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Abstract

Problem determination in a large and dynamic IT service
is a challenging task. In this paper we propose a frame-
work for problem determination based on monitoring the
event streams generated by the different components of an
IT service. We give a generic representation of a problem
through spatial-temporal patterns, which is a graph where
the vertices capture the location and the time of the match-
ing events, and the edges represent the spatio-temporal con-
ditions between two matching events. The spatial conditions
are based on the underlying system topology graph, and the
temporal conditions are based on event timestamps.
A practical implementation of the above framework will

require fast algorithms for detecting patterns. We present
efficient algorithms when the pattern graph is a range and
a tree, which are then used as building blocks for a hierar-
chical heuristic for detecting general patterns. Finally, we
show that our algorithms perform well in practice through
extensive numerical simulations.

1 Introduction

1.1 Motivation

As enterprise IT systems become larger and more dynamic,
IT service management is becoming an increasingly chal-
lenging task. One of the central concerns in IT service
management is how to reduce the time required to detect
problems in an IT system. This is an important concern be-
cause a fault or performance degradation in the underlying
IT system may directly impact the end-user’s experience of
the service. In most large IT systems, due to the complex in-
terdependencies among various components (both software
and hardware), the symptoms or root cause of a problem
may not be restricted to a single component, and the root
cause may not even be a hard fault at a component. In ad-
dition, the management of IT systems are frequently out-
sourced, and the system administrators may occasionally
change. In such a setting, reusing the knowledge of the pre-
viously resolved problems is essential for quickly detecting
new occurrences of problems.

In this context, we present a framework for problem de-
termination based on reusing information from already re-
solved problems. Suppose we are given some streams of
primitive events, where each stream consists of a sequence
of timestamped events generated by a component of an IT
service (e.g., events indicating that the memory-usage at a
server has crossed a threshold, or the time taken to complete
an activity in a workflow has crossed a threshold). We pro-
pose a method to automatically detect new occurrences of
a problem based on the information stored about previously
resolved problems. Our framework (1) represents informa-
tion about a problem as a graph pattern, and stores these
patterns in a repository, (2) as new events are generated,
searches the event streams for a set of events that match
some pattern in the repository, and (3) raises an alarm when
a pattern match is found. Building such a tool presents the
following three challenges. First we need to log events at
different components of the service, and aggregate them in
a central location. Second, we need to represent problems
in a way that is reusable across system topology changes,
and possibly, in different instantiation of the same service.
Finally, we need algorithms that can efficiently search for
patterns over a collection of event streams.
Today, there are multiple established commercial IT ser-

vice management products that log events at various com-
ponents of an IT service and aggregates them in a central
location, e.g., IBM Tivoli/Netcool Suite and HP Network
Node Manager. In this paper we focus on the remaining two
challenges−finding a generic representation of the prob-
lems, and designing algorithms to detect occurrences of pat-
terns in event streams.

1.2 Contributions

We make the following contributions in this paper.

1. We present a representation of problems using spatio-
temporal patterns in Section 2. We assume that we are given
a system topology that captures the dependencies between
the various components (or nodes) of the service. Every
event has an associated node type based on the type of node
where the event occurred (e.g., a billing server, a database),
and an associated event type based on the type of event (e.g.,
number of requests/queries per second has crossed a thresh-



old). The temporal relationship between any two events is
based on their time of occurrences, and their spatial rela-
tionship is based on the nodes in the topology where the
events occur. A spatio-temporal pattern is a graph where
each vertex has a node type and an event type, and an edge
specifies the spatial and temporal conditions between end-
vertices. Roughly speaking, a set of events S in a collec-
tion of event streams matches a spatio-temporal pattern if
every vertex in the pattern has a matching event in S with
the same node and event types, and all temporal and spatial
conditions given by the edges in the pattern are satisfied by
the matching events.

2. Next, we present algorithms for detecting if a pattern
match occurs in an event stream. We assume that type of
conditions captured by the edges are of a special kind: up-
per bounds on the (spatial or temporal) distance between
the two events, e.g., the events are not more than 2 seconds
apart in time, or at most at distance two in the topology
graph. Such conditions are commonly considered in prob-
lem determination in IT systems [2], because the symptom
events of a problem typically exhibit some proximity in time
or space. For such distance-based conditions, we propose
two efficient algorithms, first one for the patterns which re-
quires that all matching events occur within a fixed interval
of each other, and the second one for the patterns where
the pattern graph is a tree. We use these two algorithms
presented in Section 3 as building blocks for a hierarchical
heuristic for general pattern graphs. Section 4 presents our
proposed framework that detects spatio- temporal patterns
on event streams. We demonstrate that our algorithms are
efficient in practice through extensive numerical simulation
in Section 5.

2 Spatio-Temporal Pattern Matching Prob-
lem

Topology. We model the underlying system topology using
a topology graph GT = (V T , ET ) where the components
of the IT service are modelled as nodes and dependencies
between two components are modelled as edges. There is
a fixed set NTYPE of possible types of node. Each node
v ∈ V T has an attribute v.ntype ∈ NTYPE . (In this pa-
per, we do not consider the case where dependencies have
attribute.) The topology graph is dynamic, i.e., node can
join or leave the system and dependencies can be deleted
or new dependencies formed. The spatial distance between
two nodes is the length of the shortest path between the two
nodes in GT .
Events. We model time using tick of a global clock that
takes integer values starting from 0. An event e is recorded
(or logged) with the following attributes: (1) the time of
its occurrence e.ts (also called the timestamp of the event),
(2) node in the topology where the event occurred e.node ∈
V T (and e.ntype is defined to be (e.node).ntype), and

(3) the type of the event e.etype ∈ ETYPE. Here, ETYPE de-
notes the fixed set of all possible event types. The tem-
poral distance between two events ei and ej , denoted by
∆t(ei, ej), is given by |ei.ts− ej .ts|. The spatial distance,
denoted by ∆s(ei, ej), is given by the spatial distance be-
tween ei.node and ej .node in GT . For each node v ∈ V T ,
the event stream v.es is a sequence of events at v, ordered
by their timestamps. The event stream is dynamic: new
events are appended to v.es as they occur at node v.
Problem Patterns. We represent a problem through a
labelled pattern graph P = (VP , EP ) where VP =
{V1, . . . , Vk}. Each vertex1 Vi ∈ VP has two attributes
Vi.ntype ∈ NTYPE and Vi.etype ∈ ETYPE. No two ver-
tices in the pattern have the same node type, or have the
same event type. Each edge of the pattern (Vi, Vj) ∈ EP

has two attributes 2: the upper bound δ(i, j) on spatial dis-
tance and upper bound τ(i, j) on temporal distance.
Spatio-Temporal Match: We say that an ordered k-tuple
of nodes in the topology graph W =< w1, . . . , wk > spa-
tially matches a pattern P if the following two conditions
hold: (1) For every wi ∈ W , wi.ntype = Vi.ntype, and
(2) for every edge (Vi, Vj) in P , the spatial distance be-
tween wi and wj in GT is at most δ(i, j). We say an
ordered k-tuple of events Y =< e1, . . . , ek > matches
a pattern P , if the following two conditions hold: (1) <
e1.node, . . . , ek.node > spatially matches P , and (2) for
every edge (Vi, Vj) in P , the temporal distance between ei
and ej is at most τ(i, j). (In short, (1) for every node Vi
of P , Vi.ntype = ei.ntype and Vi.etype = ei.etype, and
(2) for every edge (Vi, Vj) of P , ∆s(ei, ej) ≤ δ(i, j) and
∆t(ei, ej) ≤ τ(i, j).)
A set of k events matches a pattern P if some ordering of

those events matches P . We say that a set of event streams
matches a pattern P if the there is a set of k events in the
event streams that matches P . In this paper, given a set of
event streams where events are appended over time, we in-
vestigate how to efficiently detect the occurrence of pattern
matches.

3 Algorithms

Our algorithm for pattern search is based on the simple
idea of hierarchical pruning of events: incrementally delete
the events from the event streams using one or more relax-
ation of the original pattern until a match is found, or all
events are pruned. If we view a pattern P as a set S of con-
ditions (such that a matching set of events needs to satisfy
all the conditions in S), then a relaxation of the pattern is
a subset S1 of S. Obviously, if we prune events from the
event streams that do not satisfy conditions S1, we cannot

1To distinguish nodes in the topology graph from nodes in the pattern
graph, we call the latter, vertices.

2Our results hold even if a vertex has one or both of the attributes. How-
ever, for simplicity of presentation, we assume both attributes are present
for each edge.



miss any match of P . Example of relaxation of a pattern are
any subgraph of the corresponding pattern graph (removing
an edge or vertex from the pattern graph, removes the asso-
ciated conditions), or a set containing only the spatial con-
ditions from the pattern (i.e., does not contain the temporal
upper bound on the edges of the pattern).
We first describe how to find temporal pattern matches as-

suming that we have already selected the topology nodes
(and their event streams) that satisfies the spatial conditions
of the pattern (i.e., the conditions on Vi.ntype of pattern
vertices Vi, and the spatial upper bound δ(i, j) on the pat-
tern edges). We describe algorithms to find events that satis-
fies the temporal conditions of the pattern. We first describe
with an algorithm for a simple pattern graph, and then show
how to extend the algorithm to arbitrary pattern graphs.

3.1 Temporal Matching Algorithms

In the rest of this section (except Section 3.5), we as-
sume that there are k event streams es1, . . . , esk, and pat-
tern P = (VP , EP ) with k vertices V1, . . . , Vk, and each
edge (Vi, Vj) has a finite temporal upper bound τ(i, j) but
its spatial upper bound is ∞. New events are appended to
the event streams over time, and we need to raise an alarm
whenever, there are k events e1, . . . , ek such that (1) for all
i, ei ∈ esi, and ei.etype = Vi.etype and (2) for every edge
(Vi, Vj) in P , ∆t(ei, ej) ≤ τ(i, j). We now describe algo-
rithms for different kinds of patterns.

3.2 Range Patterns

In this section, we consider a basic pattern P where all
events in a pattern match are required to be within a con-
stant (temporal) distance ∆ of each other. In other words,
the pattern graph is a clique, and for every edge (Vi, Vj),
τ(i, j) = ∆. We call this pattern, a range pattern, since all
events in a match are required to be within a time range. In
Figure 1, we give an algorithm for detecting this pattern.
The algorithm is based on a straightforward idea. It main-

tains a time window from the current event to ∆ time units
in the past, and counts the number of events of each event
types in that window. At any point in the execution, if the
window has at least one event of each type, then there is a
pattern match. We now describe the algorithm in detail.
Upon occurrence of a new event in any of the k event

streams, if the event matches the etype of the pattern ver-
tex corresponding to that stream, the event is put in a new
merged stream STR. For every event, the algorithm also
maintain a boolean attributematched (initially set to false),
and an attribute str ∈ {1, . . . , k}, initialized to the stream
in which e occurred. It also maintains three event pointers
in STR: first, last and scan. The last and the first point-
ers mark the start and the end of the current window in STR.
When there is an event of each of the k types in the current
window, there is a pattern match, and the scan pointer is

1: upon arrival of event e at event stream j do
2: e.matched := false; e.str := j
3: if e.etype 6= Vj .etype then return
4: counter[j] := counter[j] + 1 /*e.etype = Vj .etype*/
5: put e in STR; first := e
6: while last.ts < first.ts−∆ do
7: counter[last.str] := counter[last.str]− 1
8: point last to the next event in STR
9: if scan.ts < last.ts then scan := last

10: if ∀i ∈ {1, . . . , k}, counter[i] > 0 then
11: raise a pattern match alarm
12: while scan.ts ≤ first.ts do
13: scan.matched := true
14: if scan 6= first then point scan to the next event in

STR

15: return

Figure 1. Range Matching Algorithm

used to mark the events in the window as part of of a match
(by setting the matched attribute of those events to true).
Note that, even though an event can be a part of multiple
matches, the scan pointer is incremented such that it visits
each event at most once.
Note that, it is straightforward to reduce the amortized time

taken to check the condition in line 10 from Õ(k) to Õ(1).
Hence the following theorem.

Theorem 1. The algorithmAlgrange raises a pattern match
alarm if and only if there is a set of events matching the
pattern in the current window. Also, the amortized update
time of the algorithm is Õ(1) per event.

Due to lack of space, the proof is omitted.

3.3 Tree Patterns

We now present an algorithm for detecting pattern where
the pattern graph is a tree. Like the range pattern, we only
look at the temporal matching problem in this section. The
pattern graph has k vertices V1, . . . , Vk, and there are k
event stream 1, . . . , k corresponding to each vertex of the
pattern graph. Unlike the range algorithm, we consider the
offline version of the problem, i.e., we assume that we are
given the complete event streams as input to the problem.
We will later describe how to obtain a heuristic for detect-
ing general pattern graphs when events are appended to the
event streams over time.
First, we note that an edge of a pattern graph can be viewed

as a range with only two vertices. Our algorithm for tree
pattern uses the algorithm Algrange as a pruning subrou-
tine. For an edge (Vi, Vj), subroutine prune(i, j) executes
Algrange with the event streams i and j as inputs, and it
removes the events from event stream i whose matched



attribute remain false when Algrange has completely pro-
cessed the two streams. (Note that, prune(i, j) leaves the
event stream j unchanged.)
Our tree pattern matching algorithm, that we call Algtree

and which is given in Figure 2, is composed of HP rounds
of pruning, where HP is the height3 of the pattern graph
P . In each round, each pattern vertex is visited in a
Breadth First Search (BFS) order, and its corresponding
event stream is pruned based on the event streams of its par-
ent and children. If at any point in the execution, one of the
pruned event streams becomes empty, then the algorithm
immediately returns without a pattern match. Otherwise,
if all event streams are non-empty at the end of round HP ,
then the algorithm ensures that each of the remaining events
in every event stream is part of some match of the pattern.
We note that, for our algorithm any vertex of the tree can be

used as the root in the BFS that is used to visit the vertices in
a round. However, since the running time of the algorithm
increases with HP , we should choose a root rtP that mini-
mizes the height of the tree. Therefore, before running our
algorithm, we find such a root vertex by running BFS from
each vertex of the pattern and selecting a vertex whose BFS
tree has the smallest height. (This pre-computation takes
O(k2) time.) In the rest of this section, we assume that the
pattern graph is a tree rooted at rtP with height HP .
To prove the correctness of the algorithm, we need to in-

troduce some definitions. Consider the event streams at
any time t in the execution. In the rooted tree P , if ver-
tex Vj is the parent of vertex Vi and if there exists some
event e′ in stream j and some event e in stream i such that
∆t(e

′, e) ≤ τ(i, j), then e is said to have a matching parent
e′ at time t. Now, suppose pattern vertex Vj has c children
vertices Vj1 , . . . , Vjc . An event e in stream j is said to have
a matching set of children at time t if ∀i ∈ {1, . . . , c}, there
is an event eji in stream ji such that ∆t(e, eji) ≤ τ(j, ji).
We say that {eji | i = 1, . . . , c} is a matching set of chil-
dren of e. Let T (Vi) denote the subtree rooted at Vi (i.e., the
induced subgraph of P consisting of Vi and all its descen-
dants). We say that an event e in stream i is c-valid at time
t, if there is a set S of unpruned events, one from each of the
event streams of the descendants of Vi, such that S∪{e} is a
pattern match of T (Vi). (By definition, if Vi is a leaf vertex,
then all the events in its event stream are c-valid.)

Lemma 1. If an event becomes c-valid at some point
of time in an execution, then until the event is (possibly)
pruned, the event remains c-valid.

Proof. Suppose otherwise. Suppose event e in event stream
i becomes c-valid at time t. Consider the first event e′ 6= e
that is pruned such that, e is c-valid before e′ is pruned, and
e becomes not c-valid after e′ is pruned. Let e′ be pruned
at time t′ > t. Then from the definition of e′, at time t′ − 1

3The depth of a vertex is the number of edges in the path from the root
to that vertex. The height of a tree, is maximum depth over all vertices of
the tree.

1: for round r = 1, . . . , HP do
2: for Vi ∈ {V1, . . . , Vk} in the BFS order of vertices do
3: if Vi is not the root of the pattern graph then
4: prune(i, j), where Vj is the parent of Vi

5: if Vi is not a leaf of the pattern graph then
6: prune(i, j), for every child Vj of the Vi

7: if event stream i is ∅ then return
8: if all event streams are not-empty then
9: raise a pattern match alarm

10: return

Figure 2. Tree Pattern Matching Algorithm

there is a set S of unpruned events in the event streams such
that, S is a pattern match of T (Vi), and e, e′ ∈ S. Note
that, e′ is the first event to be pruned in S. Now, as S is a
pattern match of T (Vi), so there is a matching parent of e′

and a set of matching children of e′ in S. Since an event
can be pruned at t′ only if there is no matching parent or no
matching set of children in the event streams at t′, e′ cannot
be pruned at time t′; a contradiction.

Lemma 2. If an execution does not return before the end
of round r (1 ≤ r ≤ HP ), then at the end of round r, for
every event stream i such that depth(Vi) ≥ HP − r, every
unpruned event e in the event stream i is c-valid.

Proof. We prove the lemma by induction on the round num-
ber.
Base case: Suppose an execution does not return before the
end of round 1. This implies that no event stream is empty
at the end of round 1. At the end of round 1, consider any
event e in a stream i such that depth(Vi) is H − 1 or H .
Note that, either Vi is a leaf vertex or all children of Vi are
leaf vertices. From the definition of c-valid, any unpruned
event e′ in a stream corresponding to a leaf vertex is c-valid.
Suppose Vi is not a leaf vertex. Consider the time t when
line 6 is completed for Vi in round 1. Then e must have
a matching set S of children at time t (otherwise, it would
have been pruned in line 6 of round 1). Thus e is c-valid at
time t. Since e is not pruned in round 1, using Lemma 1, e
remains c-valid at the end of round 1.
Induction Hypothesis: If an execution does not return be-
fore the end of round r, then at the end of round r, for every
event stream i such that depth(Vi) ≥ HP − r, every un-
pruned event e in the event stream i is c-valid.
Induction Step: Suppose an execution does not return be-
fore the end of round r + 1. This implies that no event
stream is empty at the end of round r + 1. Let S be the
set of all unpruned events, at the end of round r + 1, which
occur at event streams at depth HP − r or higher. From
the induction hypothesis, events in S were c-valid at the
end of round r. Then, using Lemma 1, events in S remain
c-valid at the end of round r + 1.



Now consider an unpruned event e at the end of round r+1,
which occur at event stream i such that depth(Vi) = HP −
(r + 1). If Vi is a leaf vertex, then from the definition of
c-valid, e is c-valid at the end of round r+ 1. Suppose that
Vi is not a leaf vertex. Consider the time t when line 6 is
completed for Vi in round r + 1. Since e is not pruned in
round r+1, when line 6 is executed for Vi, e has a matching
set of children, say e′1, . . . e

′
c, occurring at event streams of

vertices W1, . . . , Wc, respectively. Note that, all Wis have
depth HP − r. Then, from the induction hypothesis, all
events e′i are c-valid at the end of round r. Also, since
vertices are visited in BFS order in a round, in round r + 1
the pruning of the event streams of Wis occur after time t.
Therefore at time t, for each e′i, there is the set of unpruned
events S′i (that includes e′i) such that S′i is a pattern match
of T (Wi). Union of all sets S′i, and the singleton {e}, gives
a set of unpruned events which is a pattern match of T (Vi)
at time t. Thus, e is c-validat time t. From Lemma 1, e
remains c-valid at the end of round r + 1.

We say that an unpruned event e is part of a pattern match
of P at some time t, if there is a set S of unpruned events
at time t, such that e ∈ S and S is a pattern match of the
pattern graph P . The depth of an event e that occurs at event
stream i is defined as depth(Vi).
We are now ready to show the correctness of the algorithm.

The next two lemmas show that an event remains unpruned
at the end of HP rounds if and only if the event is part of a
pattern match of P .

Lemma 3. At the end of round HP , every unpruned event
is a part of some pattern match of P .

Proof. Suppose by contradiction, at the end of round HP ,
there is an unpruned event that is not a part of any pattern
match of P . Consider such an event e with the minimum
depth. Suppose that event e occurs in event stream i. Sup-
pose Vj is the root of the pattern graph. From Lemma 2, at
the end of round HP , every unpruned event e′ in the event
stream j is c-valid. As Vj is the root vertex, from the defini-
tion of c-valid, e′ is part of a pattern match of P at the end
of round HP . Thus, e does not occur at the root Vj .
Since e is not pruned in roundHP , and the pruning in done

in BFS order in a round, e has an unpruned matching parent
e′′ at the end roundHP . Suppose, e′′ occurs in event stream
x (i.e., Vx is the parent of Vi in the pattern graph). Since at
the end of round HP , e is an event with minimum depth
that is not a part of some pattern match of P , e′′ is part of
some pattern match of P . Let us denote the set of events in
this match of P that contains e′′ by S(e′′). Since S(e′′) is a
match of P , there is a subset of S(e′′) that matches T (Vi);
let us call this subset Si(e

′′).
Now from Lemma 2, e is c-valid at the end of round HP .

Thus, there is a set of unpruned event S(e) (which includes
e) such that S(e) matches T (Vi). The set (S(e′′)\Si(e

′′))∪
S(e) is a pattern match of P containing e, a contradiction.

Lemma 4. Any event that is a part of a pattern match of P
at the beginning of an execution, is never pruned during the
execution.

Proof. Consider any event e that is part of pattern match of
P at the beginning of an execution. Then, there is a set S
of events at the beginning of the execution that is a pattern
match of P . Suppose during the execution, some event of S
is pruned. Consider the first such pruned event e′ in S, say
at time t. Then at time t − 1, since no event in S has yet
been pruned, e′ has unpruned matching parent and an un-
pruned set of matching children. Thus, e′ cannot be pruned
at time t. It follows that, no event in S (including e) ever
gets pruned during the execution.

Theorem 2. (1) An event is unpruned at the end of round
HP if and only if the event is part of some pattern match
of P . (2) Suppose there are n events in each of the k event
streams. Algorithm 2 requires in O(k2n) time and O(kn)
space to process all the events.

Following the above stated results, we omit the straightfor-
ward proof.

3.4 A Heuristic for General Pattern
Graphs

As we discussed at the beginning of Section 3, to prune
for a given pattern P , if we consider only a subset S of
all the conditions in P , then none of the events that is part
of a match of P will be pruned. However, these unpruned
events might contain some events that are not part of any
pattern match of P . We call S a relaxation of P . We use the
idea of relaxation of a pattern to prune events using various
subgraphs of the pattern graph P .
We now describe our heuristic based on hierarchical prun-

ing using subgraphs of P . It consists of three steps. If at
any point of the execution any event stream is completely
pruned, then the execution terminates without a match.
Step 1: For each edge e in P , we execute separate in-
stances of Algrange, denoted by Algrange(e). The inputs
to Algrange(e) are two event streams corresponding to the
two end vertices of e in P , and we prune any event with
matched = false after Algrange(e) is executed. The in-
stances of Algrange are executed one after the other: the
unpruned events from an instances are the input events for
the next instance.
Step 2: Next, we execute m instances of Algtree with dis-
tinct trees T1, . . . , Tm as the pattern graph. Here, each tree
Ti is a subgraph of P . (We discuss the trade-offs involved
in choosing Tis and m below.) The m instances of Algtree
are executed one after the other.
Step 3: Finally, we take all the unpruned event at the end
of Step 2 and perform an exhaustive search for pattern P .
An exhaustive search takes every possible combination of
unpruned events and checks if all the conditions in P are



true for any combination. Here, a combination is a set of
events that has one event from each event stream. A pattern
match alarm for P is raised if a combination is found that
satisfies all conditions of P .
Suppose that there are at most n events in each of the event

stream and the number of edges k in the pattern graph is
small compared to n. From Theorems 2, we know that an
instanceAlgtree runs in time linear in n. Thus running time
of Step 2 increases linearly with mn, but we expect that
increasing m decreases the number of unpruned events at
the end of Step 2. On the other hand, if there are u unpruned
events when Step 3 is triggered, the exhaustive search may
required O(uk) time. Thus there is a trade-off between the
running times of Step 2 and Step 3, which can be tuned by
choosing appropriate Tis andm. We empirically investigate
this problem in our simulations.

3.5 Spatial Pattern Matching

In this section we discuss algorithms for spatial pattern
matching. First note that, the spatial conditions on the edges
of the pattern graph P specifies an upper bound on the dis-
tance between the two nodes in the topology graph GT .
Therefore we maintain the distance matrix for GT which
gives the distance between any pair of nodes in GT . When-
ever GT changes (and at initialization), this distance matrix
is recomputed in O(N3) time using the Floyd-Warshall al-
gorithm [5]. Here N is the number of nodes in GT . Since,
changes inGT are infrequent (compared to the rate at which
new events are generated), we do not expect distance matrix
re-computations to be frequent.
Now, for each pattern vertex Vi in P , there might be mul-

tiple nodes in GT that has the same ntype; we denote the
set of these nodes by W (Vi). Let M be the maximum size
of W (Vi) over all vertices Vi of P . (Note than, M can be
O(N).) We now describe how to prune nodes in GT for a
spatial pattern match.
To prune W (Vi) for spatial match of an edge (Vi, Vj) of
P that has spatial upper bound δ(i, j), we execute the fol-
lowing obvious algorithm. For each node wi in W (Vi), we
check whether any node in W (Vj) has distance less than
equal to δ(i, j) from wi. If there is no such node, wi is
pruned. This check requires at most M lookups in the
distance matrix for each vertex in W (Vi), and therefore,
O(M2) time in total for W (Vi). Let us denote this prun-
ing algorithm by Algsp(i, j).
We note that, we cannot reuse the linear time algorithm
Algrange for the spatial match of an edge becauseAlgrange
exploits the ordering of events that is imposed by time.
However, for spatial pruning when the pattern graph is a
tree, we can reuse the Algtree algorithm by making the fol-
lowing two substitutions for all i, j: (1) for prune(i, j), use
Algsp(i, j) instead ofAlgrange, and (2) for input, use nodes
in W (Vi) instead of event stream i. The correctness of us-
ing Algtree for spatial pruning follows from the following

observation: if we assume prune(i, j) correctly prunes the
nodes in W (Vi) (or the events in event stream i) for the
condition on edge (Vi, Vj), then the proof of correctness
of Algtree is independent of whether the conditions on the
pattern edges are spatial or temporal. From Theorem 2, the
time-complexity of Algtree for spatial match is O(k2M2).

Similarly, the heuristic in Section 3.4 can be used for spa-
tial matching if Algrange is replaced by Algsp(i, j) and
Algsp(j, i). To obtain a complete spatio-temporal match,
for each spatial match < w1, . . . , wk > obtained in Step 3
of the heuristic for spatial match, the heuristic for temporal
match is triggered with events from node wi used as event
stream i.

4 A Proposed Framework for Problem De-
termination

In this section we briefly propose a scalable framework for
problem determination based on the algorithms proposed
in this work. We classify occurrences of a problem into
two categories, resolved problems instances and new prob-
lems instances. For a problem type, we assume that there
is an existing problem pattern constructed out of resolved
problem instances. A system administrator may construct
such a pattern, either manually, or with the aid of a learning
technique [2]. Techniques from temporal data mining [8]
for discovering hidden patterns in temporal data can also be
used for constructing problem patterns.

Every problem pattern is stored in central repository along
with any other relevant information, e.g., a method to re-
solve the problem. Now, consider a pattern P in the repos-
itory. In P , let SE and SN be the set of all event types
and node types. Let W be the longest path in the weighted
version of pattern graph P where the edges have weights
equal to their temporal upper bounds. Now, if a set S′ of
events is a pattern match of P , then all events of S oc-
curs within W time units of each other. Next, on the set
of event streams that are generated by all nodes with node
types in ST , we execute the algorithm Algrange using a
range pattern consisting of a set of event types SE and
∆ = W . Whenever this execution raises a pattern match
for P ′, using pattern P , we run the heuristics from Sec-
tions 3.4 and 3.5 over all events that occurs within last W
time units. This scheme is run separately for each pattern
in the repository. Whenever, any of these schemes raises a
pattern match, an alarm is sent to the system administrator.
For obtaining the spatial information, the system topology
can be discovered and maintained using established com-
mercial products, e.g., IBM Tivoli Application Dependency
Discovery Manager (TADDM) and HP Discovery and De-
pendency Mapping Software, and the distance matrix is up-
dated whenever a topology change occurs.



5 Performance Study

To evaluate the performance of our algorithms, we per-
formed extensive numerical simulations. We generated a set
of pattern graphs and investigated how efficiently they can
be detected on event streams using our algorithm. For tree
patterns we used Algtree and for general patterns we used
the heuristic described in Section 3.4. We did our simula-
tions only for temporal patterns. The temporal condition on
each edge of the pattern is an upper bound of 20 millisecond
(ms).
The simulations were performed on an Intel dual core pro-

cessor, each of capacity 2.16 GHz. The machine was run-
ning Windows XP with 2GB memory. The algorithms were
implemented in C++.
Let n be the number of primitive events in each of the
k event streams at the beginning of the experiment. Sup-
pose at the end of the experiment, there are ni unpruned
events in event stream i. Then, the the number of dis-
tinct pattern matches should be at least max1≤i≤k {ni} and
at most

∏k
i=1 ni distinct matches. Suppose after round

r, nri events are left unpruned in event stream i. Then,

zr = max1≤i≤k

{
nr
i

n

}
indicates the minimum possible

fraction of distinct pattern matches at the end of round r.
Our experiments were performed on randomly generated

spanning trees of a complete graph, unless otherwise speci-
fied. We considered two kinds of event distribution, namely,
events are generated by a Poisson process, and events with
uniform distribution of inter-arrival time. In both cases we
kept the same mean inter-arrival time. Let λ be the mean
inter-arrival duration between the events. Figure 3(a) shows
the performance variation with λ for both the distributions.
We fixed n = 20000 and k = 65 and varied λ from 18 ms.
to 26 ms. and measured the variation of the running times.
Figure 3(b) plots zr for 1 ≤ r ≤ 5 for three different val-
ues of λ for Poisson distribution. Observe that for a fixed
n and k, as λ increases, the potential number of matches
decreases. As a consequence, zr converges sharply with
the number of iterations. Since the number of unpruned
events decreases, the time taken for each subsequent round
decreases. Therefore, the total running time of the experi-
ment decreases with increase of λ.
Figure 3(c) shows that for a fixed pattern and a fixed λ, the

running time varies almost linearly with n, and thus con-
firming our time-complexity analysis of Algtree in Theo-
rem 2. Figure 3(d) shows the variation of running time with
increase in k. For this experiment we use a pattern that is a
binary tree of k vertices. From the proof of Theorem 2, we
see that the time complexity of Algtree can also be given
by O(HP kn) (instead of O(k2n)) where HP is the height
of the rooted tree with minimum height, for pattern P . For
a binary tree, with the increase in the number of vertices k,
the height HP grows logarithmically. Thus, our experimen-
tal results show sub-quadratic growth of the running time
with k.

Next we examine the performance of our heuristic. We
considered a pattern graph with k = 80 vertices. n was
fixed to 40000 and λ was fixed to 20 ms. We selected three
spanning trees T1, T2 and T3 of the pattern. The unpruned
events left after running the tree algorithm using pattern T1
were given as input to the next execution of the algorithm
using T2. And this was followed up by execution of the
algorithm using T3. By the end of the three executions, the
fraction of unpruned events had significantly reduced so that
we could perform exhaustive search and detect the matching
patterns. We illustrate the decline of zr for 1 ≤ r ≤ 5 over
these three passes in Figure 3(e). It clearly demonstrates the
effectiveness of our heuristic for general patterns.

6 Related Work

Problem determination and root cause analysis has been
extensively studied in the IT service management litera-
ture [1–4, 6, 9]. In [2], a repository of problem pattern is
maintained, where a problem (or fault) pattern is a set of
change-point events occurring within a fixed time interval.
Each event in a problem pattern is assigned a score which
indicates the correlation between an event and the occur-
rence of the problem. The authors present a method to learn
the problem pattern and the associated scores over time.
The method described in their work is complementary to
our work, and our Algrange algorithm can be directly used
to detect if a set of events in a problem pattern has occurred.
Searching for a given sequential pattern (or a given sub-

sequence) in very long sequences has been studied in the
area of temporal data mining [8]. However, the graph based
patterns that we consider are more general than sequential
patterns as they allow more flexibility in how the match-
ing events of a pattern are ordered. Detecting whether an
event pattern (also called complex events) has occurred in
an event stream has been studied in the area of complex
event processing. Recent work in this area has studied de-
tection of complex events that have temporal constraints
among the basic events [7, 10]. In [10], the authors study
complex events with temporal conditions in the setting of
RFID streams, and considers many different kinds of tem-
poral constraint, e.g., both upper and lower bounds on the
distance between the events, and event which occur over
an interval of time (in contrast to instantaneous events).
While some of those constraints can be handled by straight-
forward extension of our algorithms (e.g., events occurring
over an interval), some others are more challenging to han-
dle (e.g., simultaneously handling upper and lower bounds
between two events). However, there are two major differ-
ences from [10] in our work: (1) in addition to temporal
constraints, we also consider system topology graph based
spatial constraints on events, and (2) we provide provable
bounds on the running time of our algorithm for range and
tree patterns (whereas, the algorithm presented in [10] pro-
vides no such time-complexity bound).
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Figure 3. Simulation Results

7 Conclusion

We now briefly discuss three directions for future work.
First, an immediate open problem is to design efficient al-
gorithms for general pattern graphs. In this paper, we have
given algorithms for range and tree patterns, whose running
time is linear in the number of events in the event streams.
However, it is left open whether such algorithms exist for
general pattern graphs. Second direction for investigation,
following [10], is to study efficient algorithms for more gen-
eral temporal conditions on the events, e.g., events that take
place over an interval, and lower bounds on the distance be-
tween two events. Finally, to make the framework easier
to deploy, we need further investigation extending the work
done in [2] to automatically extract problem patterns from
historical event logs.
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