed information about the CIF and
QCIF traces is available in [5].

User-Level Wireless Channel Traces describe the rates
achieved by different users in every interval of each epoch.
To generate these traces we collected signal strength measure-
ments over a (802.16e) WiMAX network deployed in WIN-
LAB at Rutgers University. During our trace collection, the
base station was made to continuously transmit data packets
and signal strength (RSSI) was recorded; we performed the
measurement at the receiver (a laptop) under vehicular and
pedestrian mobility. A brief description of the parametersof
the WiMAX network used in our trace collection is given in
Table III. (Due to lack of space, we present further details in
the appendix.)

B. Scheduling Algorithm: Parameters

To evaluate our epoch-by-epoch multiplexing strategy based
on playout lead we need to specify the epoch duration,
interval size and the number of slots in an interval. To count
the number of stalls at the client, we assume the following
buffering scheme: if the client is not allocated enough data
in the current epoch to playout for the whole duration of the
epoch, the client stalls for the whole epoch. (We evaluate other
common buffering schemes in Section VII-C.) For ensuring a
smooth viewing experience, it is undesirable to have small or
large epochs as the former will result in frequent glitches while
the latter will significantly delay playout. Hence in our experi-
ments we consider epochs to be in the seconds’ timescale. We
perform our experiments considering an epoch duration of 10
seconds. However, we also evaluate our algorithm for varying
epoch durations.

Recall that in our multiplexing strategy, epochs are divided
into intervals, which are subdivided in slots (Figure 2(b)). Our
algorithm takes scheduling decisions based on the assump-

tion that the channel state changes significantly only from
one interval to the other. We use the mapping between the
modulation and coding schemes (MCS) and the SINR values
for a WiMAX network provided in [6] to generate the Markov
Chain for modeling wireless channel state transitions fromone
interval to the next. The transition matrix is then determined
by empirically computing the probabilities of transitioning
between these states from the traces collected. We choose an
interval duration to be 1 second in our experiments because
we want to capture channel variation due to path loss and
shadowing effects. The fast fading behavior of the channel
will average out for video frames (as their playout duration
is typically large). Due to lack of space, we present further
details in the appendix.

The main objective of our experiments is to demonstrate
that the proposed greedy algorithm is able to achieve its
goal of minimizing the number of stalls irrespective of the
epoch duration, interval size or number of slots per interval.
Determining the optimal epoch duration, the interval size or
the number of slots in an interval so as to maximize viewer
satisfaction is beyond the scope of this work.

VII. R ESULTS

In this section we present and discuss the results for the
various experiments conducted. We compare the performance
of the greedy algorithm against two baseline approaches: the
equal-split and the weighted-split algorithms. In the equal-split
approach, we divide the number of slots available in every
interval equally among all the users. In the weighted-splitthe
total number of slots in any interval is divided in proportion
to the mean bit rate of the individual video streams. While
allocating the slots, these two algorithms neither consider the
playout lead nor the wireless channel variability, and hence,
we expect them to be significantly unfair compared to our
greedy strategy.

To emphasize the importance of making scheduling deci-
sions based on playout lead, we also consider a variant of our
greedy algorithm from Section V (we denote our algorithm
from Section V by greedy-time). We consider a greedy-bit
algorithm which is similar to our greedy-time algorithm except
for one crucial aspect; it allocates the next slot to the video
with the minimum lead in terms of playout bits instead of
playout time. To avoid cluttering the plots with many lines,
we show only a few results for the greedy-bit algorithm. The
greedy-bit approach ignores the variability in the frame sizes
(i.e., burstiness) of a video with the result that it allocates fewer
resources to a video experiencing a burst, thereby unfairly
making it stall for longer durations.

A. Distribution of Stalls

In this subsection we study the distribution of stalls as a
function of the number of slots in an interval (keeping the
interval duration constant). The epoch duration is taken tobe
10 seconds. Using the steady state probabilities of the Markov
model, one can compute the expected number of bits received
per slot. By varying the number of slots in an interval we are
essentially varying the total resource (in terms of bandwidth)
that is available at the base station.
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Fig. 4. Vehicular: Distribution of stalls with variation ofwireless channel resource (slots) for CIF videos
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Fig. 5. Pedestrian: Distribution of stalls with variation of wireless channel resource (slots) for CIF videos

1) Vehicular Mobility: Figure 4 presents the variation of
the average number of stalls for four multiplexing algorithms:
equal-split, weighted-split, greedy-bit and greedy-time. Ta-
ble IV provides the expected bit rate in the steady state for
different values of the number of slots per interval. In our
experiment, the mean bit rate of the aggregate of 8 CIF
videos is approximately 5.4Mbps. Thus, from Table IV, we
note that 34, 58 and 82 slots per interval correspond to the
wireless channel being severely under-provisioned, average-
provisioned and over-provisioned, respectively for the vehicu-
lar mobility scenario. In terms of the average number of stalls
per video, both the greedy algorithms perform better than the
equal-split and the weighted-split approaches, except when the
network is severely under-provisioned.

The under-provisioned case is not of practical interest as
the average number of stalls experienced is very high for all
algorithms. We, however, offer an explanation as to why the
equal-split performs the best in terms of average number of
stalls in this scenario. The main reason is that 2 videos in the
set of 8 videos considered, have mean bit rates much higher
than the others (Table II). In the equal-split approach, allvideo
streams are given the same number of slots and consequently
a significantly larger number of stalls is experienced by the
high bit rate videos in comparison to the low bit rate ones.
Therefore, although the average number of stalls is lower
in equal-split when compared to greedy-time, equal-split is

Number of Slots Expected Bit-Rate (Mbps)
34 3.23
58 5.7
82 8.0

TABLE IV
EXPECTED STEADY STATE BIT RATE FOR A GIVEN NUMBER OF SLOTS

unfair, a fact also evident from its large standard deviation for
the under-provisioned scenario. To validate this observation,
we performed experiments excluding the two high bit rate
videos and found that the performance of the equal-split
algorithm becomes similar to greedy-time algorithm in the
under-provisioned case, with respect to the average number
of stalls.

In the average and over-provisioned scenario, we observe
that the greedy algorithms outperform the other two ap-
proaches. With respect to fairness, the standard deviationof
the number of stalls shows that in terms of evenly distributing
the stalls among the videos, our greedy-time algorithm per-
forms significantly better than other algorithms. As discussed
earlier, we observe that the greedy-bit algorithm is unfairin
distributing the stalls (Figure 4), and so we will not consider
the greedy-bit algorithm any further.

To highlight the performance of the greedy-time algorithm,
we present results for the average number of stalls experienced
for the mildly over-provisioned case (64 and 70 slots) in
Table V. The mildly over-provisioned case is the scenario
of interest in practice and we observe that the greedy-time
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Scheme Number of Stalls Number of Stalls
(Slots 64) (Slots 70)

Equal Split 10.25 7.25
Weighted Split 9.875 7.75
Greedy 2.75 1.875

TABLE V
NUMBER OF STALLS PER VIDEO FOR AVERAGE-PROVISIONED NETWORK
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Fig. 6. Sensitivity to epoch duration

algorithm reduces the number of stalls by a factor of3 to
4 when compared to equal-split and weighted-split. Overall,
we observe that the greedy-time multiplexing algorithm gives
the best performance both in terms of reducing the average
number of stalls per video and evenly distributing the stalls
among the videos.

2) Pedestrian Mobility: Figure 5 shows the result for the
experiments conducted under pedestrian mobility. We observe
that the greedy-time algorithm again outperforms the equal
and weighted split algorithms in terms of average number of
stalls and fairness in the pedestrian mobility case as well.Due
to lack of space, in the remaining sections we only present the
results for the vehicular mobility case.

B. Sensitivity to Epoch Duration

In the experiments presented thus far, we have fixed the
epoch duration to be 10 seconds. In Figure 6, we present the
variation in the average number of stalls per video as a function
of the epoch duration. The number of slots in an interval
is 64. We observe that the average number of stalls for the
greedy-time algorithm decreases slightly as the epoch duration
increases. As we increase the epoch duration, the reason for
faster decrease in the number ofstalls of the other schemes
as compared to the greedy scheme is that, the greedy scheme
starts with a significantly lower number of stalls, and therefore,
the benefits of increase the epoch duration is not as pronounced
as the other schemes. Although it is not captured in Figure 6,
the total stall duration averaged over all videos increaseswith
the increase in epoch duration due to our buffering scheme
that whenever a video stalls, it stalls for an whole epoch. (We
study other buffering schemes in the Section VII-C.)

C. Sensitivity to Buffering schemes

Recall that in the results presented above, we have assumed
a client stall-recovery buffering scheme in which the client

stalls for the entire epoch when there is not enough data
present to playout for the whole epoch. However, the media
players at the clients may have a different buffering scheme.
Following [2], we now consider the three common buffering
schemes:

• Fixed Stall Buffering Delay (FBD): Once a stall occurs,
resume display only after a fixed duration of time.

• Fixed Buffered Playout Data (FPD): Once a stall occurs,
resume display only after a fixed amount of data is
received.

• Fixed Buffered Playout Time (FPT): Once a stall occurs,
resume display only after the receiver has accumulated
enough data corresponding to a fixed playout duration.

We performed experiments to determine whether our al-
gorithm’s performance is sensitive to different client buffering
schemes. Figures 7(a), 7(b), and 7(c) show the variation of the
average number of stalls for the FBD, FPD and FPT buffering
schemes respectively. In these simulations we again considered
64 slots in each interval. In terms of playout stalls, the greedy-
time algorithm still outperforms the other schemes irrespective
of the buffering scheme adopted by the player at the client.
We also observed that the greedy-time algorithm performs
significantly better in terms of evenly distributing the stalls
across the videos, although we omit the plot due to lack of
space.

D. Sensitivity to Different Video Traces

We also conducted experiments with two sets of 8 QCIF
video traces, available from [4], [5]. We observed that, for
the QCIF video traces the trend obtained is similar to CIF
videos, with the greedy-time algorithm outperforming the
other approaches. Although the gains are not as prominent as
in the case of the CIF videos in terms of average number of
stalls, the greedy-time algorithm still significantly outperforms
in terms of fairness. Due to lack of space, we present the
results in the appendix.

VIII. R ELATED WORK

Although compression techniques reduce the mean bit rate
of video streams, it introduces considerable rate variability
over several time scales [7], [8]. Resource allocation for
VBR video streaming has been studied extensively for wired
networks. Smoothing the video transmission is one of the
primary techniques used for reducing the effect of bit-rate
variability. By pre-fetching some of the initial video frames
before their display times, smoothing techniques can minimize
the effect of variability in bit-rates under various resource
constraints, such as peak bit rate, client buffer size, and initial
playout delay [9], [10], [11], [12].

Rate allocation for multiple video streams is a well studied
problem [13], [14], [15], [16], [17]. [13] investigates minimiz-
ing rate variability when transmitting multiple video streams
given the client buffer size in a high-speed wired network. In
the RCBR service introduced in [14], the rate of each video is
renegotiated at the end of each interval to provide statistical
QoS guarantees. [15] presents a call-admission scheme at a
statistical multiplexer and bound the aggregate loss probability.
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Fig. 7. Different buffering schemes

A linear programming model is proposed in [16] to compute
a globally optimized smoothing scheme to stream multiple
videos. A recent work [17] derives bounds on the dropped
frames, delay, and buffer requirement that can be obtained
by statistically multiplexing VBR streams at the video server
by using a two-tiered bandwidth allocation. Although our
algorithm perform periodic rate allocation among multiple
video streams, our work differs from the above papers in
two crucial aspects: our primary objective of fairly managing
playout stalls across the videos, and our focus on time-varying
wireless channel.

Our work is closest to the work presented in [18], [2]
for managing stalls. Given the initial playout delay and the
receiver buffer size, [18] determines upper and lower bounds
on the probability of stall-free display of a video. [2] develops
an analytical framework to find the distribution of the number
of stalls while streaming a VBR video over a wireless channel.
However, unlike our work, both papers consider a single video
stream. The problem of transmitting multiple VBR videos
from a base station to mobile clients has been studied in [19],
but the work focusses on maximizing bandwidth utilization
while reducing energy consumption, and do not to address the
issue of stalling of video playout.

IX. CONCLUSION

In this paper, we have presented a multiplexing scheme to
manage stalls for multiple video streams that are transmitted
over a time-varying bandwidth-constrained wireless channel.
We considered a fairness criterion of maximizing the minimum
playout lead for managing stalls. We have assumed that
all server-to-client channels have the same transition matrix
for the Markov channel model, which might not hold in
practice. Some clients may have a poor channel condition for
a protracted period of time, and in maximizing the minimum
playout lead scheme, the performance of the entire system may
be degraded due to these clients. We plan to address this issue
in detail as part of our future work.
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APPENDIX

A. Hardness

1) Proof of Lemma 1: Proof: Given a slot allocation,
and the playout curve for each video, it is easy to verify in
polynomial time whether each video will have a lead ofL
seconds at the end of the epoch. Thus the decision version of
LMVT is in NP.

In an instance of the subset-sum problem, given a setS of
P positive integers{x1, . . . , xP }, and a positive integerB, we
need to find a subset ofS such that the sum of the elements
in the subset is exactlyB [3]. Let Y be the sum of all integers
in S. (We assumeB < Y ; otherwise, the subset-sum instance
is trivial to solve.) LetΠ denote the set{1, . . . , P}. For this
instance of the subset-sum problem, we construct an instance
of LMVT as follows.

There are two videosv1 andv2, each with zero initial lead,
and each plays at 1 frame per second. Let the inverse playback
curve ofv1, Φ1(b), be a function which is 0 forb < B, and 1
for b ≥ B. (An example of such a video is one that contains a
single frame of size B bits.) Similarly, letΦ2(b) be a function
which is 0 forb < Y −B, and 1 forb ≥ Y −B. The required
minimum leadL for each video is 1.

There is only one slot in each interval, and there areP
intervals. For each slotj ∈ Π, the rates of both the videos are
equal toxj ; i.e.,xj = r1j = r2j . We now show that the above
instance of subset-sum problem has a solution if and only if
the constructed LMVT problem instance has a solution.

Suppose the subset-sum problem instance has a solution
given by a subsetS′ of S. We construct a solution for the
instance of LMVT as follows: for each1 ≤ j ≤ P , if xj ∈ S′

then we allocate the slotj to video v1, else we allocate the
slot to videov2. In either case,xj bits are transmitted in slot
j for the allocated video. Since, the sum of all elements in
S′ is B, this allocation results in transmission ofB bits and
Y −B bits for v1 andv2, respectively. Thus, both videos have
a lead 1.

For the reverse direction, assume that we have a solution of
LMVT in which both the video have a lead of 1. Thus,v1 and
v2 are transmitted at leastB bits andY −B bits, respectively.
In the solution, suppose thatΠ1 ⊆ Π be the set of slots that
are allocated tov1, and the remaining slots are allocated to
v2.

Note that, for eachj ∈ Π1, the number of bits transmitted
to v1 is r1j = xj . Since at leastB bits are transmitted tov1,
B ≤

∑
j∈Π1

r1j =
∑

j∈Π1
xj . Similarly, for videov2, Y −

B ≤
∑

j∈Π\Π1
r2j =

∑
j∈Π\Π1

xj . However by construction,∑
j∈Π xj = Y , so

∑
j∈Π1

xj = B and
∑

j∈Π\Π1
xj = Y −B.

Thus, the subset{xj : j ∈ Π1} of S is a solution of the
subset-sum instance.

B. Algorithm for proof of Lemma 2

1) An optimal pseudo-polynomial time algorithm for
LMVT: We now give a dynamic programming based algorithm
to solve LMVT. If the number of videos is a constant, the
algorithm runs in time pseudo-polynomial in terms of the
input. Note that, it follows from the proof of Lemma 1 that the
LMVT problem is NP-complete even for two videos. (In this

algorithm, we assume that the server is allowed to transmit any
bij ≤ rij bits to the videoi in slot j. Note that this assumption
does not change the optimal value of the objective because for
any solution in which the server transmitsbij < rij bits in slot
j to videoi, we can modify the solution to transmitrij bits in
slot j. This modification does not decrease the objective value
and does not change the slot allocation.)

We present our algorithm in two steps. First, we present
an algorithm considering the number of bits transmitted to
each video, and later we show how to modify the algorithm
to incorporate lead. (Recall thatNsl

ep denotes the total number
of slots in an epoch, and let the slots in an epoch be numbered
from 1 toNsl

ep.)
Finding feasible Tx-vectors. For a given n-tuple <
b1, . . . , bn > (which we call a transmission-vector orTx-
vector) and a given number of total slots, saym, we determine
whether there is slot allocation such that, for each1 ≤ i ≤ n,
video vi receivesbi bits in the allocation. If there is such a
slot allocation, we say that the Tx-vector ism-feasible. Let
F (m,T ) denotes the predicate whether Tx-vectorT is m-
feasible. For a Tx-vectorT , we denote byT [i] the ith element
of T . For any pair of Tx-vectorT 1 and T 2, we define the
relationT 1 � T 2 to be true if and only ifT 1[i] ≤ T 2[i] for
each1 ≤ i ≤ n. The maximum number of bits that can be

transmitted to a videovi in the epoch isQ(
∑Nsl

ep

j=1 rij), and we
denote it bybmax

i . This maximum is achieved when all slots
are allocated tovi. We compute theNsl

ep-feasibility of all Tx-
vectors whoseith element is at mostbmax

i , for each1 ≤ i ≤ n.
We first state the following straightforward lemma.

Lemma 4: For any pair of Tx-vectorsT 1 andT 2 such that
T 1 � T 2, and for anym ≥ 0, if T 2 is m-feasible thenT 1 is
alsom-feasible.

A slot allocation forT 1 can be easily obtained by appro-
priately reducing the number of bits in the slot allocation
for T 2. We omit the proof of the lemma here. Our dynamic
programming algorithm for finding feasibility of Tx-vectors
immediately follows from the following lemma. (Recall that,
rim is the rate of videoi in slot m.)

Lemma 5: Let T denote any Tx-vector. For each1 ≤ i ≤
n, let Wi denotes a Tx-vector that is identical toT except
thatWi[i] is maximum(T [i]− rim, 0). Let F (0, T ) be true if
T =< 0, . . . , 0 >, and false otherwise. Then, form ≥ 1,
F (m,T ) is true if and only if at least one of then predicates
F (m− 1,Wi), 1 ≤ i ≤ n is true.

Proof: SupposeF (m−1,Wi) is true for some1 ≤ i ≤ n.
Then, there is a slot allocation usingm− 1 slots such that for
every1 ≤ j ≤ n, videovj is transmittedWi[j] bits. Consider
a slot allocation form slots that is identical to that forWi

until slot m− 1, and themth slot is allocated tovi with rim
(or T [i], if T [i] < rim) transmission bits. Then, in this new
slot allocation, every video is transmitted the number of bits
specified in Tx-vectorT . Thus,F (m,T ) is true.

For the reverse direction, supposeF (m,T ) is true for some
T andm ≥ 1, and hence, there is an allocation forT usingm
slots. Consider the video that is allocated in slotm, sayvi, and
sayb bits are allocated in slotm. Then, there is slot allocation
usingm− 1 slots for the Tx-vectorT ′ which is identical toT
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except thatT ′[i] = T [i]−b. Thus,F (m−1, T ′) is true. Since,
b ≤ rim, Wi � T ′. Then, from Lemma 4,F (m − 1,Wi) is
also true.

In the dynamic programming algorithm, using Lemma 5,
starting from them = 1 to m = Nsl

ep, we compute the
F (m,T ) for all possible values ofT �< bmax

0 , . . . , bmax
n >.

For each of theNsl
ep slots, there are at most

∏n

i=1 b
max
i

Tx-vectors. To update each vector, we need to lookupn
entries in the dynamic programming table. Thus, the time-
complexity of the algorithm isO(nNsl

ep

∏n

i=1 b
max
i ) and the

space-complexity isO(Nsl
ep

∏n

i=1 b
max
i ).

Finding feasible Tx-vectors with maximum value of its
min-lead. Recall that, in Section III-A, we approximated the
(expected) lead of a videoE[Li] by gi − oi + Φi(E[Yi]),
whereYi is the number of bits transmitted to clienti in the
epoch, andΦi is the inverse playback curve of the video
for client i. Before starting our algorithm, we compute the
inverse playback curve for each video. Then, at each step
of the dynamic programming algorithm, after calculating the
feasibility for each Tx-vector, if the vector is feasible then
we also compute its min-lead (over all videos) by computing
the lead of each videoi usinggi − oi +Φi(E[Yi]). Also, we
maintain a pointer to the feasible vector with the maximum
value of its min-lead, among all feasible vectors seen so far
(and the pointer is updated at each step of the algorithm).
Thus, at the end of algorithm, we will have a pointer to the
feasible vector with the maximum value of its min-lead. This
modification increases the time-complexity of each step by a
factor ofn, and in addition, requires the time to pre-compute
the inverse playback curves.

C. Details of Experimental Setup

1) Markov Chain Model: In this subsection we describe
the Markov Chain model used in our experiments. We use the
mapping between the modulation and coding schemes (MCS)
and the SINR values for a WiMAX network provided in [6] to
generate the Markov Chain. The SINR regime is divided into a
number of ranges and there exists an MCS for each range that
maximizes throughput. The MCS in turn indicate the different
rates that are achievable in practice. Hence we can consider
each of these SINR ranges to correspond to a state in the
rate based Markov Chain model. Finite State Markov chains
based on SNR to model the wireless channel have been well
studied in literature. [20] provides a detailed description of the
various models available in literature. Further use of SNR to
bitrate mappings is also common [21], [22]. We would like to
note here that the MCS only inform us how the rates achieved
are related. For example, assuming a loss less channel using
16QAM, 3/4 the rate achieved will be twice that obtained by
using QPSK, 3/4. The actual number of bits received however
depends on the bandwidth (in Hz) of the channel.

Our Markov channel model for the wireless channel thus
has 6 different states [6]. Considering the different MCS, the
rates achieved in the 6 states of the Markov Chain have the
following ratio [1, 1.5, 2, 3, 4, 4.5]. Our base station reports
RSSI values whose unit of measurement is different from

the SINR value reported in [6]. The minimum and maximum
values of RSSI measured in our experiments is -85 dBm and
-37 dBm. We map the maximum and minimum values of our
RSSI measurements to the corresponding ones in [6] and do a
linear extrapolation to determine the mapping between RSSI
ranges and the rates achieved.

We know that the states of the Markov model correspond
to the number of bits that can be successfully transmitted in
a slot. The vector of transmission rates is taken to beR =
[1, 1.5, 2, 3, 4, 4.5] ∗ 50000 bits. We conduct experiments by
changing the number of slots in an interval. Varying the total
number of slots in an interval, while keepingR unchanged,
is equivalent to varying the bit rate at which the base station
can transmit the video streams. A larger number of slots can
be viewed as an increase in the available wireless channel
resources, such as the channel bandwidth (in Hz).

2) Generating User-Level Traces: Signal strength measure-
ments (RSSI values) are collected by making the base station
continuously transmit data packets and receiving them on a
laptop. To capture different kinds of behavior of mobile users
we consider both pedestrian and vehicular mobility scenarios.
The vehicular measurements were gathered by placing the
laptop in a car and driving around the WINLAB campus.
Signal strength measurements under pedestrian mobility are
gathered by walking around the same campus with the laptop.
The base station only has a transmission range of 500 meters.
Therefore, we collect received power measurements for only
3 vehicular and pedestrian mobility experiments, each of
duration 10 minutes. The entire transmission range of the base
station was exhaustively covered by these experiments and so
we did not perform additional experiments.

Each interval is assumed to be of 1 second duration and
hence actual channel conditions (i.e. RSSI) at the beginning
of each second need to be known for generating theUser-Level
Traces. We use the RSSI-rate mapping to determine the rate
achieved in any interval. Using this approach we generaterate
traces from the RSSI measurements consisting of the rates
achieved in each interval for the 3 vehicular and pedestrian
mobility cases.

In our experiments the duration of each video being
streamed by the 8 users is approximately 27 minutes or 48000
frames (the frame rate is1/30th of a second). We synthetically
generate 8 differentUser-Level Traces (each 27 minutes)
emulating the real channel conditions (separately for vehicular
and pedestrian mobility) by randomly choosing sections from
theserate traces and stitching them together.

3) Determining the Transition Matrix of the Markov Chain:
To obtain the transition matrix of the Markov Chain we first
combine all therate traces into a single one. From this
combinedrate trace one can determine the sequence of states
through which the Markov Chain has progressed. We then
find out the number of transitions from each state to the
others by observing the sequence of states. For example, letus
consider the sequence of states is{......2, 4, 6, 2, 4......}. The
subsequence{2, 4} means that we increment the number of
transitions from state2 to state4 by one. The next transitions
are from states4 to 6, 6 to 2 followed by another transition
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(a) QCIF set 1: Average Stalls
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(b) QCIF set 1: Fairness
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(c) QCIF set 2: Average Stalls
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(d) QCIF set 2: Fairness

Fig. 8. Distribution of stalls with variation of slots for QCIF videos

from 2 to 4. Once all the transitions have been considered
we normalize each entry (i..e say transition from state1 to
state2) by the sum of all transitions from state1. Following
this approach the transition matrix is easily determined. For
the vehicular mobility case we observed that the range of
the received signal was such that the highest rate was never
achieved. Most of the values of the received signal strength
were confined to the first 4 states of the Markov Chain. This
is primarily due to the fact that vehicular motion is confined
to roads and we are not able to reach very close to the base
station. In the pedestrian mobility scenario however, transitions
among all the 6 states is observed.

D. Additional Experimental Results

1) Results for second set of QCIF videos: We present the
results for the two sets of QCIF videos in Figure 8. The
results, depicting the average number of stalls and the standard
deviation of stalls, are shown in Figure 8. Keeping in mind
the low mean bit-rate requirement of the QCIF videos, all
the rates in the Markov channel model i.e. the number of
bits received in a slot, were scaled down by 10. This scaling
down is done to investigate the algorithm performance near
the average provisioned and over provisioned cases, scenarios
that are interesting in practice.

2) A note on our results on different buffering schemes: We
would like to note here that irrespective of the client buffering
strategy, the total duration of stalls remains approximately the
same for all approaches as it is contingent on the amount of
data transmitted by the base station to the client. In all thethree
playout strategies, the average number of stalls decreasesas
the x-axis increases. The total duration of each stall however

increases. For example, the average number of stalls is 6.4 and
3.1 when the FPT duration is 1 and 5 seconds respectively.
The average duration of each stall is 4.6 and 9.6 seconds
respectively. This is expected because when the condition
for resuming playout is less restrictive it is satisfied easily.
Therefore the user resumes playout but is forced to stop more
often because enough data has not been buffered.


